JPS6231477B2 - - Google Patents

Info

Publication number
JPS6231477B2
JPS6231477B2 JP9891280A JP9891280A JPS6231477B2 JP S6231477 B2 JPS6231477 B2 JP S6231477B2 JP 9891280 A JP9891280 A JP 9891280A JP 9891280 A JP9891280 A JP 9891280A JP S6231477 B2 JPS6231477 B2 JP S6231477B2
Authority
JP
Japan
Prior art keywords
temperature
metal pipe
sheathed heater
heating
heating furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9891280A
Other languages
Japanese (ja)
Other versions
JPS5723491A (en
Inventor
Koichi Hibino
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP9891280A priority Critical patent/JPS5723491A/en
Publication of JPS5723491A publication Critical patent/JPS5723491A/en
Publication of JPS6231477B2 publication Critical patent/JPS6231477B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Resistance Heating (AREA)

Description

【発明の詳細な説明】 この発明はシーズヒータの封口方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for sealing a sheathed heater.

一般にシーズヒータの金属パイプと発熱コイル
との間の絶縁に使用するマグネシアは空気中に放
置されると、空気中の湿気を吸収することによつ
て絶縁抵抗が低下するという欠点がある。この欠
点を防ぐために金属パイプの端末を封口すること
が必要である。その方法として金属パイプの中に
発熱コイルを入れその間にマグネシアを充填した
後、低融点ガラス粉末を成形して焼結させたリン
グ状の焼結体を発熱コイルの口出線を通して金属
パイプの開口部に投入した後、該金属パイプを加
熱炉に入れ300〜400℃に所定時間加熱してマグネ
シア粉末が吸い込んだ水分を除去せしめ、次いで
加熱炉内を焼結体の溶融温度、例えば480℃に上
昇させて封口を行つていた。
Magnesia, which is generally used for insulation between the metal pipe and heating coil of a sheathed heater, has the disadvantage that when left in the air, the insulation resistance decreases due to absorption of moisture in the air. To prevent this drawback, it is necessary to seal the ends of the metal pipes. The method involves placing a heating coil inside a metal pipe, filling the space with magnesia, and then passing a ring-shaped sintered body made by molding and sintering low-melting glass powder through the lead wire of the heating coil through the opening of the metal pipe. After putting the metal pipe into a heating furnace, it is heated to 300 to 400°C for a predetermined period of time to remove moisture absorbed by the magnesia powder, and then the inside of the heating furnace is heated to the melting temperature of the sintered body, for example, 480°C. It was raised and sealed.

この様な方法において封口をおこなうと、焼結
体の溶融温度に加熱炉内が上昇すると、焼結体は
溶融して金属パイプの両端開口部を塞ぐ。これに
よつて金属パイプ内のマグネシア中に残存するエ
アーも加熱炉とほゞ同一温度で封じ込められて、
エアーの流通がストツプさせられる。次いで炉内
温度を降下させれば、溶融した焼結体も硬化し、
ガラス封口が完了する。この際480℃で金属パイ
プ内の残存エアーが封じ込められて常温に冷却さ
れることになる。するとボイルシヤルルの法則に
より、金属パイプ内部の圧力は常温に冷却された
ときに負圧となる。
When sealing is performed in such a method, when the temperature inside the heating furnace rises to the melting temperature of the sintered body, the sintered body melts and closes the openings at both ends of the metal pipe. As a result, the air remaining in the magnesia inside the metal pipe is sealed at almost the same temperature as the heating furnace.
Air circulation is stopped. Next, if the temperature inside the furnace is lowered, the molten sintered body will also harden.
Glass sealing is completed. At this time, the remaining air inside the metal pipe is sealed at 480°C and cooled to room temperature. Then, according to Boyleshall's law, the pressure inside the metal pipe becomes negative when it is cooled to room temperature.

例えば、炉内温度480℃、炉内気圧1Kg/cm2
して常温(20℃)に冷却されたときの内部圧力
は、480℃のときのシーズヒータの内容積をV、
常温時の同じく容積をV′とするとP・V/T=P′・
V′/T′よ りV≒V′とするとP′=PT′/T=1・20+273
/480+273≒0.4 Kg/cm2となつて大気圧より低くなつた状態で封口
されている。実際にはV=V′ではないから0.4
Kg/cm2より若干大きくなるが、熱膨張係数の値か
ら見ても大きく変化させる程のものではなく負圧
になることは避けられない。
For example, assuming that the furnace temperature is 480℃ and the furnace pressure is 1Kg/ cm2 , the internal pressure when cooled to room temperature (20℃) is the internal volume of the sheathed heater at 480℃, which is V,
If the same volume at room temperature is V', then P・V/T=P′・
From V'/T', if V≒V', then P'=PT'/T=1・20+273
/480+273≒0.4 Kg/cm 2 and is sealed at a pressure lower than atmospheric pressure. In reality, V=V' is not true, so 0.4
Although it is slightly larger than Kg/cm 2 , it is not enough to cause a large change considering the value of the thermal expansion coefficient, and a negative pressure is inevitable.

