JPS6231492B2 - - Google Patents

Info

Publication number
JPS6231492B2
JPS6231492B2 JP386480A JP386480A JPS6231492B2 JP S6231492 B2 JPS6231492 B2 JP S6231492B2 JP 386480 A JP386480 A JP 386480A JP 386480 A JP386480 A JP 386480A JP S6231492 B2 JPS6231492 B2 JP S6231492B2
Authority
JP
Japan
Prior art keywords
oxide film
film
silicon oxide
oxidation
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP386480A
Other languages
Japanese (ja)
Other versions
JPS56100443A (en
Inventor
Kazuhiko Tsuji
Takashi Hirao
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP386480A priority Critical patent/JPS56100443A/en
Publication of JPS56100443A publication Critical patent/JPS56100443A/en
Publication of JPS6231492B2 publication Critical patent/JPS6231492B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76202Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using a local oxidation of silicon, e.g. LOCOS, SWAMI, SILO

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Local Oxidation Of Silicon (AREA)
  • Element Separation (AREA)
  • Weting (AREA)

Description

【発明の詳細な説明】 本発明は半導体装置の製造方法に関し、写真食
刻技術の限界にほぼ等しい微細なパターン巾を有
する酸化硅素膜を半導体基板に選択的に形成可能
な半導体装置の製造方法を提供することを目的と
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a semiconductor device, and a method for manufacturing a semiconductor device in which a silicon oxide film having a fine pattern width approximately equal to the limit of photolithography can be selectively formed on a semiconductor substrate. The purpose is to provide

従来、半導体装置の製造において、同一半導体
基板上に形成した素子間の分離を行なうために素
子間に厚い酸化硅素膜いわゆるフイールド酸化膜
を形成することが行なわれている。前記酸化硅素
膜と半導体基板との段差を少なくする方法とし
て、第1図に示すように半導体基板1上に窒化硅
素膜等の耐酸化性絶縁膜2を形成した後A、耐酸
化性絶縁膜2を選択的にエツチングしB、残存す
る耐酸化性絶縁膜2をマスクとして前記半導体基
板1を選択的に酸化硅素膜3に変換するC方法が
ある。かかる方法では通常の写真食刻法により前
記耐酸化性絶縁膜2に所定のパターンを形成する
手法をとつていることから、前記パターンの最小
寸法は写真食刻法に依存し、写真食刻技術の限界
以下の寸法は形成できない。
Conventionally, in the manufacture of semiconductor devices, a thick silicon oxide film, so-called field oxide film, is formed between the elements in order to isolate the elements formed on the same semiconductor substrate. As a method of reducing the level difference between the silicon oxide film and the semiconductor substrate, as shown in FIG. 1, after forming an oxidation-resistant insulating film 2 such as a silicon nitride film on the semiconductor substrate 1, There is a method B in which the semiconductor substrate 1 is selectively etched into a silicon oxide film 3, and a method C in which the semiconductor substrate 1 is selectively converted into a silicon oxide film 3 using the remaining oxidation-resistant insulating film 2 as a mask. Since this method uses a method of forming a predetermined pattern on the oxidation-resistant insulating film 2 by a normal photo-etching method, the minimum dimension of the pattern depends on the photo-etching method. Dimensions below the limit cannot be formed.

また形成された酸化硅素膜3は、その形成深さ
dとほぼ同じ寸法で前記耐酸化性絶縁膜2のパタ
ーンの下部にも形成される。したがつて第1図C
に示すように酸化硅素膜3のパターン巾aは、前
記耐酸化性絶縁膜のパターン巾lより広くなり、
酸化硅素膜3の厚さをdとするとa=l+2dと
なる。前記酸化硅素膜3は素子間分離が目的であ
り、素子の能動領域ではないため、パターン巾は
小さい方が好ましい。しかし従来法では前述のよ
うに写真食刻法の限界パターン寸法lより、必ず
広くなるという欠点があり、高密度化のさまたげ
となつている。
Furthermore, the formed silicon oxide film 3 is also formed under the pattern of the oxidation-resistant insulating film 2 with approximately the same dimensions as its formation depth d. Therefore, Figure 1C
As shown in , the pattern width a of the silicon oxide film 3 is wider than the pattern width l of the oxidation-resistant insulating film,
If the thickness of the silicon oxide film 3 is d, then a=l+2d. Since the purpose of the silicon oxide film 3 is to isolate devices and not to form an active region of the device, it is preferable that the pattern width be small. However, as mentioned above, the conventional method has the disadvantage that the pattern size always becomes wider than the limit pattern size l of the photolithography method, which is an obstacle to increasing the density.

