JP4485098B2 - Drilling rig - Google Patents

Drilling rig Download PDF

Info

Publication number
JP4485098B2
JP4485098B2 JP2001151333A JP2001151333A JP4485098B2 JP 4485098 B2 JP4485098 B2 JP 4485098B2 JP 2001151333 A JP2001151333 A JP 2001151333A JP 2001151333 A JP2001151333 A JP 2001151333A JP 4485098 B2 JP4485098 B2 JP 4485098B2
Authority
JP
Japan
Prior art keywords
excavation
radius
excavating
hole wall
blades
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001151333A
Other languages
Japanese (ja)
Other versions
JP2002339679A (en
Inventor
森幸 嶋井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2001151333A priority Critical patent/JP4485098B2/en
Publication of JP2002339679A publication Critical patent/JP2002339679A/en
Application granted granted Critical
Publication of JP4485098B2 publication Critical patent/JP4485098B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、基礎杭や立坑の施工などに用いられる掘削装置に関するものである。
【0002】
【従来の技術】
従来、立坑などを掘削する掘削装置として、特開平11−62463号公報に記載されるように、立坑の掘削断面より小径のカッタを偏心回転させて、内壁下方の掘削を行うものが知られている。この掘削装置は、立坑の掘削断面より小径のカッタを偏心回転させて掘削することにより、大きさ、形状の異なる立坑掘削においても比較的簡単に掘削機構の交換を行おうとするものである。また、この掘削装置では、コピーカッタにより内壁であるケーソンの刃口下の掘削が行われる。
【0003】
【発明が解決しようとする課題】
しかしながら、前述した掘削装置にあっては、内壁の刃口下を掘削するためにコピーカッタの作動機構などを設ける必要がある。このため、装置構造が複雑なものとなる。施工コスト低減のためには、できるだけ装置を簡略化するのが望ましい。
【0004】
また、コピーカッタが突出した状態で破損又は故障が生ずると、カッタをケーソン内周より内側に収納できず、掘削装置を引き上げ回収することが困難となる。この場合、工期の遅れや機材の損失などが多大なものとなる。このような不都合を回避するためには、できるだけ信頼性の高い掘削作業及び機材回収作業が行えることが要求される。
【0005】
そこで、本発明は、このような問題点を解消するためになされたものであって、信頼性の高い掘削作業及び機材回収作業が行え、施工コストの低減が図れる掘削装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
このような目的を達成するために、本発明に係る掘削装置は、掘削孔に設置される孔壁保護部材の内部直径より小さく形成され、孔壁保護部材の内部半径より掘削半径の大きい大径掘削部を少なくとも有し、孔壁保護部材の下方に配置され回転して掘削を行う掘削手段と、掘削手段を水平方向に移動させる移動手段とを備え、掘削手段は、孔壁保護部材に挿通される回転軸の外周に突設され回転軸の外周の周方向に所定の間隔で配設される複数の掘削部を有し、大径掘削部は、掘削半径が孔壁保護部材の外周半径より大きく構成され、複数の掘削部は、掘削半径が小さいものほど多くの掘削ビットが形成されている。
また、本発明に係る掘削装置は、掘削孔に設置される孔壁保護部材の内部直径より小さく形成され、孔壁保護部材の内部半径より掘削半径の大きい大径掘削部を少なくとも有し、孔壁保護部材の下方に配置され回転して掘削を行う掘削手段と、掘削手段を水平方向に移動させる移動手段とを備え、掘削手段は、孔壁保護部材に挿通される回転軸の外周に突設され回転軸の外周の周方向に所定の間隔で配設される複数の掘削部を有し、大径掘削部は、掘削半径が孔壁保護部材の外周半径より大きく構成され、複数の掘削部は、掘削半径が小さいものほど大きい掘削ビットが形成されている。
【0009】