以上の様に完成したシーズヒータの内部負圧に
なつたものにおいては、特に絶縁耐圧が悪いもの
となる。ここにパーシエンの法則より、放電電圧
(Vs)は電極間の距離(d)と気圧(P)の積
(Pd)の関数となる。すなわちVs=(Pd)で
ある。
The sheathed heater completed as described above, which has a negative internal pressure, has particularly poor dielectric strength. According to Perthien's law, the discharge voltage (Vs) is a function of the product (Pd) of the distance (d) between the electrodes and the atmospheric pressure (P). That is, Vs=(Pd).

放電電圧(Vs)と(Pd)との関係を第4図に
示す。内部圧力が大気圧のシーズヒータの場合
(Pd)は最小放電電圧(Vsm)の対応値(Pdc)
より充分大きいので(Pd)>(Pdc)の範囲で考察
すればよい。故にこの関係から内部圧力が低下す
れば、絶縁耐圧特性が悪くなることは明白であ
る。従つて完成したシーズヒータは法的に定めら
れた規定値の電圧に耐えられないものとなり、不
良となつたりする。
FIG. 4 shows the relationship between discharge voltage (Vs) and (Pd). For a sheathed heater with internal pressure at atmospheric pressure (Pd), the corresponding value (Pdc) of the minimum discharge voltage (Vsm)
Since it is sufficiently larger, it is sufficient to consider the range of (Pd)>(Pdc). Therefore, from this relationship, it is clear that if the internal pressure decreases, the dielectric strength characteristics deteriorate. Therefore, the completed sheathed heater may not be able to withstand the legally stipulated voltage and may become defective.

この点を改善するためには、シーズヒータの金
属パイプの径を太くして絶縁距離を大きくしなけ
ればならず、極めて不都合なものとなる。
In order to improve this point, it is necessary to increase the diameter of the metal pipe of the sheathed heater to increase the insulation distance, which is extremely inconvenient.

この様な不都合を改善するために、この発明は
封口を行う際、マグネシア粉末が吸いこんだ水分
を高温で除去した後、マグネシア粉末が物理的に
水分を吸着しない程度の低温に保持したものを取
り出し、封口部分のみを加熱して低融点ガラスを
溶融させることにより冷却後の内部圧力が大きく
圧力低下をしない様にして絶縁耐圧特性の低下を
防止せんとするものである。
In order to improve this inconvenience, the present invention removes the moisture absorbed by the magnesia powder at a high temperature when sealing, and then maintains it at a low temperature to the extent that the magnesia powder does not physically absorb moisture. By heating only the sealed portion after taking it out and melting the low melting point glass, the internal pressure after cooling is prevented from decreasing significantly, thereby preventing a decrease in dielectric strength characteristics.