本発明は、耐酸化性絶縁膜上に多結晶半導体膜
よりなるパターンを形成し、これを酸化してパタ
ーン間隔を縮め、この酸化により形成された酸化
膜にて選択酸化用の耐酸化性絶縁膜パターンを形
成するものであつて、従来に比べより微細で高密
度な選択酸化膜を半導体基板に形成するものであ
る。以下、本発明の方法を図面とともに説明す
る。
The present invention forms a pattern made of a polycrystalline semiconductor film on an oxidation-resistant insulating film, oxidizes the pattern to reduce the pattern interval, and uses the oxide film formed by this oxidation to form an oxidation-resistant insulator for selective oxidation. This method forms a film pattern, and forms a finer, higher-density selective oxide film on a semiconductor substrate than conventional methods. The method of the present invention will be explained below with reference to the drawings.

本発明の第1の実施例を第2図に従つて説明す
る。一導電型のたとえばシリコン半導体基板11
上にたとえばシリコン窒化膜(Si3N4膜)よりな
る耐酸化性絶縁膜12を例えば1000Å、多結晶硅
素膜13を例えば5000Åを順に形成するA。通常
の写真食刻法により前記多結晶硅素膜13に所定
のパターンを形成するB。次に高温酸素雰囲気中
で前記多結晶硅素膜13をすべて酸化硅素膜14
に変換するC。この場合、酸化硅素膜14の体積
は、多結膜硅素膜13のほぼ2倍程度に膨張す
る。したがつて、多結晶硅素膜13の膜厚をdと
すれば14のパターン間が縮まりその間隔の巾も
最初のパターン間隔lよりも2dだけ細くなり
(l−2d)となる。
A first embodiment of the present invention will be described with reference to FIG. For example, a silicon semiconductor substrate 11 of one conductivity type.
An oxidation-resistant insulating film 12 made of, for example, a silicon nitride film (Si 3 N 4 film) is formed thereon to a thickness of, for example, 1000 Å, and a polycrystalline silicon film 13 is formed to a thickness of, for example, 5000 Å in this order. Step B: A predetermined pattern is formed on the polycrystalline silicon film 13 by a normal photolithography method. Next, in a high-temperature oxygen atmosphere, all the polycrystalline silicon film 13 is removed from the silicon oxide film 14.
Convert to C. In this case, the volume of the silicon oxide film 14 expands to approximately twice the volume of the multi-conjunctival silicon film 13. Therefore, if the thickness of the polycrystalline silicon film 13 is d, the distance between the patterns 14 will be reduced and the width of the interval will be 2d narrower than the initial pattern interval l (l-2d).

