JPS6231124B2 - - Google Patents
Info
- Publication number
- JPS6231124B2 JPS6231124B2 JP52120595A JP12059577A JPS6231124B2 JP S6231124 B2 JPS6231124 B2 JP S6231124B2 JP 52120595 A JP52120595 A JP 52120595A JP 12059577 A JP12059577 A JP 12059577A JP S6231124 B2 JPS6231124 B2 JP S6231124B2
- Authority
- JP
- Japan
- Prior art keywords
- casing
- excavator
- excavation
- depth
- stabilizer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000009412 basement excavation Methods 0.000 claims description 23
- 238000000034 method Methods 0.000 claims description 22
- 238000010276 construction Methods 0.000 claims description 19
- 239000003381 stabilizer Substances 0.000 claims description 16
- 230000007246 mechanism Effects 0.000 description 14
- 239000000758 substrate Substances 0.000 description 7
- 238000012937 correction Methods 0.000 description 5
- 230000035939 shock Effects 0.000 description 4
- 239000006096 absorbing agent Substances 0.000 description 3
- 238000005553 drilling Methods 0.000 description 3
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 241000256247 Spodoptera exigua Species 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
Landscapes
- Piles And Underground Anchors (AREA)
- Earth Drilling (AREA)
Description
【発明の詳細な説明】
本発明は、場所打コンクリート杭孔の施工法に
関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for constructing cast-in-place concrete pile holes.
現在、基礎杭等の場所打コンクリート杭を施工
する際に先行掘削される杭孔の施工法は、ベノト
工法と、リバースサーキユレーシヨン工法(以下
これをリバース工法と称す)との二つに大別され
る。 Currently, there are two methods for constructing pile holes that are drilled in advance when constructing cast-in-place concrete piles such as foundation piles: the Benoto method and the reverse circulation method (hereinafter referred to as the reverse method). Broadly classified.
各々の工法の選定は、杭孔が大口径、大深度で
ある場合にリバース工法が適用され、杭孔が比較
的小口径・小深度の場合にベノト工法が適用され
るのが一般的であるが、最近では、ベノト工法、
リバース工法各々の特徴を活かした両者併用工法
が実施され従来の各工法では得られない施工法上
の技術を可能としている。 Regarding the selection of each method, the reverse method is generally applied when the pile hole is large in diameter and deep, and the Benoto method is applied when the pile hole is relatively small in diameter and deep. However, recently, the Benoto method,
A combination construction method that takes advantage of the characteristics of each reverse construction method has been implemented, making possible construction techniques that cannot be obtained with conventional construction methods.
しかし乍ら、この併用工法は、予定深度の杭孔
掘削をベノト工法が先行し、リバース工法を後行
させるものであつて先行するベノト杭孔と後行す
るリバース杭孔とが同一孔径とならない(リバー
ス杭孔が小径となる)欠点と、大深度部分を施工
するリバース杭孔の垂直精度がベノト杭孔に比べ
て著しく劣る欠点がある為、削孔精度を上げるこ
とができないものであり、従つて、打設杭の施工
精度も悪かつた。 However, in this combined construction method, the Benoto method excavates the pile hole to the planned depth first, and the reverse method follows, and the Benoto pile hole that precedes and the reverse pile hole that follows do not have the same hole diameter. (Reverse pile holes have a small diameter) and the vertical accuracy of reverse pile holes constructed at large depths is significantly inferior to Benoto pile holes, so it is not possible to improve drilling accuracy. Therefore, the construction accuracy of the driven piles was also poor.
