JPS6231166A - Buried gate type semiconductor element - Google Patents

Buried gate type semiconductor element

Info

Publication number
JPS6231166A
JPS6231166A JP17017385A JP17017385A JPS6231166A JP S6231166 A JPS6231166 A JP S6231166A JP 17017385 A JP17017385 A JP 17017385A JP 17017385 A JP17017385 A JP 17017385A JP S6231166 A JPS6231166 A JP S6231166A
Authority
JP
Japan
Prior art keywords
layer
layers
buried
diffusion
diffused
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17017385A
Other languages
Japanese (ja)
Inventor
Tetsuo Sueoka
末岡 徹郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Electric Manufacturing Co Ltd
Research Development Corp of Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Electric Manufacturing Co Ltd, Research Development Corp of Japan filed Critical Meidensha Electric Manufacturing Co Ltd
Priority to JP17017385A priority Critical patent/JPS6231166A/en
Publication of JPS6231166A publication Critical patent/JPS6231166A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/083Anode or cathode regions of thyristors or gated bipolar-mode devices
    • H01L29/0839Cathode regions of thyristors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Thyristors (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To improve dielectric strength while improving current durability by a method wherein emitter layers are extended to main current conduction layers provided between buried gate layers and are connected as a whole by a diffused layer. CONSTITUTION:Gallium is diffuses from the whole surfaces of both sides of an N-type silicon substrate to form P1-N1-P2 layers. Then boron and phosphorus are selectively diffused into the surface of the P2 layer individually to form high concentration layers P2<++> and N2 layers in main current conduction layers between the high concentration layers P2<++>. Then a P-type epitaxial layer P2 is formed on the surface where the P2<++> layers and the N2 layers are formed and N22 layers are formed in that P2 epitaxial layer at the positions facing the N2 layers. Then phosphorus is diffused into the whole surface to form an N-type layer N23 and N2, N22 and N23 layers are linked together to form a cathod N2 layer. After that, electrodes A, K and G are connected to compose a GTO thyristor. With this constitution, widths omega of the N2 layers can be narrowed while circumference lengths of P2-N2 junctions being shortened so that current durability and a dielectric strength can be improved.

Description

【発明の詳細な説明】 A、産業上の利用分野 この発明は、ゲート層に低抵抗ゲート層を埋込んだゲー
ト埋込形半導体素子に関する。
DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application This invention relates to a gate-embedded semiconductor device in which a low-resistance gate layer is embedded in a gate layer.

B9発明の概要 本発明は、ゲート埋込形半導体素子において、ゲート埋
込層に挾まれた主電流導通層まで延出形成し、かつ拡散
層で全面を結合したエミッタ層を持つ構造とすることに
より、 電流耐量を向上しながら耐電圧向上も図ることができる
ようにしたものである。
B9 Summary of the Invention The present invention provides a buried gate semiconductor device having a structure having an emitter layer extending to a main current conduction layer sandwiched between buried gate layers and connected to the entire surface by a diffusion layer. This makes it possible to improve the withstand voltage while improving the current withstand capacity.

C1従来の技術 第5図は従来構造のゲートターンオフサイリスタ(以下
サイリスタと称す)の断面図で、このサイリスタはPl
N、PJzの4層3接合と22層内に埋込んだ低抵抗ゲ
ート層P、++から形成されている。第5図に示す構造
のサイリスクにおいて、28層の所定表面にはアノード
電極Aが、N7層の所定表面にはカソード電極Kが、p
、+++層の所定表面にはゲート電極Gが設けられてい
る。
C1 Conventional technology FIG.
It is formed of 4 layers and 3 junctions of N, PJz and low resistance gate layers P and ++ buried in 22 layers. In the SIRISK having the structure shown in FIG.
A gate electrode G is provided on a predetermined surface of the ,+++ layer.