以下この発明の封口方法について詳述する。第
1図は封口処理前の断面図で、1は発熱コイル、
2は金属パイプ、3はマグネシア粉末、4は発熱
コイルの口出線である。この様な状態のものを第
3図に示すような温度管理が行れる加熱炉内に入
れ、マグネシア粉末3が吸い込んだ水分を除去す
るため350℃以上で加熱する。マグネシア粉末に
吸着している水分は物理的に吸着している場合は
100℃以上に加熱すれば除去できるが、化学的に
結合したものは350℃以上に加熱しなければ除去
できない。従つてマグネシア粉末3の外観からは
物理的なのか化学的な結合なのかを判別できない
ため、350℃以上で加熱すればマグネシア粉末3
に吸着している水分は完全に除去することがで
き、電気的特性を良好にすることができる。この
様に350℃以上の温度を有する加熱炉内で所定時
間加熱し、マグネシア粉末に吸着している水分を
除去したのち、次いで加熱炉内をマグネシア粉末
に物理的に水分が吸着しない温度で出来るだけ低
い温度例えば100℃に降下させる。そしてこの温
度で所定時間加熱し、シーズヒータ全体が完全
に、100℃になる迄保持する。その後加熱炉より
シーズヒータを取り出し、金属パイプ2の開口端
を低融点ガラスで封口する。この封口方法として
ガラスフリツトを金属パイプ2の開口部に投入
し、バート等で加熱溶融させる方法と、第3図の
如く低融点ガラスをリング状に成形した焼結体5
を金属パイプ2の開口部に挿入し、加熱溶融させ
る方法があるが、いずれの方法に於いても、金属
パイプ2の封口部のみを加熱して低融点ガラスを
溶融させることが必要である。
The sealing method of the present invention will be described in detail below. Figure 1 is a cross-sectional view before sealing treatment, 1 is a heating coil,
2 is a metal pipe, 3 is magnesia powder, and 4 is a lead wire of a heating coil. The product in such a state is placed in a temperature-controlled heating furnace as shown in FIG. 3, and heated to 350° C. or higher to remove moisture absorbed by the magnesia powder 3. If the water adsorbed to magnesia powder is physically adsorbed,
It can be removed by heating to 100°C or higher, but chemically bonded substances cannot be removed unless heated to 350°C or higher. Therefore, it is not possible to determine whether the bond is physical or chemical from the appearance of magnesia powder 3, so if heated at 350°C or higher, magnesia powder 3
The moisture adsorbed on the substrate can be completely removed, and the electrical characteristics can be improved. In this way, the magnesia powder is heated in a heating furnace with a temperature of 350℃ or higher for a predetermined period of time to remove the moisture adsorbed on the magnesia powder, and then the inside of the heating furnace is heated to a temperature at which moisture is not physically adsorbed to the magnesia powder. Only lower the temperature to a lower temperature, for example 100℃. Then, it is heated at this temperature for a predetermined time and maintained until the entire sheathed heater reaches 100°C. Thereafter, the sheathed heater is taken out of the heating furnace, and the open end of the metal pipe 2 is sealed with low-melting glass. As a sealing method, a glass frit is put into the opening of the metal pipe 2 and heated and melted with a bart etc., and a sintered body 5 made of low melting glass formed into a ring shape as shown in Fig. 3 is used.
There is a method of inserting the glass into the opening of the metal pipe 2 and heating and melting it, but in either method, it is necessary to heat only the sealing part of the metal pipe 2 to melt the low melting point glass.

以上の如く本発明の封口方法は、マグネシア粉
末に吸着している水分をまず350℃以上の加熱炉
内で完全に除去させた後、引き続いてマグネシア
粉末が物理的に水分を吸着しない100℃程度の低
温度の加熱炉内でシーズヒータ全体が完全に100
℃になる迄保持したのち、シーズヒータを加熱炉
内より取り出し、すみやかに金属パイプの開口端
に低融点ガラスを挿入し、該金属パイプの封口部
近傍のみを加熱して低融点ガラスを溶融させ、封
口するものである。
As described above, in the sealing method of the present invention, moisture adsorbed on magnesia powder is first completely removed in a heating furnace at a temperature of 350°C or higher, and then the water is heated to about 100°C, where the magnesia powder does not physically adsorb moisture. The entire sheathed heater is completely heated in a low temperature heating furnace of 100%
℃, then take out the sheathed heater from the heating furnace, immediately insert low melting point glass into the open end of the metal pipe, and heat only the vicinity of the sealing part of the metal pipe to melt the low melting point glass. , is to be sealed.

以上の如くこの発明は、封口後の徐冷における
内部圧力の減圧を考慮し、マグネシア粉末の水分
を高温度の加熱炉内で加熱して完全に除去したの
ち、次いで低温度に降下させシーズヒータ全体が
完全に加熱炉内と同温度になる迄保持した後、加
熱炉より取り出し封口部のみを加熱して低融点ガ
ラスを溶融させているので、封口後の内部圧力は
120℃から常温の20℃に冷却された圧力となる。
すなわちP′=PT′/T=1・20+273/100
+273≒0.8Kg/cm2と なり圧部圧力は従来のものより大巾改善ができ、
完全に水分を除去されているので絶縁抵抗も良好
でかつ絶縁耐力も極めて良好なシーズヒータが得
られるものである。
As described above, the present invention takes into consideration the reduction of internal pressure during slow cooling after sealing, heats the moisture in magnesia powder in a high-temperature heating furnace to completely remove it, and then lowers the temperature to a low temperature using a sheathed heater. After keeping the whole glass at the same temperature as inside the heating furnace, it is taken out of the heating furnace and only the sealing part is heated to melt the low melting point glass, so the internal pressure after sealing is
The pressure is cooled from 120℃ to room temperature of 20℃.
That is, P'=PT'/T=1・20+273/100
+273≒0.8Kg/cm 2 , and the pressure in the pressure section can be greatly improved compared to the conventional one.
Since moisture is completely removed, a sheathed heater with good insulation resistance and extremely good dielectric strength can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の封口方法を説明するための
封口処理前におけるシーズヒータの断面図、第2
図は低融点ガラスの焼結体を封口しようとする金
属パイプの開口部にはめ込んだところを示す断面
図、第3図は加熱炉の温度を示すグラフ、第4図
はパーシエンの法則を示すグラフである。 なお図中、1は発熱コイル、2は金属パイプ、
3はマグネシア粉末、4は口出線、5は低融点ガ
ラスの焼結体。
Fig. 1 is a sectional view of a sheathed heater before sealing treatment for explaining the sealing method of the present invention;
The figure is a cross-sectional view showing a sintered body of low-melting glass inserted into the opening of a metal pipe to be sealed, Figure 3 is a graph showing the temperature of the heating furnace, and Figure 4 is a graph showing Perthien's law. It is. In the figure, 1 is a heating coil, 2 is a metal pipe,
3 is magnesia powder, 4 is a lead wire, and 5 is a sintered body of low melting point glass.