本発明は、上述従来の事情に鑑みて検討の結
果、ベノト、リバース併用工法において、杭孔の
垂直精度を向上できる施工法を提供することを目
的とするもので、その要旨とするところは、掘削
予定深度の任意所望深度にケーシングを建込み、
ベノト工法によつて掘削した後、拡翼回転ビツト
とスタビライザーを装備した掘削機を用い、リバ
ース工法によつてスタビライザーを上記ケーシン
グと掘進に伴なつて形成される掘削孔壁面に押圧
固定して掘削精度を確保しつつ上下可動なスタビ
ライザーによつて固定とその固定解除を返復しな
がら所定深度単位毎に掘進するとした点にある。 As a result of studies in view of the above-mentioned conventional circumstances, the present invention aims to provide a construction method that can improve the vertical accuracy of pile holes in the combination of Benoto and reverse construction methods, and its gist is as follows: Construct the casing at any desired depth of the planned excavation depth,
After excavating using the Benoto method, using an excavator equipped with a rotating rotating bit and a stabilizer, the stabilizer was pressed and fixed to the casing and the wall of the borehole formed during excavation using the reverse method. The point is that the excavation is carried out in predetermined depth units while repeating fixation and release of fixation using a vertically movable stabilizer while ensuring accuracy.
以下、本発明を図示の具体例について詳述すれ
ば、第1図イ乃至チは、杭孔の掘削順位と場所打
コンクリート杭の施工順位を順番に示すもので、
杭孔は次のような順位によつて施工される。 Hereinafter, the present invention will be described in detail with reference to a specific example shown in the drawings. FIG.
Pile holes will be constructed in the following order:
先ず、イに示す如く、地盤G上にベース1を打
設形成して適当な指導機(図示せず)を設置し、
削孔予定位置に杭孔の芯出しを行なつた後、垂直
精度を維持させつつ、適当に貫入力を与えつつケ
ーシング2を建込む。 First, as shown in A, the base 1 is cast and formed on the ground G, and a suitable guiding machine (not shown) is installed.
After centering the pile hole at the planned drilling position, the casing 2 is erected while maintaining vertical accuracy and applying an appropriate penetration force.
ケーシング2は図示の如く、短尺ものを相互に
同軸的にジヨイントしながらロに示すように圧入
して建込み、その圧入に並行して指導機を操縦し
ながら当該指導機から吊りワヤー3によつて下げ
振りの原理で吊下げたバケツト4で中掘りと排土
を行なう所謂ベノト工法によつて削孔する。 As shown in the figure, the casing 2 is built by press-fitting short pieces coaxially to each other as shown in B. In parallel with the press-fitting, the casing 2 is inserted from the guide machine to the suspension wire 3 while operating the guide machine. The hole is drilled using the so-called Benoto method, which performs intermediate digging and soil removal using a bucket 4 suspended on the principle of a plumb bob.
又、ケーシング2は、掘削予定深度Lの内、任
意の所望深度L′まで(図示例では予定深度のほぼ
1/2まで)建込み、後行のリバース工法による削
孔精度を当該ケーシング2によつて確保できるま
でに、その建込み精度と建込み深さは設定され
る。 Furthermore, the casing 2 is excavated up to an arbitrary desired depth L' within the planned excavation depth L (in the example shown, approximately the planned depth).
Up to 1/2) The construction accuracy and construction depth are set until the drilling accuracy of the subsequent reverse construction method can be ensured by the casing 2.
このようにして、ケーシング2の中掘りを終了
したならば、ハに示す如くベース1上に架台5を
設置して該架台5のターンテーブル6に管軸から
なる回転軸7を支承させて、又第2図が示す如
く、指導機からワイヤ16でケーシング2内に掘
削機8を吊下げ配設させる。 After completing the digging of the casing 2 in this way, as shown in C, a pedestal 5 is installed on the base 1, and the turntable 6 of the pedestal 5 supports the rotary shaft 7 made of a tube shaft. Further, as shown in FIG. 2, the excavator 8 is suspended within the casing 2 by a wire 16 from the guiding machine.