上記サイリスクの動作は周知であるから詳細な動作説明
は行わないが、ここでは問題とするサイリスタのターン
オフ動作について述べる。サイリスタは導通状態におい
てはアノード電極Aからカソード電極にの方向に、カソ
ードN2層に対向する27層のP、+4層に挾まれた領
域を通して電流が流れている。この電流はターンオフ時
、P2++層からゲート電極Gを通って図示しない外部
回路に流れて、短時間でオフ、すなわち遮断状態に移行
する。導通領域は通常矩形状に形成されており、一般に
0.3mmX5mm程度である。第5図中のωは導通領
域の幅の狭い側(0,3mmに相当)を示す。この導通
幅ωを変化させるとターンオフ可能電流Itも変化する
ことが知られており、この関係を図示したものが第6図
である。この第6図は、上記矩形部が10個の実験用ユ
ニットサイリスタを試作して測定したちのである。第6
図から幅ωのみを変化させるとωが小さい程ターンオフ
電流ITは増加するけれども、あまりωを小さくすると
飽和する傾向にある。このことから大電流ターンオフ可
能なサイリスクを製造するには幅ωを可能な限り小さく
すれば良いことが判った。この理由は、上記のように幅
ωを小さくすると導通域、すなわちω/2の横方向(p
t”側への)抵抗が小さくなるからであると考えられる
。ところが、ターンオフ電流ITは予め予測した値(第
6図の図示点線部分)より増加率が低いことも判明した
Since the operation of the thyristor described above is well known, a detailed explanation of the operation will not be given.Here, the turn-off operation of the thyristor in question will be described. When the thyristor is in a conductive state, current flows in the direction from the anode electrode A to the cathode electrode through a region sandwiched between the 27 P and +4 layers facing the cathode N2 layer. At turn-off, this current flows from the P2++ layer through the gate electrode G to an external circuit (not shown), and transitions to an OFF, ie, cutoff, state in a short time. The conduction area is usually formed in a rectangular shape, and is generally about 0.3 mm x 5 mm. ω in FIG. 5 indicates the narrow side (corresponding to 0.3 mm) of the conduction region. It is known that when the conduction width ω is changed, the turn-off current It is also changed, and this relationship is illustrated in FIG. 6. In FIG. 6, an experimental unit thyristor having 10 rectangular sections was fabricated and measured. 6th
As can be seen from the figure, when only the width ω is changed, the smaller ω is, the more the turn-off current IT increases, but if ω is too small, it tends to be saturated. From this, it has been found that in order to manufacture a silisk capable of large current turn-off, the width ω should be made as small as possible. The reason for this is that when the width ω is made smaller as described above, the conduction region, that is, the lateral direction of ω/2 (p
This is considered to be because the resistance (toward the t'' side) becomes smaller.However, it was also found that the increase rate of the turn-off current IT was lower than the previously predicted value (the dotted line in FIG. 6).

D1発明が解決しようとする問題点 上記のようにターンオフ電流ITが予測値(第6図に示
す点線)より低くなる原因としては次に述べるようなこ
とから生じた。第7図に示すように導通領域の幅ωはp
t+++層の端面からエビクキシャル成長過程に発生し
た結晶欠陥dによってほぼ2Δωだけ狭くなる。このよ
うにΔωだけ狭くなるとp、liの横方向抵抗rが存在
するために、充分にゲート電流がP、1層に掃引できな
くなる。この結果から、ターンオフ電流の増加率が低い
問題点のあることが判明した。また、電流導通時のA−
に間型圧降下値も、2Δωに相当する部分だけ導通域の
面積が減少しているため、予想値よりも大きくなる問題
点がある。
D1 Problems to be Solved by the Invention The reason why the turn-off current IT becomes lower than the predicted value (dotted line shown in FIG. 6) as described above arises from the following reasons. As shown in FIG. 7, the width ω of the conduction region is p
The width is narrowed by approximately 2Δω due to crystal defects d generated from the end face of the t+++ layer during the evixaxial growth process. If the width is narrowed by Δω in this way, the gate current cannot be sufficiently swept to the P1 layer due to the existence of the lateral resistance r of p,li. From this result, it was found that there was a problem in that the rate of increase in turn-off current was low. In addition, A- during current conduction
There is also a problem that the inter-mold pressure drop value becomes larger than the expected value because the area of the conduction region is reduced by a portion corresponding to 2Δω.