次に前記酸化硅素膜14を食刻マスクとして、
耐酸化性絶縁膜12をリン酸あるいはCF4等のガ
スプラズマ雰囲気中で選択的に食刻し、(l−
2d)のパターン巾(間隔)を有する耐酸化性絶
縁膜パターンを形成するD。その後、酸化硅素膜
14を、例えば弗酸と水の混合比が2:10の弗酸
系水溶液で除去するE。さらに、(l−2d)のパ
ターン巾を有する耐酸化性絶縁膜12をマスクと
して基板11を選択酸化し、基板11の露出領域
に酸化硅素膜15を多結晶硅素膜13とほぼ等し
い厚さd(例えば5000Å)で形成する。この際、
酸化硅素膜15は耐酸化性絶縁膜12のパターン
巾に比べて横方向に2dだけ広がりを持つが、耐
酸化性絶縁膜12のパターン巾が(l−2d)で
あることから、酸化硅素膜15の全体巾は、多結
晶硅素膜13のパターン巾と等しい値lとなる。
この様に、多結晶硅素膜13を酸化硅素膜14に
変換し多結晶硅素膜13のパターン巾(間隔)を
縮小するという工程を設けることにより、多結晶
硅素膜13のパターン巾に忠実な酸化硅素膜15
が形成できる。
Next, using the silicon oxide film 14 as an etching mask,
The oxidation-resistant insulating film 12 is selectively etched in a gas plasma atmosphere of phosphoric acid or CF4 , etc.
D) forming an oxidation-resistant insulating film pattern having a pattern width (interval) of 2d). Thereafter, the silicon oxide film 14 is removed using, for example, a hydrofluoric acid-based aqueous solution with a mixing ratio of hydrofluoric acid and water of 2:10. Furthermore, the substrate 11 is selectively oxidized using the oxidation-resistant insulating film 12 having a pattern width of (l-2d) as a mask, and a silicon oxide film 15 is formed on the exposed region of the substrate 11 to a thickness d that is approximately equal to that of the polycrystalline silicon film 13. (for example, 5000 Å). On this occasion,
The silicon oxide film 15 has a width of 2d in the lateral direction compared to the pattern width of the oxidation-resistant insulating film 12, but since the pattern width of the oxidation-resistant insulating film 12 is (l-2d), the silicon oxide film The overall width of the polycrystalline silicon film 13 is equal to the pattern width of the polycrystalline silicon film 13 .
In this way, by providing the process of converting the polycrystalline silicon film 13 into the silicon oxide film 14 and reducing the pattern width (interval) of the polycrystalline silicon film 13, oxidation that is faithful to the pattern width of the polycrystalline silicon film 13 can be performed. Silicon film 15
can be formed.

以上の如く、本発明の方法によれば、写真食刻
の限界パターン寸法にほぼ等しい酸化硅素膜が形
成でき、よりいつそう半導体装置の高密度化が可
能となる。
As described above, according to the method of the present invention, it is possible to form a silicon oxide film that is approximately equal to the critical pattern size of photolithography, thereby making it possible to increase the density of semiconductor devices more quickly.

なお、前記多結晶硅素膜12の膜厚は、前記基
板に形成する酸化硅素膜15と同等以上の膜厚を
また多結晶硅素膜を変換して形成する酸化硅素膜
14の膜厚は、基板に形成する酸化硅素膜15の
2倍以上の膜厚に形成すれば、基板への酸化硅素
膜の形成巾を小さくすることができる。
The thickness of the polycrystalline silicon film 12 is equal to or greater than the thickness of the silicon oxide film 15 formed on the substrate, and the thickness of the silicon oxide film 14 formed by converting the polycrystalline silicon film is If the silicon oxide film 15 is formed to have a thickness twice or more than that of the silicon oxide film 15, the width of the silicon oxide film formed on the substrate can be reduced.

また素子間分離のため、酸化硅素膜15下にイ
オン注入法等により高濃度のチヤンネルストツパ
等の拡散層(図示せず)を形成する場合、多結晶
硅素膜を変換した酸化硅素膜14のパターンをマ
スクとして不純物拡散することによりこの不純物
拡散層の巾も酸化硅素膜15と同様に多結晶硅素
膜13のパターンとのずれを少なく形成できる。
In addition, when forming a highly concentrated diffusion layer (not shown) such as a channel stopper under the silicon oxide film 15 by ion implantation or the like for isolation between elements, the silicon oxide film 14 converted from a polycrystalline silicon film may be used. By diffusing impurities using the pattern as a mask, the width of this impurity diffusion layer can be formed with less deviation from the pattern of the polycrystalline silicon film 13, similar to the silicon oxide film 15.

さらに、第2図Dの耐酸化性絶縁膜12の選択
食刻と同時に基板11を食刻する様な場合にも本
発明は適用できる。この場合、スパタツタエツチ
ング法等により第3図Aに示すように、耐酸化性
絶縁膜12のパターンに忠実に食刻できるとき
は、12のパターン間隔は前記と同様(l−
2d)でよい。しかしながら、一般的にはアンダ
ーカツトにより第3図Bに示すように基板のエツ
チング部分のパターン巾が2t分広くなり、したが
つて基板中での酸化硅素膜巾は2d+2tだけ増加す
るので、耐酸化性絶縁膜12のパターン間隔が
(l−2d−2t)となるように多結晶硅素膜13お
よび酸化硅素膜14の膜厚を選ぶことが好まし
い。
Furthermore, the present invention can be applied to a case where the substrate 11 is etched at the same time as the selective etching of the oxidation-resistant insulating film 12 shown in FIG. 2D. In this case, if the pattern of the oxidation-resistant insulating film 12 can be faithfully etched by sputter etching or the like as shown in FIG.
2d) is fine. However, in general, due to undercutting, the pattern width of the etched portion of the substrate increases by 2t as shown in Figure 3B, and therefore the silicon oxide film width in the substrate increases by 2d + 2t. It is preferable to select the thicknesses of the polycrystalline silicon film 13 and the silicon oxide film 14 so that the pattern spacing of the silicon oxide film 12 is (l-2d-2t).