この掘削機8は、回転軸7の先端に拡翼回転ビ
ツト9を備え、その上方位に単一若しくは複数個
のスタビライザー10・11第1図の場合は2個
が回転軸7に対して回転且つ軸芯方向へスライド
可能に支承させてなるもので、又、下方位スタビ
ライザー10の下方にはウエイト12を装着して
あり、而して、2の掘削機8は、まず、最初はス
タビライザー10,11の案内板13………をジ
ヤツキ14駆動を行なつて半径方向へ伸長させて
ケーシング2の内壁面に押し付け、そのことによ
つて予め精度よく建込みされたケーシング2によ
つて垂直精度が維持されるようになつており、こ
の状態で、図示しないサクシヨンポンプに連結さ
れた回転軸7を適当な駆動源によつて駆動回転さ
せながら、回転軸7の先端部又は拡翼回転ビツト
9に穿設されたノズル(図示せず)から地山15
へ安定液を供給しつつ拡翼回転ビツト9を駆動回
転して地山15を掘削し、オエイト12により、
又は、適当に貫入力を与えつつ掘進する所謂リバ
ース工法によつてケーシング2の下方位を、それ
と同軸的に掘削する。 This excavator 8 is equipped with a wide-wing rotating bit 9 at the tip of a rotating shaft 7, and above it is equipped with a single or multiple stabilizers 10 and 11 (in the case of FIG. 1, two stabilizers rotate with respect to the rotating shaft 7). The lower stabilizer 10 is supported so as to be slidable in the axial direction, and a weight 12 is attached to the lower part of the lower stabilizer 10. , 11 guide plates 13 are driven by the jack 14 to extend in the radial direction and press against the inner wall surface of the casing 2. As a result, the vertical accuracy is maintained by the casing 2 which has been built with high precision in advance. is maintained, and in this state, while driving and rotating the rotary shaft 7 connected to a suction pump (not shown) by an appropriate drive source, the tip of the rotary shaft 7 or the expanded blade rotation bit is rotated. From the nozzle (not shown) drilled in 9 to the ground 15
Excavating the ground 15 by driving and rotating the expanding blade rotary bit 9 while supplying stabilizing liquid to the
Alternatively, the lower part of the casing 2 is excavated coaxially with the casing 2 by a so-called reverse construction method in which excavation is performed while applying an appropriate penetration force.
更に詳しくは、第2図、第3図のイ乃至ホに示
す如く、回転軸7に対して覆着であるスタビライ
ザー10(単一の場合で説明する)は回転軸7に
対し、その軸芯方向へ有効ストロークlでスライ
ド可能に設定してあるから第3図のイに示す如
く、スタビライザー10を下降限において掘削機
8を上述のようにして建込んだ後、ハに示す如く
ジヤツキ14駆動を行なつてケーシング2の内壁
面に案内板13を押圧させて回転軸7をケーシン
グ2の軸芯に位置決め維持させ、然る後、上述の
ように駆動回転させつつ拡翼回転ビツト9で掘進
させこのようにして上記有効ストロークlだけ掘
進した後は、掘削を一担停止させる。 More specifically, as shown in FIG. 2 and FIG. Since the excavator 8 is set to be able to slide with an effective stroke l in the direction shown in FIG. Then, the guide plate 13 is pressed against the inner wall surface of the casing 2 to position and maintain the rotary shaft 7 at the axis of the casing 2. After that, the rotary shaft 7 is driven and rotated as described above and excavation is performed using the expanded blade rotary bit 9. After digging in this manner by the effective stroke l, the excavation is stopped for a moment.
次いで、ニに示すように回転軸7を有効ストロ
ークlに対応する長さだけ引き上げた後、案内板
13を二点鎖線が示す位置へ後退させて掘削機8
をケーシング2若しくは掘削孔aに対して自由と
し、次にホに示す如く掘削機8を下降させ、つづ
いて案内板13を外側へ押出してケーシング2内
壁面に押圧して掘削機8を固定し、この態様によ
つて拡翼回転ビツト9を駆動回転して再度有効ス
トロークlだけ掘進するのであり、以下上記の繰
返し操作によつて有効ストロークlの深度単位で
杭孔aは掘削される。 Next, as shown in D, after pulling up the rotating shaft 7 by a length corresponding to the effective stroke l, the guide plate 13 is retreated to the position indicated by the two-dot chain line, and the excavator 8
is made free with respect to the casing 2 or the excavation hole a, and then the excavator 8 is lowered as shown in E, and the guide plate 13 is pushed outward and pressed against the inner wall surface of the casing 2 to fix the excavator 8. In this manner, the expanding blade rotary bit 9 is driven and rotated to dig again by the effective stroke l, and by repeating the above operations, the pile hole a is excavated in depth units of the effective stroke l.