こうした問題点を解決するものとして、第8図(A)に
要部断面を、(B)にA−A’線に沿った平面図を示す
ように、高濃度層P、++をカソードN2層と同一平面
に配置する構造が考えられる。即ち、P1層表面から選
択的に高濃度P2++層とN2層を分離拡散し、P、+
+層表面を酸化膜SiO2によってN2層の端部を含め
るよう被覆し、その表面全体にアルミニウムA12を蒸
着してカソード電極とする。このとき、第8図(B)に
示されるように、P、+4層は連結状態に、N2層は分
散配置されるセグメント構造とされる。
In order to solve these problems, as shown in FIG. 8 (A) showing a cross section of the main part and FIG. A conceivable structure is to place it on the same plane as the That is, the high concentration P2++ layer and the N2 layer are selectively separated and diffused from the surface of the P1 layer, and the P, +
The surface of the + layer is covered with an oxide film SiO2, including the ends of the N2 layer, and aluminum A12 is deposited on the entire surface to form a cathode electrode. At this time, as shown in FIG. 8(B), a segment structure is formed in which the P and +4 layers are connected and the N2 layer is distributed.

こうした構造によれば第7図で問題となる欠陥層の発生
がなくなり、N2層の幅ωを必要に応して狭くできる。
With such a structure, the occurrence of defective layers, which is the problem shown in FIG. 7, is eliminated, and the width ω of the N2 layer can be narrowed as necessary.

しかし、N2層が夫々分離配置されるため、N7層と2
3層の界面即ち接合周辺長が非常に長くなり、N2F2
接合の逆耐圧に高いものが得られなくなる問題がある。
However, since the N2 layer is placed separately, the N7 layer and the
The interface between the three layers, that is, the perimeter of the junction, becomes very long, and N2F2
There is a problem that a high reverse breakdown voltage of the junction cannot be obtained.

E9問題点を解決するための手段と作用この発明は、埋
込ゲート層に挾まれた主電流導通層まで拡散によって延
出形成し、かつ拡散層で全面を結合したエミッタ層を備
え、P2N2層の接合周辺長を短くしなからN7層の幅
ωを狭くした構造を得るにある。
Means and Effects for Solving Problem E9 This invention comprises an emitter layer formed by diffusion to extend to the main current conduction layer sandwiched between the buried gate layers, and whose entire surface is bonded by the diffusion layer, and which is composed of a P2N2 layer. The purpose is to obtain a structure in which the width ω of the N7 layer is narrowed without shortening the junction peripheral length.

F、実施例 第1図はこの発明の一実施例を示す要部断面図である。F. Example FIG. 1 is a sectional view of a main part showing an embodiment of the present invention.

ベース22層には高濃度埋込層P、++が所定のパター
ンで拡散形成される。埋込層P2++に挾まれたベース
23層(主電流、導通層)にはカソードN。
High concentration buried layers P and ++ are diffused and formed in a predetermined pattern in the base 22 layer. A cathode N is provided in the base 23 layer (main current, conduction layer) sandwiched between the buried layers P2++.

層が延出するよう拡散形成され、このN3層はベース2
2層上に全面形成される薄い拡散層のカソードN9層で
結合されている。
The N3 layer is formed by diffusion so that the layer extends from the base 2.
The two layers are connected by a cathode N9 layer, which is a thin diffusion layer formed on the entire surface.

こうした構造は以下に第2図を参照して説明する手順で
実現される。
Such a structure is realized by the procedure described below with reference to FIG.