これらの発明によれば、掘削手段が孔壁保護部材の内部直径より小さく形成され孔壁保護部材の内部半径より掘削半径の大きい大径掘削部を有するため、孔壁保護部材の下方の掘削が可能であり、掘削終了後に掘削手段を孔壁保護部材内を通じて地上へ引き上げて回収することができる。また、掘削手段に掘削半径を伸長させる可動式のカッタなどを設ける必要がないため、可動部の故障などの心配がなく、信頼性の高い掘削作業及び回収作業が行える。また、装置の構成を簡素化でき、施工コストの低減が図れる。
また、掘削手段の大径掘削部の掘削半径が孔壁保護部材の外周半径より大きく形成されているため、孔壁保護部材の刃口下の土砂を完全に掘削することができ、掘削効率の向上が図れる。
また、回転軸の外周に複数の掘削部を設けることにより、掘削部の掘削による掘削抵抗が回転軸を中心としてその周囲に分散されるため、掘削時に掘削部の水平移動を防止でき、掘削範囲がズレることを防止できる。
また、複数ある掘削部のうち掘削半径が小さいものほど多くの掘削ビットを形成し又は掘削半径が小さいものほど大きい掘削ビットを形成することにより、各掘削部における掘削抵抗差が低減されるため、掘削部の掘削半径が異なっていても、掘削時における掘削ズレを効果的に防止できる。
【0016】
また本発明に係る掘削装置は、前述の大径掘削部の掘削面が水平方向に対し傾斜していることを特徴とする。また本発明に係る掘削装置は、前述の掘削部の掘削面が水平方向に対し傾斜していることを特徴とする。
【0017】
これらの発明によれば、掘削時における大径掘削部及び掘削部の水平移動が抑制され掘削ズレを防止できる。
【0018】
【発明の実施の形態】
以下、添付図面に基づき、本発明における実施の形態について説明する。尚、各図において同一要素には同一符号を付して説明を省略する。また、図面の寸法比率は説明のものと必ずしも一致していない。
【0019】
図1に本実施形態に係る掘削装置及び掘削方法の説明図を示す。本図に示すように、本実施形態に係る掘削装置1は、基礎杭の施工に用いられる縦孔2を掘削する装置であり、地中を下方へ向けて掘削する複数の掘削翼3〜5を備えている。掘削翼3〜5は、それぞれ最下位置のロッド管6の周面に取り付けられ、そのロッド管6の回転に伴って回転し掘削を行う掘削手段である。
【0020】
ロッド管6は、中空の管体であり、掘削翼3〜5に回転力を与える回転軸として機能するものである。また、ロッド管6は、掘削翼3〜5により掘削された土砂を地上へ搬送する搬送路としても機能する。このロッド管6は、縦孔2の深さに応じて複数連結されて用いられる。
【0021】
縦孔2の内周に沿って、円筒部材7が設置されている。円筒部材7は、縦孔2の孔壁崩壊を防止する孔壁保護部材であり、縦孔2の深さに応じて複数連結されて用いられる。円筒部材7の内部には、連結されたロッド管6が挿通されている。
【0022】
円筒部材7の上方には、回転テーブル8が配置されている。回転テーブル8は、ロッド管6を介して掘削翼3〜5を回転させる回転駆動手段であり、最上位置のロッド管6と連結される回転管8a及び図示しないモータを備え、そのモータの駆動により回転管8aを回転させ、ロッド管6を所定の方向に回転させる。
【0023】
回転テーブル8には、油圧シリンダ10が取り付けられている。油圧シリンダ10は、掘削翼3〜5を水平方向へ移動させる移動手段として機能するものであり、回転テーブル8における回転管8aなどの回転部分を水平方向に移動させ、ロッド管6を介して掘削翼3〜5を水平移動させる。
【0024】
例えば、油圧シリンダ10は、本体部10aとピストン部10bを備えて構成され、本体部10aが回転しない支持板8bに固定され、ピストン部10bの先端が回転テーブル8の回転部分に取り付けられる。油圧シリンダ10の伸長により、回転管8aが水平方向に移動し、それに伴ってロッド管6及び掘削翼3〜5が水平方向へ移動する。
【0025】
縦孔2内に配される最下位置の円筒部材7の内部には、油圧シリンダ11が設けられている。油圧シリンダ11は、掘削時にロッド管6を支持しロッド管6の軸ズレを防止する支持手段として機能する共に、掘削後の掘削翼回収時においてロッド管6を水平方向に移動させて掘削翼3〜5を水平方向へ移動させる移動手段として機能する。
【0026】
図2に示すように、油圧シリンダ11は、防水性のものが用いられ、本体部11a及びピストン部11bを収容する伸縮性の収容部11cを備えて構成される。本体部11a及びピストン部11bを収容部11cに収容することにより、本体部11aなどの防水性が保たれる。油圧シリンダ11は、円筒部材7の内周とロッド管6の外周との間に水平方向へ向けて配されている。本体部11aが円筒部材7の内周側に取り付けられ、ピストン部11bがロッド管6の外周側に取り付けられている。このため、図3に示すように、油圧シリンダ11が伸縮することにより、ロッド管6が水平方向に移動し、掘削翼3〜5が円筒部材7に対し水平方向へ相対的に移動する。