ケーシング2下位の掘削は、拡翼回転ビツト9
によつて第3図各図中波線が示すように、ケーシ
ング2の外径に等しく杭孔aの内径は掘削され
る。 Excavation of the lower part of the casing 2 is performed using the expanding blade rotation bit 9.
As a result, the inner diameter of the pile hole a is excavated to be equal to the outer diameter of the casing 2, as indicated by the dotted lines in each figure of FIG.
更に、杭孔aの掘削が進行し、ケーシング2の
下側端からスタビライザー10の位置が外れた
際、ケーシング2を掘削基準として上述のように
掘削された杭孔aの内壁面に案内板14を押し付
けて掘削機8は固定される。 Furthermore, when the excavation of the pile hole a progresses and the position of the stabilizer 10 is removed from the lower end of the casing 2, a guide plate 14 is placed on the inner wall surface of the pile hole a excavated as described above using the casing 2 as the excavation reference. The excavator 8 is fixed by pressing .
従つて、ケーシング2と、該ケーシング2を掘
削精度の基準として削孔される掘削孔aの内壁面
をしてスタビライザー10により掘削機8は固定
される為、拡翼回転ビツト9の掘進方向位置決め
は、後述する如く精度よく行なわれることになつ
て杭孔aの掘削垂直精度は確保されると共にケー
シング引き抜き後は、ベノト工法による杭孔の上
方部と、リバース工法による杭孔の下方部とは同
一内径に削孔されることになる。 Therefore, since the excavator 8 is fixed by the stabilizer 10 with the casing 2 and the inner wall surface of the excavation hole a being drilled using the casing 2 as a reference for excavation accuracy, the positioning of the expanding rotary bit 9 in the excavation direction is difficult. As will be described later, the vertical excavation accuracy of pile hole a is ensured, and after the casing is pulled out, the upper part of the pile hole by the Benoto method and the lower part of the pile hole by the reverse method are separated. The holes will be drilled to the same inner diameter.
第2図において、17は、シヨツクアブソー
バ、18は油圧ホース、19は油圧ホースリー
ル、20はケーブル、21はケーブルリールを示
しており、掘削機8に装備される図示しない傾斜
計をケーブル20で地上の傾斜制御装置(図示せ
ず)に接続している。 In FIG. 2, 17 is a shock absorber, 18 is a hydraulic hose, 19 is a hydraulic hose reel, 20 is a cable, and 21 is a cable reel. Connected to a ground slope control device (not shown).
上述の如くして、削孔した杭孔aには、第1図
中ニ,ホ,ヘ,ト,チに示した順番でクレーン作
業によつてGコラム21を介して鉄筋カゴ22を
建込み、鉄骨25の建込み芯決めを行なつた後、
コンクリート23を打設し、埋戻しを行なつてケ
ーシング引抜機24を設置し、ケーシング2を引
抜き、場所打コンクリート杭bは構築される。 In the pile hole a drilled as described above, reinforcing bar cages 22 are erected via the G column 21 by crane operation in the order shown in D, E, H, G, and C in Figure 1. , After centering the steel frame 25,
Concrete 23 is placed and backfilled, a casing puller 24 is installed, and the casing 2 is pulled out, and the cast-in-place concrete pile b is constructed.
上述スタビライザー10,11の掘削機ガイド
機構は次のように構成される。 The excavator guide mechanism of the stabilizers 10 and 11 described above is constructed as follows.
第4図イ,ロにおいて、掘削機の回転軸7に対
しスライド可能に覆着される摺動管26は、回転
軸7と同軸的に回転可能に且つ軸方向へスライド
可能とするつまり、スプライン関係の内管26′
と、これとベアリング介在で結合の外管26″と
からなつており、その外管26″から外側に半径
方向へ伸縮するガイド筒27が、90度間隔に四本
付設されており、これにはガイドロツド28が内
装されており外管26″との間に油圧ジヤツキ1
4を夫々介在して該ガイドロツド28の先端と、
ジヤツキ14の先端に止着して案内板13は設け
られている。そして、案内板13には、当該案内
板13に穿設の窓29から外側へ僅かに突出させ
て、第5図に示す如くガイドロツド50先端に取
付けのローラ30がバネ31の弾撥力を突出力と
して付勢させて設けられており、ケーシング2又
は掘削孔aの壁面に沿つて案内板13の摺動をロ
ーラによつて転動に変え、当該案内板13の垂直
方向移動を容易にすると共に回転軸7の回動時の
同動阻止をしている。 In FIGS. 4A and 4B, the sliding pipe 26 that is slidably covered with the rotating shaft 7 of the excavator is made of a spline that is rotatable coaxially with the rotating shaft 7 and slidable in the axial direction. Related inner tube 26'
It consists of an outer tube 26'' which is connected to this via a bearing, and four guide tubes 27 are attached at 90 degree intervals to expand and contract outward from the outer tube 26'' in the radial direction. A guide rod 28 is installed inside, and a hydraulic jack 1 is installed between it and the outer tube 26''.
