JPS61106120A - Production of vacuum double container made of stainless steel - Google Patents

Production of vacuum double container made of stainless steel

Info

Publication number
JPS61106120A
JPS61106120A JP22834084A JP22834084A JPS61106120A JP S61106120 A JPS61106120 A JP S61106120A JP 22834084 A JP22834084 A JP 22834084A JP 22834084 A JP22834084 A JP 22834084A JP S61106120 A JPS61106120 A JP S61106120A
Authority
JP
Japan
Prior art keywords
vacuum
exhaust port
container
stainless steel
double
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22834084A
Other languages
Japanese (ja)
Other versions
JPH0443649B2 (en
Inventor
米田 誠克
静尚 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zojirushi Corp
Original Assignee
Zojirushi Vacuum Bottle Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zojirushi Vacuum Bottle Co Ltd filed Critical Zojirushi Vacuum Bottle Co Ltd
Priority to JP22834084A priority Critical patent/JPS61106120A/en
Publication of JPS61106120A publication Critical patent/JPS61106120A/en
Publication of JPH0443649B2 publication Critical patent/JPH0443649B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Thermally Insulated Containers For Foods (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、ステンレス鋼製真空二重容器の製造方法、具
体的には、携帯用魔法瓶、ポット、アイスジャー、ジャ
ー等に使用するステンレス鋼製の真空二重容器の製造方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for manufacturing a vacuum double container made of stainless steel, specifically, a method for manufacturing a stainless steel vacuum container for use in portable thermos flasks, pots, ice jars, jars, etc. This invention relates to a method for manufacturing a vacuum double container manufactured by.

(従来の技術) 近年、金属製真空二重容器を金属材料で影成し機械的強
度を向上させたものが提案され、実用に供されてきてい
る。この種の金属製真空二重容器を製造する場合、内外
両容器間の空間を真空排気して後、該真空封じ込みする
方法としては、例えば、特開昭59−37914号公報
、特開昭59−103633号公報などに記載のように
外容器に取り付けたチップ管を介して排気し、所定の真
空度に達した後チップ管を圧接させて真空封じ込みする
方法、あるいは特開昭57−96 e 22号公報、特
開昭58−192516号公報に記載のように、金属製
の内容器と外容器本体とを口部で接合した後、底部に排
気口を有する外容器底部材を外容器本体に接合して二重
壁構造と為し、これを倒立させて外容器底部材上にその
排気口を閉鎖する金属製閉塞部材を排気口との間に間隙
を置いて配置すると共に、ロウ材を排気口近傍に配置し
、真空加熱炉中で加熱しながら真空排気し、次いでロウ
材を熔融させて閉塞部材を底部にロウ付けして真空封じ
込みする方法が知られている。
(Prior Art) In recent years, a metal vacuum double container made of metal material to improve mechanical strength has been proposed and put into practical use. When manufacturing this type of metal vacuum double container, the method of evacuating the space between the inner and outer containers and then sealing the space under vacuum includes, for example, Japanese Patent Application Laid-Open No. 59-37914; As described in Japanese Patent No. 59-103633, the air is evacuated through a tip tube attached to an outer container, and after reaching a predetermined degree of vacuum, the tip tube is pressed against the tube to seal the vacuum. As described in 96e No. 22 and Japanese Unexamined Patent Publication No. 58-192516, after joining the metal inner container and the outer container body at the mouth, the outer container bottom member having an exhaust port at the bottom is removed. A metal closing member is joined to the container body to form a double wall structure, and is inverted, and a metal closing member for closing the exhaust port is placed on the bottom member of the outer container with a gap between it and the exhaust port, A known method is to place a brazing material near the exhaust port, evacuate the material while heating it in a vacuum heating furnace, and then melt the brazing material and braze a closing member to the bottom for vacuum sealing.