【0027】
次に、本実施形態に係る掘削装置の掘削翼について詳述する。
【0028】
図4、5は、本実施形態に係る掘削装置の掘削翼を水平断面をとって示したものである。図4は、円筒部材7の中心位置に掘削翼の掘削中心Oが位置している場合の断面図であり、図5は、掘削翼3〜5が水平移動して円筒部材7の中心位置に掘削中心Oが位置していない場合の断面図である。
【0029】
図4に示すように、ロッド管6の周面には、周方向に所定の間隔で三つの掘削翼3、4、5が取り付けられている。掘削翼3、4、5は、それぞれ異なる長さで形成され、掘削半径が異なるものとなっている。すなわち、掘削翼3が一番長く大きな掘削半径を有し、その次に掘削翼4が長く中程度の掘削半径を有し、掘削翼5は一番短く小さい掘削半径となっている。
【0030】
回転軸となるロッド管6の外周に複数の掘削翼3〜5を設けることにより、掘削翼3〜5の掘削による掘削抵抗がロッド管6の周方向に分散されるため、掘削時に掘削抵抗の偏りによりロッド管6の位置ズレを防止することができる。
【0031】
掘削翼3〜5は、掘削翼全体における水平方向の最長部分の長さL1が円筒部材7の内部直径Dより小さく形成されている。このため、図5に示すように、ロッド管6と共に掘削翼3〜5を適宜水平移動させることにより、掘削翼3〜5の全体を円筒部材7の内周面の内側に位置させることができる。
【0032】
また、掘削翼3は、その掘削半径R1が円筒部材7の内部半径Rより大きくなるように形成されている。このため、掘削翼3〜5の掘削中心Oを円筒部材7の中心位置に合わせることにより、掘削翼3により円筒部材7の刃口下を掘削することが可能となり、円筒部材7の圧入が容易となる。
【0033】
更に、掘削翼3の掘削半径R1は、円筒部材7の外周における半径より大きくなるようにすることが望ましい。この場合、掘削翼3により円筒部材7の刃口下を完全に掘削することが可能となり、円筒部材7の圧入がより容易となる。
【0034】
図6に、本実施形態に係る掘削装置の掘削翼の側面図を示す。
【0035】
図6に示すように、掘削翼3〜5は、掘削ビット3a〜5aを取り付けられる掘削面3b〜5bが水平方向に対し傾斜している。この掘削面3b〜5bの傾斜により、掘削時に掘削翼3〜5の水平移動が防止され、掘削範囲が水平方向にズレることが防止される。
【0036】
掘削面3b〜5bの傾斜角は、ロッド管6の軸方向に対し鋭角となるように設定される。すなわち、図6に示すように、各掘削面3b〜5bがコーンケーブ状となるように形成される。なお、掘削面3b〜5bの傾斜角は、ロッド管6の軸方向に対し鈍角となるように設定する場合もある。この場合であっても、掘削時に掘削翼3〜5の水平移動の防止が可能である。
【0037】
掘削翼3〜5は、掘削半径が小さいものほど多くの掘削ビットを形成するように構成されている。すなわち、掘削半径が一番小さい掘削翼5は、掘削翼3及び掘削翼4に対し掘削ビット5aが多く設けられている。また、掘削半径が中程度長さの掘削翼4は、掘削翼3に対し掘削ビット4aが多く設けられている。
【0038】
このように、掘削翼3〜5において、掘削半径が小さいものほど多くの掘削ビットを形成することにより、掘削半径が異なる複数の掘削翼3〜5により掘削を行う場合でも、各掘削翼3〜5における掘削抵抗の差を低減し又は掘削抵抗を一定にすることができるため、掘削時に回転軸であるロッド管6の位置がズレることが抑制され、掘削範囲の水平方向のズレを防止できる。
【0039】
また、掘削翼3〜5において、掘削半径が小さいものほど大きい掘削ビットを形成してもよい。この場合でも、各掘削翼3〜5における掘削抵抗の差を低減し又は掘削抵抗を一定にすることができるため、掘削時に回転軸であるロッド管6の位置がズレることが抑制され、掘削範囲の水平方向のズレを防止できる。
【0040】
次に、本実施形態に係る掘削装置の動作及び本実施形態に係る掘削工法について説明する。
【0041】
図1に示すように、回転テーブル8を回転させてロッド管6を一定方向に回転させる。ロッド管6の回転に伴って最下のロッド管6に取り付けれている掘削翼3〜5がロッド管6を中心に回転する。このとき、ロッド管6は円筒部材7の中心に位置しており、掘削翼3〜5の掘削中心位置は、円筒部材7の中心位置と一致している。
【0042】
ロッド管6の回転により、掘削翼3〜5が下方に向けて掘進する。その際、掘削半径が小さい掘削翼ほど多くの掘削ビットを形成し又は大きい掘削ビットを形成するなどして、掘削翼3〜5の各掘削抵抗が等しくなるように構成することにより、掘削時にロッド管6の位置ズレ、掘削翼3〜5における掘削範囲のズレが抑制される。
【0043】
また、掘削翼3は、図6に示すように、円筒部材7の刃口下まで伸びているため、円筒部材7の刃口下を掘削できる。掘削翼3〜5の掘削面3b〜5bが中心に向けて下方へ傾斜しているため、掘削翼3〜5の掘削により生じた掘削土は、中心に位置するロッド管6の下方へ集まってくる。