第2の実施例を第4図に従つて説明する。半導
体基板での欠陥発生を防止する目的で、半導体基
板11と耐酸化性絶縁膜12の間に例えば500〜
1000Åの酸化硅素膜16を形成する。第2図Dま
での工程は、第1の実施例と同様に用いる。第2
図Dののち、酸化硅素膜14をマスクにして、イ
オン注入法等により半導体基板に前記基板11と
同じ導電型の不純物層17を高濃度に形成する
(第4図A)。次に酸化硅素膜14を除去する。こ
のとき耐酸化性絶縁膜12と基板11間に形成し
た酸化硅素膜16も同時に選択的に食刻される
B。つづいて前記耐酸化硅素膜をマスクとして厚
い酸化硅素膜18を形成するC。
A second embodiment will be described with reference to FIG. For the purpose of preventing the occurrence of defects in the semiconductor substrate, a layer of, for example, 500~
A silicon oxide film 16 of 1000 Å is formed. The steps up to FIG. 2D are used in the same manner as in the first embodiment. Second
After FIG. D, using the silicon oxide film 14 as a mask, an impurity layer 17 of the same conductivity type as the substrate 11 is formed at a high concentration on the semiconductor substrate by ion implantation or the like (FIG. 4A). Next, the silicon oxide film 14 is removed. At this time, the silicon oxide film 16 formed between the oxidation-resistant insulating film 12 and the substrate 11 is also selectively etched at the same time. Next, a thick silicon oxide film 18 is formed using the oxidation-resistant silicon film as a mask.

この場合、酸化硅素膜18のパターン巾は第4
図Bの工程での酸化硅素膜16のアンダーカツト
20のために第1の実施例よりもパターン巾が広
くなるが、酸化硅素膜18形成後の高濃度不純物
層17は膜14のパターンにて形成されるため、
そのパターン巾は第1の実施例のパターン寸法l
以内に微少に形成できる。したがつて、従来と異
なり能動素子を形成する領域19のパターン巾の
減少は少なく半導体装置の高密度化、高集積化が
可能である。
In this case, the pattern width of the silicon oxide film 18 is the fourth
Although the pattern width is wider than that in the first embodiment due to the undercut 20 of the silicon oxide film 16 in the step of FIG. Because it is formed,
The pattern width is the pattern dimension l of the first embodiment.
can be formed minutely within Therefore, unlike the prior art, the pattern width of the region 19 in which active elements are formed is less reduced, and it is possible to increase the density and integration of the semiconductor device.

以上のように、本発明は微細な素子間分離用等
の絶縁膜を半導体基板に選択形成することができ
高密度な半導体集積回路の製造に大きく寄与する
ものである。
As described above, the present invention can selectively form an insulating film for fine isolation between elements on a semiconductor substrate, and greatly contributes to the production of high-density semiconductor integrated circuits.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図A,B,Cは従来の選択酸化工程図、第
2図A〜Fは本発明の一実施例にかかる選択酸化
工程図、第3図A,Bは基板をエツチングした状
態の断面図、第4図A,B,Cは本発明の他の実
施例にかかる選択酸化工程図である。 11……半導体基板、12……耐酸化性絶縁物
膜、13……多結晶硅素膜、14……酸化硅素
膜、15,18……酸化硅素膜、17……拡散
層。
Figures 1A, B, and C are diagrams of a conventional selective oxidation process, Figures 2A to F are diagrams of a selective oxidation process according to an embodiment of the present invention, and Figures 3A and B are cross sections of the etched substrate. 4A, B, and C are selective oxidation process diagrams according to other embodiments of the present invention. 11... Semiconductor substrate, 12... Oxidation-resistant insulating film, 13... Polycrystalline silicon film, 14... Silicon oxide film, 15, 18... Silicon oxide film, 17... Diffusion layer.