(発明が解決しようとする問題点) しかしながら、チップ管を使用する方法はロウ材等を使
用しないため真空封じ込み時にロウ接待のようにガスが
内外両容器間の真空空間に流入しないので、製品の品質
維持には極めて有効であるが、チップ管の長さを短くす
るには限度があるため、製品の高さがチップ管の分だけ
高くなるという問題がある。他方、ロウ接による方法で
は、ロウ材のため処理温度が限定され、また真空加熱炉
での熱サイクルが多段になるため温度制御が煩雑になる
という問題がある。即ち、この方法では、フラックスを
使用するとガスが内外両容器間の真空空間に流入し真空
度を低下させることから、フラックスを使用すること無
くロウ付けする必要があり、そのためには高温でステン
レス鋼表面をフラッシュすると共に、ニッケルロウなど
約900〜1070℃の融点を有するロウ材を使用しな
ければならない。しかも、ステンレス鋼は高温に加熱す
る際あるいは高温から冷却する際に、ある温度域(一般
には、約450〜850℃)で固溶炭素が炭化物となっ
て析出し鋭敏化する性質を有するため、鋭敏化の危険温
度域に長時間さらされるのを避けて850℃以上の温度
に急速に昇温させ該温度で真空排気処理及びロウ接を行
い、かつ高温から冷却する際に真空加熱炉内に不活性ガ
ス供給して急冷しなければならず、真空加熱炉の電力消
費量が多く、また不活性ガスを使用するため製造コスト
が増大するという問題があった。
(Problem to be solved by the invention) However, since the method using a chip tube does not use waxing material, etc., gas does not flow into the vacuum space between the inner and outer containers during vacuum sealing, as in the case of wax entertainment. However, since there is a limit to how short the length of the tip tube can be, there is a problem in that the height of the product increases by the length of the tip tube. On the other hand, the brazing method has the problem that the processing temperature is limited because of the brazing material, and that temperature control becomes complicated because the thermal cycle in the vacuum heating furnace is multistage. In other words, in this method, when flux is used, gas flows into the vacuum space between the inner and outer containers, lowering the degree of vacuum, so it is necessary to braze without using flux. In addition to flashing the surface, a brazing material such as nickel solder having a melting point of about 900 to 1070°C must be used. Moreover, when stainless steel is heated to a high temperature or cooled from a high temperature, the solid solution carbon becomes carbide and precipitates in a certain temperature range (generally about 450 to 850 degrees Celsius) and becomes sensitive. To avoid long-term exposure to the dangerous temperature range of sensitization, rapidly raise the temperature to 850℃ or higher, perform vacuum exhaust treatment and braze welding at that temperature, and place it in a vacuum heating furnace when cooling from high temperature. There were problems in that an inert gas had to be supplied for rapid cooling, the power consumption of the vacuum heating furnace was large, and the use of an inert gas increased manufacturing costs.

(問題点を解決するための手段) 本発明は、基本的には、真空加熱炉の特性、即ち、真空
加熱炉の加熱ヒータへの電力供給を停止すると炉内温度
および被加熱体の温度が数10度〜百数10度急激に低
下するという性質を利用すると共に、鋭敏化の危険温度
域を避けて300〜600℃の比較的低温で真空排気処
理を行なう一方、真空封じ込みする部材に予め比較的低
温度で再結晶する金属をコーティングして金属被膜を形
成しておき、真空排気処理後、真空中で圧接することに
より真空封じ込みを行なうようにしたものである。なお
、ステンレス鋼それ自体を圧接することも可能ではある
が、この場合、ステンレス鋼を800℃以上に加熱しな
ければならないため、ステンレス鋼が鋭敏化するという
性質に起因する問題を避けることができない。
(Means for Solving the Problems) The present invention basically focuses on the characteristics of a vacuum heating furnace, that is, when the power supply to the heater of the vacuum heating furnace is stopped, the temperature inside the furnace and the temperature of the object to be heated decreases. Taking advantage of the property that the temperature drops rapidly from several tens of degrees to hundreds of degrees, vacuum evacuation treatment is performed at a relatively low temperature of 300 to 600 degrees Celsius, avoiding the dangerous temperature range of sensitization. A metal film is formed in advance by coating with a metal that recrystallizes at a relatively low temperature, and after evacuation treatment, vacuum confinement is performed by press-welding in a vacuum. Although it is possible to pressure-weld the stainless steel itself, in this case, the stainless steel must be heated to over 800°C, so problems due to the sensitizing nature of stainless steel cannot be avoided. .