【0044】
そして、図1において、掘削土は、ロッド管6内を通じて地上へ搬送され、縦孔2から排除される。その掘削土の排除方法としては、例えば、ロッド管6内にバケット等の機材を挿通して排土する方法や縦孔2内に注水しロッド管6の上部に吸水ポンプを接続して水と共に掘削土を排出する方法などが用いられる。
【0045】
そして、一定深度掘削する毎に、最上位置のロッド管6に新たなロッド管6が継ぎ足されると共に、円筒部材7が圧入されその上部に新たな円筒部材7が継ぎ足される。そして、掘削、排土及び継足しの作業を繰り返して、所定深度まで掘削が行われる。
【0046】
図7に示すように、所定深度まで掘削を終えたら、掘削翼3〜5の水平移動が行われる。すなわち、油圧シリンダ10及び油圧シリンダ11が作動し、回転管8a及びロッド管6が水平方向に押されて移動する。これにより、掘削翼3〜5が水平方向へ移動する。このとき、図5に示すように、掘削翼3〜5の全体が円筒部材7の内部に位置するように水平移動が行われる。
【0047】
そして、図8に示すように、ロッド管6が上方に引き上げられ、掘削翼3〜5の回収が行われる。掘削翼3〜5の水平移動により、掘削翼3〜5の全体が円筒部材7の内部に位置しているので、その状態でロッド管6を上方へ引き上げることにより、掘削翼3〜5を地上に回収することが可能となる。
【0048】
このとき、掘削手段である掘削翼3〜5には円筒部材7の刃口下を掘削するために可動式の伸縮カッタなどが設けられていないため、その可動部の故障などの心配がなく、信頼性の高い掘削作業及び回収作業が行える。また、掘削手段に可動部を有しないため、掘削装置の構成を簡素化でき、施工コストの低減が図れる。
【0049】
以上のように、本実施形態に係る掘削装置及び掘削方法によれば、孔壁保護部材である円筒部材7の内部半径より掘削半径の大きい掘削翼3を用いて掘削を行うことにより、円筒部材7の下方の掘削が可能であり、円筒部材7を容易に地盤内に圧入させることができる。そして、掘削翼3〜5の全体が円筒部材7の内部直径より小さく形成されているため、これらの掘削翼3〜5を油圧シリンダ10、11により水平方向へ移動させて、掘削工程の終了後に掘削翼3〜5を円筒部材7内を通じて引き上げて回収することができる。
【0050】
また、掘削翼3〜5には掘削半径を伸長させる可動式の伸縮カッタなどが設けられていないため、可動部の故障などの心配がなく、信頼性の高い掘削作業及び回収作業が行える。更に、装置構成の簡素化が図れ、施工コストの低減が図れる。
【0051】
また、掘削翼3の掘削半径を円筒部材7の外周半径より大きく形成することにより、円筒部材7の刃口下の土砂を完全に掘削することができ、掘削効率の向上が図れる。
【0052】
また、ロッド管6の外周に複数の掘削翼3〜5を設けることにより、掘削翼3〜5の掘削による掘削抵抗がロッド管6を中心としてその周囲に分散されるため、掘削時に掘削翼3〜5の水平移動を防止でき、掘削範囲がズレることを防止できる。
【0053】
また、掘削翼3〜5において掘削半径が小さいものほど多くの掘削ビットを形成し又は掘削半径が小さいものほど大きい掘削ビットを形成して各掘削翼における掘削抵抗の差を低減し又は掘削抵抗を一定とすることにより、掘削時における掘削翼3〜5の水平移動及び掘削範囲ズレを効果的に防止できる。特に、掘削翼3〜5の掘削半径が異なる場合に有効である。
【0054】
更に、掘削翼3〜5の掘削面3b〜5bを水平方向に対し傾斜させることにより、掘削時における掘削部の水平移動を抑制し、掘削ズレを効果的に防止することができる。
【0055】
なお、本実施形態では三つの掘削翼3〜5により掘削を行う掘削装置及び掘削方法について説明したが、本発明に係る掘削装置及び掘削方法はそのようなものに限られるものではなく、円筒部材7などの孔壁保護部材の内部半径より掘削半径の大きい掘削翼を有していれば、掘削翼の設置数は三つでなくてもよく、一つ、二つ又は四つ以上の掘削翼を有するものであってもよい。
【0056】
また、本実施形態では掘削翼3〜5を備える掘削装置について説明したが、本発明に係る掘削装置はそのようなものに限られるものではなく、孔壁保護部材の内部半径より掘削半径の大きい掘削部を有するものであれば、掘削部として円盤状のカッタなど掘削翼以外の形態のものを有するものであってもよい。
【0057】
また、本実施形態では、基礎杭の施工に用いられる縦孔2の掘削を行う場合について説明したが、本発明に係る掘削装置及び掘削工法はこのようなものに限られるものではなく、立坑の施工などその他の施工などに用いるものであってもよい。
【0058】
【発明の効果】
以上説明したように本発明によれば、掘削手段が孔壁保護部材の内部直径より小さく形成され孔壁保護部材の内部半径より掘削半径の大きい大径掘削部を有するため、孔壁保護部材の下方の掘削を可能としつつ、その掘削後に掘削手段を水平移動させることにより、掘削手段を孔壁保護部材内を通じて地上へ引き上げて回収することができる。