4 interposed between the tip of the guide rod 28 and
The guide plate 13 is fixedly attached to the tip of the jack 14. A roller 30 attached to the tip of a guide rod 50 protrudes slightly outward from a window 29 formed in the guide plate 13, as shown in FIG. The guide plate 13 is biased as a force, and the sliding movement of the guide plate 13 along the wall surface of the casing 2 or the excavation hole a is changed into rolling motion by rollers, thereby facilitating the vertical movement of the guide plate 13. It also prevents the rotary shaft 7 from rotating at the same time.
第6図は、ガイド機構10,11の他の構成例
を示したもので、上述第4図におけるものとほぼ
同様の構成によるもので、オールポートブロツク
ソレノイドバルブを採用して当該バルブを内装の
ボツクス33,34に夫々油圧ジヤツキ14を接
続してなる方式を示している。 FIG. 6 shows another configuration example of the guide mechanisms 10, 11, which has almost the same configuration as that shown in FIG. A system is shown in which hydraulic jacks 14 are connected to boxes 33 and 34, respectively.
第7図イ,ロは、ガイド機構10,11の更に
他の構成例を示したもので、上述第4図に示した
実施例とほぼ同様の構成に係るものであるが、摺
動管26が上下配置として二個ジヤツキ35で連
結して設けられており、その上下両摺動管26,
26から夫々直角配置として、出力軸端に案内板
13を夫々固設したジヤツキ14が対称に突設し
てなるもので、ジヤツキ14と35の駆動によつ
てケーシング2又は掘顛孔内を尺取り虫式に移動
(下降)されるようになつており、このように移
動させることによつて回転ビツトを停止させるこ
となく、連続削孔を可能にしているものである。 FIGS. 7A and 7B show still other configuration examples of the guide mechanisms 10 and 11, which have almost the same configuration as the embodiment shown in FIG. are arranged vertically and connected by a jack 35, and both the upper and lower sliding tubes 26,
Jacks 14 are arranged at right angles from 26 and have guide plates 13 fixed to the ends of the output shafts, respectively, projecting symmetrically, and when the jacks 14 and 35 are driven, the casing 2 or the inside of the excavation hole can be measured by inchworms. The rotary bit is moved (lowered) in this manner, and by moving it in this way, it is possible to continuously drill holes without stopping the rotating bit.
第8図イ,ロは、第2図に示したシヨツクアブ
ソーバ17を詳示したもので、上下二個の基板3
6,37と上部基板36から垂設して下部基板3
7のガイド孔38に嵌挿したガイド杆39を取り
囲んで両基板36,37間に介在させた圧縮バネ
40とからなつており、回転軸7に外接して回転
自在に配設したパイプ41に対し上部基板36は
スライド可能に、下部基板37は固定され、回転
軸7の引き上げ又はガイド機構10,11の下降
に伴なう急激なシヨツクをガイド機構の座板42
と上部基板36との突き当りに伴う圧縮バネ40
の圧縮変形によつて吸収するように構成され、又
上部基板36には、突子43が設けられ、これと
対向するガイド機構10,11の座板42にはリ
ミツトスイツチ44が設けられていて、ガイド機
構10,11の下降限において突子43によりリ
ミツトスイツチ44は動作してその下降限を地上
において検出できるようになつている。 FIGS. 8A and 8B show details of the shock absorber 17 shown in FIG.