金属被膜の形成材料は、アルミニウム、鋼またはそれら
の合金の一種が使用される。なお、コーティングの方法
としては、熔融メッキ、真空蒸着、スパッタリング、電
解メッキ、化学メッキ、溶射など任意の方法を採用すれ
ばよい。
As the material for forming the metal coating, aluminum, steel, or one of their alloys is used. Note that any method such as melt plating, vacuum evaporation, sputtering, electrolytic plating, chemical plating, thermal spraying, etc. may be used as the coating method.

なお、真空二重容器は、通常、内外両容器間の空間の真
空度を長期間維持するためゲッターが空間内に配設され
るが、このゲッターとしては、製造工程の簡略化の点か
ら、比較的低温で活性化し、かつ水や銀鏡反応液に濡れ
てもガス吸着機能を失わない非蒸発性ゲッター、例えば
、7.r−V−Fe三元合金系やZr−Ni−Nb三元
合金系の非蒸発性ゲッターを使用するのが好適である。
In addition, in a vacuum double container, a getter is usually disposed in the space in order to maintain the degree of vacuum in the space between the inner and outer containers for a long period of time. 7. A non-evaporable getter that is activated at a relatively low temperature and does not lose its gas adsorption function even when wet with water or silver mirror reaction solution. It is preferable to use a non-evaporable getter based on an r-V-Fe ternary alloy or a Zr-Ni-Nb ternary alloy.

また、真空二重容器の保温性を向上させるため、真空空
間を形成する内外両容器の表面の内、少なくとも内容器
の外表面には銅または銀のメッキ層が形成されるが、こ
れは電解メッキするか、あるいは実施例の様にステンレ
ス鋼表面で銀鏡反応を行わせるためメッキすべきステン
レス鋼製部材を酸化性雰囲気中250〜550℃で数分
〜数時間焼成してその外表面に酸化被膜を形成しておき
、これを他の部材と接合して二重壁構造の容器としたの
ち、内容器と外容器との間に形成される空間に公知の銀
鏡反応液を排気口から注入して銀鏡反応により形成させ
ればよい。
Additionally, in order to improve the heat retention of the vacuum double container, a copper or silver plating layer is formed on at least the outer surface of the inner container, among the surfaces of both the inner and outer containers that form the vacuum space. Alternatively, as in the example, in order to cause a silver mirror reaction on the stainless steel surface, the stainless steel member to be plated is baked in an oxidizing atmosphere at 250 to 550°C for several minutes to several hours to oxidize the outer surface. After forming a film and joining it with other members to form a double-walled container, a known silver mirror reaction solution is injected from the exhaust port into the space formed between the inner container and the outer container. It may be formed by a silver mirror reaction.

(実施例) 以下、添付の図面を参照して本発明の詳細な説明する。(Example) Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