【0059】
また、掘削手段に掘削半径を伸長させる可動式の伸縮カッタなどを設けることなく孔壁保護部材の刃口下の掘削が行えるため、可動部の故障などの心配がなく、信頼性の高い掘削作業及び回収作業が行える。また、装置の構成を簡素化でき、施工コストの低減が図れる。
【0060】
また、掘削手段の大径掘削部の掘削半径が孔壁保護部材の外周半径より大きく形成することにより、孔壁保護部材の刃口下の土砂を完全に掘削することができ、掘削効率の向上が図れる。
【0061】
また、回転軸の外周に複数の掘削部を設けることにより、掘削部の掘削による生ずる掘削抵抗が回転軸を中心としてその周囲に分散されるため、掘削時に掘削部の水平移動を防止でき、掘削範囲のズレを防止することができる。
【0062】
また、複数ある掘削部のうち掘削半径が小さいものほど多くの掘削ビットを形成し、また掘削半径が小さいものほど大きい掘削ビットを形成することにより、各掘削部における掘削抵抗の差が低減されるため、掘削部の掘削半径が異なっていても、掘削時における掘削ズレを効果的に防止できる。
【0063】
また、掘削部の掘削面を水平方向に対し傾斜させることにより、掘削時における掘削部の水平移動を抑制でき、掘削ズレを防止できる。
【図面の簡単な説明】
【図1】本発明の実施形態に係る掘削装置及び掘削方法の説明図である。
【図2】図1の掘削装置における油圧シリンダの説明図である。
【図3】図1の掘削装置における油圧シリンダの説明図である。
【図4】図1の掘削装置における掘削翼の説明図である。
【図5】図1の掘削装置における掘削翼の説明図である。
【図6】図1の掘削装置における掘削翼等の説明図である。
【図7】本実施形態に係る掘削装置の動作及び本実施形態に係る掘削方法の説明図である。
【図8】本実施形態に係る掘削装置の動作及び本実施形態に係る掘削方法の説明図である。
【符号の説明】
1…掘削装置、
2…縦孔(掘削孔)、
3…掘削翼(掘削部、大径掘削部)、
4…掘削翼(掘削部)、
5…掘削翼(掘削部)、
6…ロッド管(回転軸)、
7…円筒部材(孔壁保護部材)、
8…回転テーブル、
10…油圧シリンダ、
11…油圧シリンダ。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a drilling device used for construction of foundation piles or shafts.
[0002]
[Prior art]
Conventionally, as a drilling device for excavating a shaft or the like, as described in Japanese Patent Application Laid-Open No. 11-62463, an excavator below an inner wall is excavated by eccentrically rotating a cutter having a smaller diameter than a shaft excavation section. Yes. In this excavator, excavation mechanisms are relatively easily replaced even when excavating shafts of different sizes and shapes by excavating a cutter having a smaller diameter than the excavation section of the shaft. Further, in this excavator, excavation is performed under the edge of the caisson, which is the inner wall, by a copy cutter.
[0003]
[Problems to be solved by the invention]
However, in the above-described excavation apparatus, it is necessary to provide a copy cutter operating mechanism or the like in order to excavate the blade edge below the inner wall. For this reason, the device structure becomes complicated. In order to reduce the construction cost, it is desirable to simplify the apparatus as much as possible.