N形シリコン基板の両面からガリウムを全面拡散してP
、N、P、層(表面濃度I X 10層7程度)を形成
する。次に、P7層の表面にボロン及びリンを夫々個別
ノこ選択拡散して、高濃度層P、++とその間の主電流
導通層にN1層を形成する(第2図a)。このときの表
面濃度はボロンが5 X 10層9以上、リンが5×1
017〜lXl0”程度にする。また、N2層の幅ωは
必要に応じて狭くできるが、N2層とP、+4層の間隔
は約5μm以上確保させる。また、P2++層の幅は埋
込抵抗で決るが通常200〜300μmとする。
Gallium is completely diffused from both sides of an N-type silicon substrate to form a P
, N, P layers (surface concentration I x 10 layers about 7) are formed. Next, boron and phosphorus are individually and selectively diffused onto the surface of the P7 layer to form an N1 layer in the high concentration layers P and ++ and the main current conducting layer therebetween (FIG. 2a). At this time, the surface concentration is 9 or more layers of 5 x 10 layers for boron and 5 x 1 layer for phosphorus.
The width ω of the N2 layer can be made narrower if necessary, but the spacing between the N2 layer and the P and +4 layers should be approximately 5 μm or more. Also, the width of the P2++ layer should be set according to the buried resistance. The thickness is usually 200 to 300 μm.

次に、P、+4層とN2層が形成された面に5〜10μ
m程度のP形エピタキシャル単結晶層P、を成長形成さ
せる(第2図b)。次に、単結晶層P、にはN1層に対
向する位置で拡散深さ5μm9表面濃度5X 10”で
N22層を形成する(第2図C)。次に、全表面にIX
 1020程度でリンを拡散し、N、、 N2.、 N
、、を連結させてカソードN3層とする(第2図d)。
Next, 5 to 10μ
A P-type epitaxial single crystal layer P having a thickness of about m is grown (FIG. 2b). Next, in the single crystal layer P, an N22 layer is formed at a position opposite to the N1 layer with a diffusion depth of 5 μm9 and a surface concentration of 5×10” (Fig. 2C). Next, the entire surface is covered with IX
Diffuse phosphorus at about 1020, N,, N2. , N
, , are connected to form the cathode N3 layer (FIG. 2d).

従って、p、+4層はN7層に半面が囲韮れた形状にな
る。この後第1図のように必要な電極A、に、Gを接続
してGTOサイリスクが構成される。
Therefore, the p, +4 layer has a shape in which half of its surface is surrounded by the N7 layer. After this, as shown in FIG. 1, the necessary electrodes A and G are connected to form a GTO cyrisk.

ここで、注目すべきことは、高濃度埋込層P、すの表面
にエピタキシャル層を形成するのに、該層の成長厚さを
薄くすることによって従来の欠陥層の幅Δωを小さくす
ることができる。従って、高濃度P、++層上への成長
厚さは10μm以下であることがのぞましく、この条件
下ではΔωはたかだか5μmの成長になり、ωは大幅に
短縮して電流耐量を大幅に向上し、しかもN、P、接合
表面長を減らして逆耐圧も高くすることができる。
What should be noted here is that when forming an epitaxial layer on the surface of the high concentration buried layer P, the width Δω of the conventional defect layer can be reduced by reducing the growth thickness of the layer. I can do it. Therefore, it is desirable that the growth thickness on the high-concentration P, ++ layer is 10 μm or less, and under this condition, Δω will grow to at most 5 μm, and ω will be significantly shortened, greatly increasing the current withstand capacity. Furthermore, the reverse breakdown voltage can be increased by reducing the N, P, and bonding surface lengths.

第3図は本発明に基づいて試作したサイリスタのしゃ所
持性の変化を示し、ω= t、OC設計値200μ)か
ら小さくすることにより耐量を大幅に向上できることが
明らかである。また、ωを小さくしても従来の第8図示
のような複雑化を伴うことなく、N、P、接合の逆耐圧
を設計値に近い値で容易に得ることができる。
FIG. 3 shows the change in the blocking property of the thyristor prototyped based on the present invention, and it is clear that the withstand capability can be greatly improved by reducing ω=t, OC design value 200 μ). Further, even if ω is made small, the reverse breakdown voltage of the N, P, and junctions can be easily obtained at a value close to the design value without being complicated as in the conventional case shown in FIG.