図に於いて、lはステンレス鋼で形成された内容器、2
はステンレス鋼で形成された外容器で、これらは外容器
本体3の開口端3aから内容器1を挿入してそれらの口
部4て溶接その池の手段により接合した後、外容器本体
3の開口端3aに外容器底部材5を接合することにより
二重壁構造の容器20を構成している。外容器底部材5
は、その底部に排気口5aを有し、排気口5aを形成す
る底壁部5bの突起部5cの表面には電解メッキ法によ
り銅からなる金属MM9が形成され、その内側には保持
部材6によりゲッター7が装着されている。なお、銅か
らなる金属被覆9は予め突起部5Cの表面に電解メッキ
により形成されたニッケルメッキ層の上に積層しである
。また、内容器1は、その外表面に銀鏡メッキを形成す
るため、予め酸化性雰囲気中350℃で30分間焼成し
てその外表面に酸化被膜を形成しである。
In the figure, l is an inner container made of stainless steel, 2
is an outer container made of stainless steel, and after inserting the inner container 1 from the open end 3a of the outer container main body 3 and joining them by welding and welding at the mouth 4, the outer container main body 3 is assembled. By joining the outer container bottom member 5 to the open end 3a, a double-walled container 20 is constructed. Outer container bottom member 5
has an exhaust port 5a at its bottom, a metal MM9 made of copper is formed by electrolytic plating on the surface of the protrusion 5c of the bottom wall 5b forming the exhaust port 5a, and a holding member 6 is formed inside the metal MM9. The getter 7 is installed. Note that the metal coating 9 made of copper is laminated on a nickel plating layer formed in advance on the surface of the projection 5C by electrolytic plating. Further, in order to form silver mirror plating on the outer surface of the inner container 1, it was previously fired in an oxidizing atmosphere at 350° C. for 30 minutes to form an oxide film on the outer surface.

前記二重壁構造の容器は、排気口5aから内容器lと外
客器2との間に形成される空間8に公知の銀鏡反応液を
注入して銀鏡反応させて内容器1の外表面に銀鏡層を形
成し、水洗、乾燥させである。
The double-walled container is constructed by injecting a known silver mirror reaction solution into the space 8 formed between the inner container 1 and the outer container 2 through the exhaust port 5a, and causing a silver mirror reaction to occur on the outer surface of the inner container 1. A silver mirror layer is formed on the surface, washed with water, and dried.

次に、前記構成の二重壁構造の容器20を、第1図に示
すように倒立させ、予め用意した排気口閉塞部材10を
外容器2の底部材5に形成した排気口5aに配置して、
真空加熱炉25内にセットする。なお、閉塞部材10は
外容器2の底壁部5bに圧接すべき部位に電解メッキ法
により銅からなる金属被1111が形成され、排気口5
aに載せた際に排気口5aとの間に十分な通気路12を
形成するように外壁に複数の凹所12が形成しである。
Next, the double-walled container 20 having the above configuration is turned upside down as shown in FIG. hand,
Set in vacuum heating furnace 25. Note that the closure member 10 has a metal covering 1111 made of copper formed by electrolytic plating at a portion to be pressed against the bottom wall portion 5b of the outer container 2, and a metal covering 1111 made of copper is formed by electroplating.
A plurality of recesses 12 are formed in the outer wall so as to form a sufficient ventilation path 12 between the exhaust port 5a and the exhaust port 5a when placed on the outer wall.

次いで、真空加熱炉25で450℃に加熱しながら真空
加熱炉25内を排気し、両容器間の空間8の真空度をI
 O−’Torr以上の高真空にする。
Next, the inside of the vacuum heating furnace 25 is evacuated while being heated to 450°C in the vacuum heating furnace 25, and the degree of vacuum in the space 8 between both containers is reduced to I.
Create a high vacuum of O-'Torr or more.