[0004]
Further, if damage or failure occurs with the copy cutter protruding, the cutter cannot be stored inside the caisson inner periphery, and it becomes difficult to pull up and collect the excavator. In this case, the construction period is delayed and the loss of equipment is significant. In order to avoid such inconvenience, it is required that excavation work and equipment recovery work can be performed as reliably as possible.
[0005]
Therefore, the present invention has been made to solve such problems, and an object of the present invention is to provide a drilling device capable of performing highly reliable excavation work and equipment recovery work and reducing the construction cost. And
[0006]
[Means for Solving the Problems]
In order to achieve such an object, the excavator according to the present invention is formed to have a smaller diameter than the inner diameter of the hole wall protection member installed in the drilling hole and has a larger excavation radius than the inner radius of the hole wall protection member. The excavator has at least an excavation section, and is disposed below the hole wall protection member to rotate and excavate, and a moving means for moving the excavation means in the horizontal direction. The excavation means is inserted into the hole wall protection member. A plurality of excavating portions that protrude from the outer periphery of the rotating shaft and are disposed at predetermined intervals in the circumferential direction of the outer periphery of the rotating shaft. The plurality of excavating portions are configured to have a larger excavation bit as the excavation radius is smaller.
Further, the excavation apparatus according to the present invention has at least a large-diameter excavation portion that is formed smaller than the inner diameter of the hole wall protection member installed in the excavation hole and has a larger excavation radius than the inner radius of the hole wall protection member, The excavating means is disposed below the wall protection member and rotates for excavation, and a moving means for moving the excavation means in the horizontal direction. The excavation means projects on the outer periphery of the rotation shaft inserted through the hole wall protection member. A plurality of excavating portions disposed at predetermined intervals in the circumferential direction of the outer periphery of the rotating shaft, and the large-diameter excavating portion is configured such that the excavation radius is larger than the outer peripheral radius of the hole wall protection member. The portion is formed with a larger excavation bit as the excavation radius is smaller.
[0009]
According to these inventions, the excavation means has a large-diameter excavation portion that is formed smaller than the inner diameter of the hole wall protection member and has a larger excavation radius than the inner radius of the hole wall protection member. It is possible, and after excavation is completed, the excavation means can be pulled up to the ground through the hole wall protection member and collected. In addition, since it is not necessary to provide a movable cutter or the like for extending the excavation radius in the excavation means, there is no concern about the failure of the movable part, and highly reliable excavation and recovery operations can be performed. Moreover, the configuration of the apparatus can be simplified, and the construction cost can be reduced.
Further, since the excavation radius of the large-diameter excavation part of the excavation means is formed larger than the outer peripheral radius of the hole wall protection member, it is possible to completely excavate the earth and sand under the blade edge of the hole wall protection member, and the excavation efficiency Improvement can be achieved.
Also, by providing a plurality of excavating parts on the outer periphery of the rotating shaft, the excavation resistance due to excavation of the excavating part is distributed around the rotating shaft, so that the excavating part can be prevented from moving horizontally during excavation, and the excavation range Can be prevented from shifting.
In addition, by forming a larger number of excavation bits as the excavation radius is smaller among a plurality of excavation parts or forming a larger excavation bit as the excavation radius is smaller, the excavation resistance difference in each excavation part is reduced, Even when the excavation part has different excavation radii, excavation displacement during excavation can be effectively prevented.
[0016]
The excavation apparatus according to the present invention is characterized in that the excavation surface of the large-diameter excavation part is inclined with respect to the horizontal direction. The excavation apparatus according to the present invention is characterized in that the excavation surface of the excavation part is inclined with respect to the horizontal direction.
[0017]
According to these inventions, horizontal movement of the large-diameter excavation part and the excavation part during excavation is suppressed, and excavation displacement can be prevented.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. In addition, in each figure, the same code | symbol is attached | subjected to the same element and description is abbreviate | omitted. Further, the dimensional ratios in the drawings do not necessarily match those described.
[0019]
FIG. 1 is an explanatory diagram of a drilling apparatus and a drilling method according to the present embodiment. As shown in this figure, the excavation apparatus 1 according to this embodiment is an apparatus for excavating a vertical hole 2 used for construction of a foundation pile, and a plurality of excavation blades 3 to 5 excavating downward in the ground. It has. The excavating blades 3 to 5 are excavating means that are attached to the peripheral surface of the rod tube 6 at the lowermost position, and that rotate as the rod tube 6 rotates to excavate.
[0020]
The rod tube 6 is a hollow tube, and functions as a rotating shaft that applies a rotational force to the excavating blades 3 to 5. Moreover, the rod tube 6 functions also as a conveyance path which conveys the earth and sand excavated with the excavation blades 3-5 to the ground. A plurality of rod tubes 6 are used in connection with the depth of the vertical hole 2.