6, 37 and the lower substrate 3 hanging vertically from the upper substrate 36.
It consists of a compression spring 40 that surrounds a guide rod 39 fitted into a guide hole 38 of No. 7 and is interposed between both substrates 36 and 37. On the other hand, the upper substrate 36 is slidable and the lower substrate 37 is fixed, so that the seat plate 42 of the guide mechanism can prevent sudden shocks caused by lifting up the rotating shaft 7 or lowering the guide mechanisms 10 and 11.
Compression spring 40 due to abutting with upper substrate 36
The upper substrate 36 is provided with a projection 43, and the seat plate 42 of the guide mechanism 10, 11 facing this is provided with a limit switch 44. At the lowering limit of the guide mechanisms 10, 11, a limit switch 44 is operated by the protrusion 43, and the lowering limit can be detected on the ground.
第7図ロ中45は、傾斜計を示している。更に
本発明の施工法による時は、回転ビツト9の制御
即ち傾斜修正は当該傾斜計45にもとづき次記す
る如く手動又は自動によつて行なわれる。 45 in FIG. 7B shows an inclinometer. Further, when using the construction method of the present invention, the control of the rotary bit 9, that is, the inclination correction, is performed manually or automatically based on the inclinometer 45 as described below.
すなわち、手動修正は、掘削機8に装備の傾斜
計45と、掘削機を架装する指導機に装備の深度
検出器を、中間に増巾器を介して演算部に接続
し、上記傾斜計45と深度検出器により常に演算
部にそれ等データが送られるようにし、演算部に
て偏位量に換算し、換算された偏位量と深度は表
示計に表示し、増巾器を介して同時に記録計にデ
ータが送られ記録されるようにし、オペレータ
は、これ等のデータを見ながら前記ガイド機構の
ジヤツキ14を任意に操作し、偏位量を設定値以
内におさまるように操作して行なわれる。 That is, manual correction is performed by connecting the inclinometer 45 installed in the excavator 8 and the depth detector installed in the guiding device that mounts the excavator to the calculation section via a multiplier in the middle. 45 and the depth detector, the data is always sent to the calculation section, and the calculation section converts it into the amount of deviation.The converted amount of deviation and depth are displayed on the display meter, and the data are sent via the amplifier. At the same time, the data is sent to the recorder and recorded, and the operator arbitrarily operates the jack 14 of the guide mechanism while viewing these data so that the amount of deviation falls within the set value. It is done.
又、自動修正は、予め演算部に修正設定置を記
憶させておき、その設定偏位量に達した場合に自
動的にガイド機構を駆動するように演算部に接続
して増巾器、制御盤、油圧ポンプ制御部、ジヤツ
キ駆動部からシステムを組み、これにより自動的
に修正を行なうものである。 In addition, for automatic correction, the correction setting position is stored in the calculation unit in advance, and the amplifier and control unit are connected to the calculation unit so that the guide mechanism is automatically driven when the set deviation amount is reached. A system is assembled from a panel, a hydraulic pump control section, and a jack drive section, which automatically performs corrections.
よつて、常に垂直精度を正確に維持し得る。 Therefore, vertical accuracy can always be accurately maintained.
以上説明したように、本発明の杭孔の施工法に
よれば、ベノト、リバース併用工法において、従
来工法では施工困難であつた大口径・大深度の杭
孔をケーシングに垂直精度基準点において掘削機
ガイド機構によつて掘進方向の位置決め固定を行
ないながら高垂直精度に掘削することができ、又
予定深度までも、ケーシング外径と同一口径に掘
削施工できるものであり、従つて場所打ちコンク
リート杭の施工精度を高めることができるもので
あり、更に、大口径・大深度の杭孔を無公害に施
工できる等の効果がある。 As explained above, according to the pile hole construction method of the present invention, large diameter and deep pile holes, which were difficult to construct using conventional methods, are excavated at the vertical accuracy reference point using the casing in the combined Benoto and reverse construction method. It is possible to excavate with high vertical accuracy while positioning and fixing in the excavation direction using the machine guide mechanism, and excavation can be carried out to the same diameter as the casing outer diameter even to the planned depth. It is possible to improve the accuracy of construction, and it also has the effect of allowing large diameter and deep pile holes to be constructed without pollution.