この時、空間8内のガスは排気口5a4:形成する突起
部5Cと排気口閉塞部材lOの凹所1°2との間に形成
される通気路14を経て真空加熱炉25内に排気される
。容器20の空間8が所定の真空度まで排気され、真空
加熱炉25内の温度が更に上昇して所定温度、例えば、
550℃に達すると、ゲッター7が活性化する一方、真
空加熱炉25内に配設された治具15が降下し、排気口
閉塞部材10を容器20の排気口5aに押し込み、第3
図に示すように、排気口閉塞部tltloの金属被膜1
1と底部材5の突起部5Cの金属被11i9とが接合し
、排気口閉塞部材IOが容器20に接合部16で圧接さ
れ、真空封じ込み工程が終了する。
At this time, the gas in the space 8 is exhausted into the vacuum heating furnace 25 through the exhaust port 5a4: the ventilation path 14 formed between the formed protrusion 5C and the recess 1°2 of the exhaust port closing member IO. Ru. The space 8 of the container 20 is evacuated to a predetermined degree of vacuum, and the temperature inside the vacuum heating furnace 25 further increases to a predetermined temperature, e.g.
When the temperature reaches 550°C, the getter 7 is activated, while the jig 15 disposed in the vacuum heating furnace 25 descends, pushes the exhaust port closing member 10 into the exhaust port 5a of the container 20, and closes the third
As shown in the figure, the metal coating 1 of the exhaust port closing part tltlo
1 and the metal cover 11i9 of the protrusion 5C of the bottom member 5 are joined together, the exhaust port closing member IO is pressed against the container 20 at the joint 16, and the vacuum confinement process is completed.

それと同時に、真空加熱炉25への電力供給が停止され
るため、炉内温度および容器温度はその最大上昇温度か
ら画数lO度急激に低下する。従って、真空二重容器の
材料であるステンレス鋼が鋭敏化の危険温度にさらされ
る時間が著しく短いため、特に不活性ガスを炉内に供給
しなくとら鋭敏化する恐れは無い。
At the same time, the power supply to the vacuum heating furnace 25 is stopped, so that the temperature inside the furnace and the temperature of the container rapidly decrease by 10 degrees from the maximum temperature increase. Therefore, since the time period during which the stainless steel, which is the material of the vacuum double container, is exposed to temperatures dangerous for sensitization is extremely short, there is no risk of sensitization, especially if no inert gas is supplied into the furnace.

なお、前記実施例では、外容器底部材および閉塞部材と
してステンレス鋼板を所定形状に加工した後、電解メッ
キして銅被膜を形成したものを用いているが、これらは
市販の銅メッキしたステンレス鋼板を加工したしのを使
用しても良く、また銅の代わりに銅合金、アルミニウム
またはその合金をコーティングしたものを使用しても良
い。
In the above examples, stainless steel plates processed into a predetermined shape and then electrolytically plated to form a copper coating were used as the outer container bottom member and the closing member. You may use a processed material, or you may use a material coated with copper alloy, aluminum, or an alloy thereof instead of copper.

また、外容器の底部材に排気口を形成しているが、必ず
しも底部材に形成する必要は無く、他の部位に形成して
ら良い。更に、排気口形成部に必ずしも突起部を形成す
る必要は無いが、突起部を形成したほうが排気口閉塞部
材との接触面積か少なくなるため弱い抑圧力で圧接する
ことができる利点がある。
Further, although the exhaust port is formed in the bottom member of the outer container, it is not necessarily necessary to form it in the bottom member, and it may be formed in another part. Furthermore, although it is not necessarily necessary to form a protrusion on the exhaust port forming part, forming a protrusion has the advantage that the contact area with the exhaust port closing member is reduced, so that pressure contact can be made with a weak suppressing force.

(効果) 以上説明したように、本発明によれば、従来法に比べ極
めて低い温度で真空排気処理、ゲッターの活性化および
真空封じ込みを行うことができるため、炉内の昇温およ
び降温に要する時間を著しく短縮でき、しかも真空加熱
炉での熱サイクルを単純化できると共に、その消費電力
を低減できる。
(Effects) As explained above, according to the present invention, vacuum evacuation processing, getter activation, and vacuum confinement can be performed at an extremely low temperature compared to conventional methods. The required time can be significantly shortened, the thermal cycle in the vacuum heating furnace can be simplified, and the power consumption can be reduced.