なお、実施例において、第2図(a)の前処理としてP
1層表面に高抵抗エピタキシャル層P、−を形成(第4
図)しておくことにより、N、P、接合の逆耐圧を一層
高くすることもできる。
In addition, in the example, P is used as the pretreatment in FIG.
A high resistance epitaxial layer P, - is formed on the surface of the first layer (fourth
By doing so, the reverse breakdown voltage of the N, P junction can be further increased.

また1、実施例はGTOサイリスクの場合で説明したが
、本発明はこれに限定されるものでなく、エピタキシャ
ル技術を利用して高濃度層を部分的に埋込み、これを制
御極として用いる他の自己消弧形素子、例えば静電誘導
形トランジスタや静電誘導形サイリスクにも適用して同
等の作用効果を得ることができるのは勿論である。
In addition, 1. Although the embodiment has been explained in the case of GTO Cyrisk, the present invention is not limited to this, but can be applied to other methods in which a high concentration layer is partially buried using epitaxial technology and this is used as a control electrode. It goes without saying that the present invention can also be applied to self-extinguishing elements such as static induction transistors and static induction transistors to obtain similar effects.

G1発明の効果 以上のとおり、本発明によれば、高濃度の埋込ゲート層
に挾まれた主電流導通層まで延出形成し、かつ拡散層で
全面を結合したエミッタ層を持つ構造としたため、P2
N2接合周辺長を短くしなからN。
G1 Effects of the Invention As described above, according to the present invention, the emitter layer is formed to extend to the main current conducting layer sandwiched between the high concentration buried gate layers, and the entire surface is bonded by the diffusion layer. , P2
N2 Do not shorten the junction peripheral length.

層の幅ωを狭くすることができ、電流耐景及び耐電圧を
向上した素子を得ることができる。
The layer width ω can be narrowed, and an element with improved current resistance and voltage resistance can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す要部断面構造図、第2
図は第1図の構造を得るための製法の一実施例を示す工
程図、第3図は本発明における導通層ω対ターンオフ電
流ITの特性図、第4図は本発明の他の実施例を説明す
るための要部断面図、第5図は従来例のゲートターンオ
フサイリスクの断面図、第6図は第5図におけるω対I
Tの特性図、第7図は従来例の問題点を説明するための
拡大断面図、第8図(A)、第8図(B)は従来の他の
構造を示す断面図とA−A’に沿った平面図である。 P、+4・・・高濃度層、N2・・・エミッタ層、K・
・・カソード電極、A・・・アノード電極。 第1図 第2図 第3図 第4図 第5図
Fig. 1 is a cross-sectional structural diagram of main parts showing one embodiment of the present invention;
The figure is a process diagram showing an example of the manufacturing method for obtaining the structure shown in Figure 1, Figure 3 is a characteristic diagram of conduction layer ω versus turn-off current IT in the present invention, and Figure 4 is another embodiment of the present invention. 5 is a sectional view of a conventional gate turn-off side risk, and FIG. 6 is a sectional view of ω vs. I in FIG. 5.
T characteristic diagram, FIG. 7 is an enlarged sectional view for explaining the problems of the conventional example, and FIGS. 8(A) and 8(B) are sectional views showing other conventional structures and A-A. ' is a plan view taken along. P, +4...high concentration layer, N2...emitter layer, K.
... Cathode electrode, A... Anode electrode. Figure 1 Figure 2 Figure 3 Figure 4 Figure 5

Claims (3)