なお、本発明においては後行のリバースで先行
のベントと同一孔径掘削施工が可能であるから、
ケーシングの降進が可能であり、これを行つてス
タビライザーの反力基盤上有利とすることもでき
る。 In addition, in the present invention, it is possible to excavate the same hole diameter as the preceding vent in the subsequent reverse.
It is possible to lower the casing, which can also be advantageous on the basis of the stabilizer reaction force.
また、第1図ハに示される如く、複数個のスタ
ビライザー配備の場合は、回転軸7の上方部の振
れの影響をビツトが受けるおそれが激減されるの
で好都合である。 Further, as shown in FIG. 1C, it is advantageous to provide a plurality of stabilizers because the risk of the bit being affected by the vibration of the upper part of the rotating shaft 7 is drastically reduced.
第1図イ乃至チは、本発明に係る杭孔施工法の
実施態様を示した杭孔と杭の施工順番に示す縦断
面図、第2図は掘削機ガイドの地上装置を示す縦
断面図、第3図イ乃至ホは掘削機ガイドの手順を
示す縦断面図、第4図イ,ロは掘削機ガイド機構
の平面図と半断正面図、第5図は掘削機ガイド機
構のガイドローラを示す拡大断面図、第6図、第
7図イ,ロは掘削機ガイド機構の他の構成例を
夫々示している。第8図イ,ロは掘削機における
シヨツクアブソーバを示した平面図と正面図であ
る。
符号の簡単な説明、2……ケーシング、7……
回転軸、8……掘削機、9……拡翼回転ビツト、
10・11……スタビライザー(ガイド機構)、
13……案内板、14……ジヤツキ、26……摺
動管、a……杭孔。
Figures 1A to 1C are vertical cross-sectional views showing the pile hole and the pile construction order according to an embodiment of the pile hole construction method according to the present invention, and Figure 2 is a vertical cross-sectional view showing the ground equipment of the excavator guide. , Figures 3A to 3E are longitudinal sectional views showing the procedure of guiding the excavator, Figures 4A and 4B are a plan view and a half-sectional front view of the excavator guide mechanism, and Figure 5 is a guide roller of the excavator guide mechanism. 6 and 7A and 7B respectively show other configuration examples of the excavator guide mechanism. FIGS. 8A and 8B are a plan view and a front view showing a shock absorber in an excavator. Brief explanation of symbols, 2...Casing, 7...
Rotating shaft, 8...excavator, 9...blade rotation bit,
10/11... Stabilizer (guide mechanism),
13... Guide plate, 14... Jacket, 26... Sliding pipe, a... Pile hole.
Claims (1)
法において、予め芯出しを行なつて予定深度の任
意所望深度までにケーシングを建込み、ベノト工
法によつて掘削した後、拡翼回転ビツトと掘削機
に装備の傾斜計と掘削機を架装する指導機に装備
の深度検出器とから送られるデータを演算して算
出される偏位量にもとづいて操作されるところの
スタビライザーを装備した掘削機を用いリバース
サーキユレーシヨン工法によつてスタビライザー
を上記ケーシングと、掘進に伴なつて掘削孔壁面
に押圧固定して掘削精度を確保し、掘削機固定
と、掘削と、スタビライザー外しを所定深度単位
毎に繰返しつつ予定深度までを掘削することを特
徴とする場所打コンクリート杭孔の施工法。1 In the combination method of Benoto and reverse circulation, centering is performed in advance, the casing is built to any desired depth of the planned depth, and after excavation is carried out using the Benoto method, it is installed on the expanding blade rotary bit and the excavator. Reversing using an excavator equipped with a stabilizer that is operated based on the amount of deviation calculated by calculating the data sent from the inclinometer and the depth detector installed in the guide device that mounts the excavator. Using the circulation method, the stabilizer is pressed and fixed to the casing and to the wall of the excavation hole as the excavation progresses to ensure excavation accuracy, and the process of fixing the excavator, excavating, and removing the stabilizer is repeated for each predetermined depth unit. A construction method for cast-in-place concrete pile holes, which is characterized by excavating to a planned depth.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12059577A JPS5454402A (en) | 1977-10-07 | 1977-10-07 | Method of construction of executing concrete piling for placing position and its excavator guide device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12059577A JPS5454402A (en) | 1977-10-07 | 1977-10-07 | Method of construction of executing concrete piling for placing position and its excavator guide device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5454402A JPS5454402A (en) | 1979-04-28 |