また、真空排気処理および真空封じ込みする際の最高温
度が低く、容器の材料であるステンレス鋼が鋭敏化の危
険温度にさらされる時間が短いため鋭敏化を防止でき、
しかもロウ材やフラノゲス等を使用しないため、真空封
し込みする際にガスの発生による真空度の低下が無く、
真空二重容器の品質を均一化できる。さらに、冷却4゛
る際に不活性ガスを使用しなくてもよいため経費節減か
でき、真空二重容器の製造コストを低減できる、など優
れた効果が得られる。
In addition, the maximum temperature during vacuum evacuation processing and vacuum sealing is low, and the time that the stainless steel, which is the material of the container, is exposed to the dangerous temperature of sensitization is short, so sensitization can be prevented.
Moreover, since no wax or flano gas is used, there is no reduction in the degree of vacuum due to gas generation during vacuum sealing.
The quality of vacuum double containers can be made uniform. Furthermore, since there is no need to use an inert gas during cooling, excellent effects can be obtained, such as cost savings and the ability to reduce the manufacturing cost of the vacuum double container.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法によるステンレス鋼真空二重容器の
製造過程での一例を示す概略半断面説明図、第2図はそ
の要部拡大図、第3図は本発明方法により製造されたス
テンレス鋼製真空二重容器の要部断面図である。 1〜内容器      2〜外容器 3〜外容器本体    4〜口部 5〜外容器底部材   5a〜排気口 5b〜底壁部      5c〜突起部9.11〜金属
被膜  lO〜排気排気口閉塞部材−2〜凹所    
14〜通気路 20〜二重壁構造の容器 25〜真空加熱炉
Fig. 1 is a schematic half-sectional explanatory diagram showing an example of the manufacturing process of a stainless steel vacuum double container by the method of the present invention, Fig. 2 is an enlarged view of the main part, and Fig. 3 is a stainless steel vacuum container manufactured by the method of the present invention. FIG. 2 is a sectional view of a main part of a steel vacuum double container. 1 - Inner container 2 - Outer container 3 - Outer container main body 4 - Mouth part 5 - Outer container bottom member 5a - Exhaust port 5b - Bottom wall part 5c - Projection part 9.11 - Metal coating lO - Exhaust outlet closing member - 2 ~ recess
14~Vent passage 20~Double-walled container 25~Vacuum heating furnace

Claims (1)

【特許請求の範囲】[Claims] (1)ステンレス鋼製の内容器と外容器とからなる二重
壁構造を有し、両容器間に形成される空間を真空断熱し
てなるステンレス鋼製真空二重容器の製造方法に於いて
、排気口の周囲にアルミニウム、銅またはそれらの合金
の一種からなる金属被膜を有する二重壁構造の容器を形
成する一方、該二重壁構造の容器の排気口形成部と接合
すべき部位に前記金属被膜と同一材料からなる金属被膜
を育する排気口閉塞部材を形成し、該排気口閉塞部材を
前記排気口上に該排気口との間に通気路を形成させて配
置し、真空加熱炉中300〜600℃で前記内外両容器
間の空間から排気した後、前記排気口閉塞部材を前記排
気口形成部に圧接して真空封じ込みすることを特徴とす
るステンレス鋼製真空二重容器の製造方法。
(1) In a method for manufacturing a vacuum double container made of stainless steel, which has a double wall structure consisting of an inner container and an outer container made of stainless steel, and the space formed between the two containers is vacuum insulated. , while forming a double-walled container having a metal coating made of aluminum, copper, or one of their alloys around the exhaust port, and forming a double-walled container at a portion of the double-walled container that is to be joined to the exhaust port forming portion. An exhaust port closing member is formed that grows a metal coating made of the same material as the metal coating, and the exhaust port closing member is placed above the exhaust port with an air passage formed between the exhaust port and the vacuum heating furnace. After exhausting the space between the inner and outer containers at a temperature of 300 to 600°C, the exhaust port closing member is pressed against the exhaust port forming portion to seal the vacuum double container made of stainless steel. Production method.
JP22834084A 1984-10-29 1984-10-29 Production of vacuum double container made of stainless steel Granted JPS61106120A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22834084A JPS61106120A (en) 1984-10-29 1984-10-29 Production of vacuum double container made of stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22834084A JPS61106120A (en) 1984-10-29 1984-10-29 Production of vacuum double container made of stainless steel