[0021]
A cylindrical member 7 is installed along the inner periphery of the vertical hole 2. The cylindrical member 7 is a hole wall protecting member that prevents the hole wall from collapsing in the vertical hole 2, and a plurality of cylindrical members 7 are used depending on the depth of the vertical hole 2. A connected rod tube 6 is inserted into the cylindrical member 7.
[0022]
A rotary table 8 is disposed above the cylindrical member 7. The rotary table 8 is a rotary drive means for rotating the excavating blades 3 to 5 via the rod tube 6, and includes a rotary tube 8a connected to the uppermost rod tube 6 and a motor (not shown). The rotary tube 8a is rotated, and the rod tube 6 is rotated in a predetermined direction.
[0023]
A hydraulic cylinder 10 is attached to the rotary table 8. The hydraulic cylinder 10 functions as a moving means for moving the excavating blades 3 to 5 in the horizontal direction, moves a rotating portion such as the rotary tube 8 a in the rotary table 8 in the horizontal direction, and excavates via the rod tube 6. Move wings 3-5 horizontally.
[0024]
For example, the hydraulic cylinder 10 includes a main body portion 10 a and a piston portion 10 b, the main body portion 10 a is fixed to a support plate 8 b that does not rotate, and the tip of the piston portion 10 b is attached to a rotating portion of the turntable 8. As the hydraulic cylinder 10 extends, the rotary tube 8a moves in the horizontal direction, and accordingly, the rod tube 6 and the excavating blades 3 to 5 move in the horizontal direction.
[0025]
A hydraulic cylinder 11 is provided in the lowermost cylindrical member 7 disposed in the vertical hole 2. The hydraulic cylinder 11 functions as a support means for supporting the rod pipe 6 during excavation and preventing the axial displacement of the rod pipe 6, and moves the rod pipe 6 in the horizontal direction when collecting the excavating blade after excavation, thereby excavating the blade 3. Functions as a moving means for moving -5 in the horizontal direction.
[0026]
As shown in FIG. 2, the hydraulic cylinder 11 is waterproof and includes a stretchable accommodating portion 11 c that accommodates a main body portion 11 a and a piston portion 11 b. By housing the main body portion 11a and the piston portion 11b in the housing portion 11c, the waterproofness of the main body portion 11a and the like is maintained. The hydraulic cylinder 11 is disposed in the horizontal direction between the inner periphery of the cylindrical member 7 and the outer periphery of the rod tube 6. The main body portion 11 a is attached to the inner peripheral side of the cylindrical member 7, and the piston portion 11 b is attached to the outer peripheral side of the rod tube 6. For this reason, as shown in FIG. 3, when the hydraulic cylinder 11 expands and contracts, the rod tube 6 moves in the horizontal direction, and the excavating blades 3 to 5 move relative to the cylindrical member 7 in the horizontal direction.
[0027]
Next, the excavating blade of the excavator according to the present embodiment will be described in detail.
[0028]
4 and 5 show the excavating blade of the excavating apparatus according to the present embodiment in a horizontal cross section. FIG. 4 is a cross-sectional view when the excavation center O of the excavation blade is located at the center position of the cylindrical member 7, and FIG. 5 shows the excavation blades 3 to 5 moving horizontally to the central position of the cylindrical member 7. It is sectional drawing in case the excavation center O is not located.
[0029]
As shown in FIG. 4, three excavating blades 3, 4, and 5 are attached to the circumferential surface of the rod tube 6 at a predetermined interval in the circumferential direction. Excavation blades 3, 4, and 5 are formed with different lengths and have different excavation radii. That is, the excavation blade 3 has the longest and large excavation radius, the excavation blade 4 has the long and medium excavation radius, and the excavation blade 5 has the shortest and the smallest excavation radius.
[0030]
By providing a plurality of excavation blades 3 to 5 on the outer periphery of the rod tube 6 serving as a rotating shaft, excavation resistance due to excavation of the excavation blades 3 to 5 is dispersed in the circumferential direction of the rod tube 6. Misalignment of the rod tube 6 can be prevented by the bias.
[0031]
The excavating blades 3 to 5 are formed such that the length L1 of the longest horizontal portion of the entire excavating blade is smaller than the internal diameter D of the cylindrical member 7. For this reason, as shown in FIG. 5, the entire excavation blades 3 to 5 can be positioned inside the inner peripheral surface of the cylindrical member 7 by appropriately moving the excavation blades 3 to 5 together with the rod tube 6. .