JPS6231124B2 true JPS6231124B2 (en) | 1987-07-07 |
Family
ID=14790142
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12059577A Granted JPS5454402A (en) | 1977-10-07 | 1977-10-07 | Method of construction of executing concrete piling for placing position and its excavator guide device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5454402A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013204401A (en) * | 2012-03-29 | 2013-10-07 | Kajima Corp | Excavator |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0617577B2 (en) * | 1989-08-04 | 1994-03-09 | 株式会社ジオトップ | Drilling method and equipment for foundation piles such as cast-in-place piles |
JPH0633450A (en) * | 1992-07-17 | 1994-02-08 | Kajima Corp | Earth removal device in cast-in-place pile method |
JP2633445B2 (en) * | 1992-10-09 | 1997-07-23 | 鹿島建設株式会社 | Earth removal equipment in cast-in-place pile method |
JP4485098B2 (en) * | 2001-05-21 | 2010-06-16 | 鹿島建設株式会社 | Drilling rig |
JP4953760B2 (en) * | 2006-10-27 | 2012-06-13 | 東京電力株式会社 | Hole wall roughening device and hole wall roughening method |
JP5388523B2 (en) * | 2008-09-24 | 2014-01-15 | 三和機材株式会社 | Drilling device and drilling method |
JP2011162998A (en) * | 2010-02-09 | 2011-08-25 | Kenki Engineering:Kk | Excavating device |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS49120401A (en) * | 1973-03-21 | 1974-11-18 | ||
JPS524203B2 (en) * | 1973-11-05 | 1977-02-02 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5247287Y2 (en) * | 1975-06-18 | 1977-10-27 |
-
1977
- 1977-10-07 JP JP12059577A patent/JPS5454402A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS49120401A (en) * | 1973-03-21 | 1974-11-18 | ||
JPS524203B2 (en) * | 1973-11-05 | 1977-02-02 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013204401A (en) * | 2012-03-29 | 2013-10-07 | Kajima Corp | Excavator |
Also Published As
Publication number | Publication date |
---|---|
JPS5454402A (en) | 1979-04-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6081100B2 (en) | Existing pile pulling device | |
JPS6231124B2 (en) | ||
JP2779389B2 (en) | Rotary press-in device for steel pipe piles for settlement settlement | |
US2076379A (en) | Caisson | |
JP2013053475A (en) | Excavator and excavated hole forming method | |
JP3343501B2 (en) | Excavation method | |
JP3031458B2 (en) | Drilling method of crossing pit from existing pit and its rig | |
JPH02282517A (en) | Underground continuous wall excavation and device therefor | |
JPS6033186Y2 (en) | Bottom-expanding excavator for foundation piles | |
JPS6326232B2 (en) | ||
JPH0624425Y2 (en) | Excavation body guiding device for excavation equipment such as pilot holes for pile driving | |
JP2689229B2 (en) | Pile driver and pile driving method | |
JP3129981B2 (en) | Rotary reaction force removal device for tubing device | |
JP2000248867A (en) | Method and apparatus for manufacturing dry pillar body for base ground | |
JP3396025B2 (en) | Vertical excavation method and device | |
JPS6146608B2 (en) | ||
JPS6123084Y2 (en) | ||
JPS6033148Y2 (en) | Pile driving device | |
JPH1088993A (en) | Lock bolt driver | |
JP2886089B2 (en) | Soft ground improvement equipment | |
JPS6137436B2 (en) | ||
CN118309366A (en) | Composite foundation pile foundation construction device and construction method thereof | |
JP2015121051A (en) | Ruler for installation of steel pipe sheet pile, installation method of steel pipe sheet pile, and turning excavator for use in installation method of steel pipe sheet pile | |
JPH0643695B2 (en) | Foundation pile construction method | |
JPS6218711B2 (en) |