Publications (2)

Publication Number Publication Date
JPS61106120A true JPS61106120A (en) 1986-05-24
JPH0443649B2 JPH0443649B2 (en) 1992-07-17

Family

ID=16874924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22834084A Granted JPS61106120A (en) 1984-10-29 1984-10-29 Production of vacuum double container made of stainless steel

Country Status (1)

Country Link
JP (1) JPS61106120A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0159540U (en) * 1987-10-08 1989-04-14
JPH0767793A (en) * 1993-09-02 1995-03-14 Tadatoshi Yanagida Metallic vacuum bottle, production method of metallic vacuum bottle, metallic vacuum bottle produced by metallic vacuum bottle production method
WO2021019961A1 (en) * 2019-07-31 2021-02-04 ダイキン工業株式会社 Refrigerant pipeline, and refrigeration device
JP2021025757A (en) * 2019-07-31 2021-02-22 ダイキン工業株式会社 Refrigerant pipe and refrigerating device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5546274A (en) * 1978-09-27 1980-03-31 Yuasa Battery Co Ltd Accumulator
JPS5796622A (en) * 1980-12-09 1982-06-16 Katsufumi Aoyanagi Production of vacuum warmth preserving container made of metal

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5546274A (en) * 1978-09-27 1980-03-31 Yuasa Battery Co Ltd Accumulator
JPS5796622A (en) * 1980-12-09 1982-06-16 Katsufumi Aoyanagi Production of vacuum warmth preserving container made of metal

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0159540U (en) * 1987-10-08 1989-04-14
JPH0538696Y2 (en) * 1987-10-08 1993-09-30
JPH0767793A (en) * 1993-09-02 1995-03-14 Tadatoshi Yanagida Metallic vacuum bottle, production method of metallic vacuum bottle, metallic vacuum bottle produced by metallic vacuum bottle production method
WO2021019961A1 (en) * 2019-07-31 2021-02-04 ダイキン工業株式会社 Refrigerant pipeline, and refrigeration device
JP2021025757A (en) * 2019-07-31 2021-02-22 ダイキン工業株式会社 Refrigerant pipe and refrigerating device
US12049966B2 (en) 2019-07-31 2024-07-30 Daikin Industries, Ltd. Refrigerant pipe and refrigeration apparatus

Also Published As

Publication number Publication date
JPH0443649B2 (en) 1992-07-17

Similar Documents

Publication Publication Date Title
US5826780A (en) Vacuum insulation panel and method for manufacturing
JP5120582B2 (en) Insulated container
JPH0261358B2 (en)
JPS61106120A (en) Production of vacuum double container made of stainless steel
JPH0443648B2 (en)
JPH01197967A (en) Thermal battery
JPH0314112Y2 (en)
JPH0255153B2 (en)
KR820000649B1 (en) Process for producing a metall vacuum bottle
JPH01268521A (en) Metallic vacuum double structure and manufacture thereof
JPH02215416A (en) Manufacture of metallic thermos bottle
JPH01297022A (en) Metallic vacuum double structure body and manufacture
CN109623061A (en) A kind of anode braze-welded structure
JPH06169850A (en) Metallic vacuum double container and its manufacture
JPH0517001Y2 (en)
JPS58164947A (en) Gas evacuating method for solar heat collector
JPH01317413A (en) Vacuum heat insulating double vessel and manufacture
JPH06208854A (en) Sodium-sulfur battery and manufacture thereof
JPS6319773A (en) Sodium-sulfur battery and its manufacture
KR970009037B1 (en) Thermos jug
JPH05176846A (en) Production of heat-insulated vessel
JPH02305522A (en) Manufacture of metal thermos of electric heating type
JPS6326947A (en) Sodium-sulfur battery and its manufacture
JPH0440607Y2 (en)
JPS6133568B2 (en)