【特許請求の範囲】[Claims] (1)ベース層に低抵抗不純物拡散層を所定パターンに
形成し、該拡散層を制御電極として主電極間に導通し、
阻止状態を得るゲート埋込形半導体素子において、前記
拡散層に挾まれた主電流導通層まで拡散によつて延出形
成し、かつ拡散層で全面を結合したエミッタ層を備えた
ことを特徴とするゲート埋込形半導体素子。
(1) forming a low-resistance impurity diffusion layer in a predetermined pattern on the base layer, using the diffusion layer as a control electrode to conduct between the main electrodes;
A buried-gate semiconductor device that obtains a blocking state, characterized by comprising an emitter layer that is formed by diffusion to extend to the main current conducting layer sandwiched between the diffusion layers, and that is bonded to the entire surface by the diffusion layers. A buried-gate semiconductor device.
(2)前記拡散層とエミッタ層間のエピタキシャル成長
層を薄く形成した構造を特徴とする特許請求範囲の範囲
第1項記載のゲート埋込形半導体素子。
(2) A buried gate type semiconductor device according to claim 1, characterized in that the epitaxial growth layer between the diffusion layer and the emitter layer is formed thinly.
(3)前記ベース層は前記拡散層及びエミッタ層を形成
する部分を高抵抗エピタキシャル成長層とした構造を特
徴とする特許請求の範囲第1項又は第2項記載のゲート
埋込形半導体素子。
(3) The buried-gate semiconductor device according to claim 1 or 2, wherein the base layer has a structure in which a portion where the diffusion layer and the emitter layer are formed is a high-resistance epitaxial growth layer.
JP17017385A 1985-08-01 1985-08-01 Buried gate type semiconductor element Pending JPS6231166A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17017385A JPS6231166A (en) 1985-08-01 1985-08-01 Buried gate type semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17017385A JPS6231166A (en) 1985-08-01 1985-08-01 Buried gate type semiconductor element

Publications (1)

Publication Number Publication Date
JPS6231166A true JPS6231166A (en) 1987-02-10

Family

ID=15900042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17017385A Pending JPS6231166A (en) 1985-08-01 1985-08-01 Buried gate type semiconductor element

Country Status (1)

Country Link
JP (1) JPS6231166A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5136846A (en) * 1989-04-18 1992-08-11 Kubota, Ltd. Hydraulic circuit with a switchover valve for switching between a high and a low-pressure relief
JPH04284116A (en) * 1991-03-13 1992-10-08 Ngk Insulators Ltd Combustion regenerating method for filter in exhaust gas processing device
US5289680A (en) * 1990-03-09 1994-03-01 Kubota Corporation Two pump hydraulic system with relief valves having different relief pressures

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54131885A (en) * 1978-04-04 1979-10-13 Meidensha Electric Mfg Co Ltd Gate turn-off thyristor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54131885A (en) * 1978-04-04 1979-10-13 Meidensha Electric Mfg Co Ltd Gate turn-off thyristor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5136846A (en) * 1989-04-18 1992-08-11 Kubota, Ltd. Hydraulic circuit with a switchover valve for switching between a high and a low-pressure relief
US5289680A (en) * 1990-03-09 1994-03-01 Kubota Corporation Two pump hydraulic system with relief valves having different relief pressures
JPH04284116A (en) * 1991-03-13 1992-10-08 Ngk Insulators Ltd Combustion regenerating method for filter in exhaust gas processing device

Similar Documents

Publication Publication Date Title
KR0161356B1 (en) Method of manufacturing semiconductor
US4127863A (en) Gate turn-off type thyristor with separate semiconductor resistive wafer providing emitter ballast
JPS6145396B2 (en)
JPH04146674A (en) Semiconductor device and manufacture thereof
JPS6231166A (en) Buried gate type semiconductor element
JPH02208952A (en) Semiconductor device and its manufacture
JP2949001B2 (en) Gate insulated semiconductor device and method of manufacturing the same
JPH07249737A (en) Planar semiconductor and its fabrication
JPS6327865B2 (en)
JPS6128224B2 (en)
JPS5916414B2 (en) semiconductor equipment
JPH0136711B2 (en)
JPS59225567A (en) Gate turn-off thyristor
JPH01293661A (en) Semiconductor device
JPH06244408A (en) Manufacture of bi-directional semiconductor device
JPS59165457A (en) Semiconductor device
JPS621262B2 (en)
JPH0691245B2 (en) Gate turn-off thyristor
JPH04323832A (en) Semiconductor device and manufacture thereof
JPS60154561A (en) Manufacture of semiconductor device
JPH1027915A (en) Manufacture of semiconductor device
JPH07169778A (en) Bipolar static induction transistor
JPH0697275A (en) Semiconductor device
JPH07226498A (en) Static induction semiconductor element
JPS59198768A (en) Zener diode