Claims (1)

【特許請求の範囲】 1 金属パイプの内部中央に口出線を接続した発
熱コイルを挿入し、その間にマグネシア粉末を充
填して該金属パイプを加熱炉内で高温度で加熱
し、前記マグネシア粉末に吸着している水分を除
去した後、加熱炉内をマグネシア粉末が物理的に
水分を吸着しない程度の低温度に下げ、シーズヒ
ータ全体の温度が同温度になるまでその温度に保
持した後、前記金属パイプの封口部分のみを加熱
して該端部開口部に低融点ガラスを加熱溶融させ
て封口することを特徴とするシーズヒータの封口
方法。 2 上記加熱炉内の温度は高温度を350℃以上、
低温度を100℃以上としたことを特徴とする特許
請求の範囲第1項記載のシーズヒータの封口方
法。
[Scope of Claims] 1. A heating coil with a lead wire connected is inserted into the center of a metal pipe, magnesia powder is filled between the heating coils, and the metal pipe is heated at a high temperature in a heating furnace. After removing the moisture adsorbed by the sheathed heater, lower the temperature inside the heating furnace to a low enough temperature that the magnesia powder does not physically adsorb moisture, and maintain that temperature until the entire temperature of the sheathed heater reaches the same temperature. A method for sealing a sheathed heater, comprising heating only the sealing portion of the metal pipe and heating and melting low-melting glass in the end opening. 2 The temperature in the above heating furnace is high temperature of 350℃ or higher,
A method for sealing a sheathed heater according to claim 1, characterized in that the low temperature is 100°C or higher.
JP9891280A 1980-07-18 1980-07-18 Method of sealing sheathed heater Granted JPS5723491A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9891280A JPS5723491A (en) 1980-07-18 1980-07-18 Method of sealing sheathed heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9891280A JPS5723491A (en) 1980-07-18 1980-07-18 Method of sealing sheathed heater

Publications (2)

Publication Number Publication Date
JPS5723491A JPS5723491A (en) 1982-02-06
JPS6231477B2 true JPS6231477B2 (en) 1987-07-08

Family

ID=14232334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9891280A Granted JPS5723491A (en) 1980-07-18 1980-07-18 Method of sealing sheathed heater

Country Status (1)

Country Link
JP (1) JPS5723491A (en)

Also Published As

Publication number Publication date
JPS5723491A (en) 1982-02-06

Similar Documents

Publication Publication Date Title
US2043196A (en) Electric heater
JPS6231477B2 (en)
US2078892A (en) Vacuum tube and method of making the same
US1992787A (en) Electric heater
JPS5994392A (en) Method of sealing sheathed hester
JPS5852313B2 (en) How to seal a sheathed heater
US3023389A (en) Electrical resistor unit
JPS5921517Y2 (en) Sea heater
US3050833A (en) Method of making electrically insulated heating units
JP2533007Y2 (en) Fixed resistor element and fixed resistor
JPS6039789A (en) Method of producing sheathed heater
JPS6135661B2 (en)
US3155935A (en) Sealed resistor
JPS58165026A (en) Heat-sensing unit
JPS61106120A (en) Production of vacuum double container made of stainless steel
JPH05205858A (en) Resistance heater and manufacture thereof
JPS60136203A (en) Method of producing glass sealed thermistor
JPS58178981A (en) Method of sealing sheathed heater
JPS6134237B2 (en)
WO2003043904A1 (en) A getter packaging member used in a vacuum device, a method making the member, and the vacuum device
JPS5852311B2 (en) Sea heater
JPS5916711B2 (en) Sea heater
JPS6053437B2 (en) How to seal a sheathed heater
JPH11154585A (en) Sealing method of surge absorber
JPS6068578A (en) Sheathed heater