Claims (1)

【特許請求の範囲】 1 半導体基板上に耐酸化性絶縁膜および多結晶
硅素膜を順に形成する工程と、前記多結晶硅素膜
に、所定のパターンを形成し、かつ前記多結晶硅
素膜をすべて酸化膜に変換して第1の酸化膜を形
成する工程と、前記第1の酸化膜をマスクとして
前記耐酸化性絶縁膜を食刻する工程と、前記第1
の酸化膜を除去する工程とを含んでなる半導体装
置の製造方法。 2 耐酸化性絶縁膜パターンをマスクとして前記
半導体基板を酸化し、第2の酸化膜を形成する工
程を含む特許請求の範囲第1項に記載の半導体装
置の製造方法。 3 耐酸化性絶縁膜パターンをマスクとして、前
記半導体基板を食刻する工程を含む特許請求の範
囲第1項に記載の半導体装置の製造方法。
[Claims] 1. A step of sequentially forming an oxidation-resistant insulating film and a polycrystalline silicon film on a semiconductor substrate, forming a predetermined pattern on the polycrystalline silicon film, and removing all the polycrystalline silicon films. converting into an oxide film to form a first oxide film; etching the oxidation-resistant insulating film using the first oxide film as a mask;
A method for manufacturing a semiconductor device, the method comprising: removing an oxide film of the semiconductor device. 2. The method of manufacturing a semiconductor device according to claim 1, comprising the step of oxidizing the semiconductor substrate using an oxidation-resistant insulating film pattern as a mask to form a second oxide film. 3. The method of manufacturing a semiconductor device according to claim 1, including the step of etching the semiconductor substrate using an oxidation-resistant insulating film pattern as a mask.
JP386480A 1980-01-16 1980-01-16 Manufacture of semiconductor device Granted JPS56100443A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP386480A JPS56100443A (en) 1980-01-16 1980-01-16 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP386480A JPS56100443A (en) 1980-01-16 1980-01-16 Manufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPS56100443A JPS56100443A (en) 1981-08-12
JPS6231492B2 true JPS6231492B2 (en) 1987-07-08

Family

ID=11569056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP386480A Granted JPS56100443A (en) 1980-01-16 1980-01-16 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS56100443A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60117866A (en) * 1983-11-29 1985-06-25 Toshiba Corp Picture information reader
JPS60128636A (en) * 1983-12-16 1985-07-09 Toshiba Corp Manufacture of semiconductor device
JP2603238B2 (en) * 1987-02-17 1997-04-23 キヤノン株式会社 Paper feeder
JP2632829B2 (en) * 1987-02-17 1997-07-23 キヤノン株式会社 Paper feeder

Also Published As

Publication number Publication date
JPS56100443A (en) 1981-08-12

Similar Documents

Publication Publication Date Title
JPS63107119A (en) Manufacture of integrated circuit with stepped insulating layer
US5118641A (en) Methods for reducing encroachment of the field oxide into the active area on a silicon integrated circuit
JPS6181649A (en) Manufacture of semiconductor device
JPH0628282B2 (en) Method for manufacturing semiconductor device
JPS6231492B2 (en)
US4411929A (en) Method for manufacturing semiconductor device
JPH02222160A (en) Manufacture of semiconductor device
JPH07111288A (en) Forming method for element separation
JPS6029219B2 (en) Manufacturing method of semiconductor integrated circuit
JPS61119056A (en) Manufacture of semiconductor device
JPH079930B2 (en) Method for manufacturing semiconductor device
JPH0370156A (en) Manufacture of semiconductor device
JPH01179431A (en) Manufacture of semiconductor device
JPH0258778B2 (en)
JPH11186253A (en) Manufacture of semiconductor device
JPH0210729A (en) Formation of field insulating film
JPS60240131A (en) Manufacture of semiconductor device
JPS6117143B2 (en)
JPH06252137A (en) Manufacture of semiconductor device
JPS62112342A (en) Formation of element isolating region
JPS60101947A (en) Manufacture of semiconductor device
JPS58157137A (en) Manufacture of semiconductor device
JPS6316903B2 (en)
JPH01265536A (en) Formation of element isolating region in semiconductor integrated circuit
JPH05121401A (en) Manufacture of semiconductor device