[0032]
Further, the excavation blade 3 is formed such that the excavation radius R <b> 1 is larger than the internal radius R of the cylindrical member 7. For this reason, by aligning the excavation center O of the excavating blades 3 to 5 with the center position of the cylindrical member 7, the excavating blade 3 can excavate the blade edge of the cylindrical member 7, and the cylindrical member 7 can be easily press-fitted. It becomes.
[0033]
Further, it is desirable that the excavation radius R1 of the excavation blade 3 is larger than the radius on the outer periphery of the cylindrical member 7. In this case, it becomes possible to completely excavate the blade edge of the cylindrical member 7 by the excavating blade 3, and the press-fitting of the cylindrical member 7 becomes easier.
[0034]
In FIG. 6, the side view of the excavation wing | blade of the excavation apparatus which concerns on this embodiment is shown.
[0035]
As shown in FIG. 6, the excavation blades 3 to 5 have the excavation surfaces 3 b to 5 b to which the excavation bits 3 a to 5 a are attached inclined with respect to the horizontal direction. Due to the inclination of the excavation surfaces 3b to 5b, the horizontal movement of the excavation blades 3 to 5 is prevented during excavation, and the excavation range is prevented from shifting in the horizontal direction.
[0036]
The inclination angles of the excavation surfaces 3 b to 5 b are set to be acute with respect to the axial direction of the rod tube 6. That is, as shown in FIG. 6, each excavation surface 3b-5b is formed so that it may become cone cone shape. In some cases, the inclination angles of the excavation surfaces 3 b to 5 b are set to be obtuse with respect to the axial direction of the rod tube 6. Even in this case, it is possible to prevent the horizontal movement of the excavating blades 3 to 5 during excavation.
[0037]
The excavation blades 3 to 5 are configured to form more excavation bits as the excavation radius is smaller. That is, the drilling blade 5 having the smallest drilling radius is provided with more drilling bits 5 a than the drilling blade 3 and the drilling blade 4. Further, the excavation blade 4 having a medium excavation radius is provided with more excavation bits 4 a than the excavation blade 3.
[0038]
In this way, in the excavation blades 3 to 5, by forming a larger number of excavation bits as the excavation radius is smaller, even when excavation is performed with the plural excavation blades 3 to 5 having different excavation radii, Since the difference in excavation resistance in 5 can be reduced or the excavation resistance can be made constant, displacement of the position of the rod tube 6 that is the rotating shaft during excavation is suppressed, and deviation in the horizontal direction of the excavation range can be prevented.
[0039]
Further, in the excavation blades 3 to 5, a larger excavation bit may be formed as the excavation radius is smaller. Even in this case, since the difference in excavation resistance between the excavation blades 3 to 5 can be reduced or the excavation resistance can be made constant, the position of the rod tube 6 that is the rotating shaft during excavation is suppressed, and the excavation range Can be prevented from shifting in the horizontal direction.
[0040]
Next, the operation of the excavator according to the present embodiment and the excavation method according to the present embodiment will be described.
[0041]
As shown in FIG. 1, the rotary table 8 is rotated to rotate the rod tube 6 in a certain direction. As the rod tube 6 rotates, the excavation blades 3 to 5 attached to the lowermost rod tube 6 rotate around the rod tube 6. At this time, the rod tube 6 is located at the center of the cylindrical member 7, and the excavation center position of the excavation blades 3 to 5 coincides with the central position of the cylindrical member 7.
[0042]
Due to the rotation of the rod tube 6, the excavation blades 3 to 5 are dug downward. At that time, the excavation blades having a smaller excavation radius are formed such that more excavation bits are formed or larger excavation bits are formed so that the excavation resistances of the excavation blades 3 to 5 are equal to each other. The displacement of the pipe 6 and the excavation range in the excavation blades 3 to 5 are suppressed.
[0043]
Further, as shown in FIG. 6, the excavating blade 3 extends to the lower edge of the cylindrical member 7, and therefore can excavate the lower edge of the cylindrical member 7. Since the excavation surfaces 3b to 5b of the excavation blades 3 to 5 are inclined downward toward the center, the excavated soil generated by excavation by the excavation blades 3 to 5 gathers below the rod pipe 6 located at the center. come.
[0044]
In FIG. 1, the excavated soil is conveyed to the ground through the rod pipe 6 and is removed from the vertical hole 2. The excavated soil can be removed by, for example, inserting a bucket or other equipment into the rod tube 6 and discharging the soil, or pouring water into the vertical hole 2 and connecting a water absorption pump to the upper portion of the rod tube 6 together with water. A method of discharging excavated soil is used.
[0045]
Each time excavation at a certain depth, a new rod pipe 6 is added to the uppermost rod pipe 6 and a cylindrical member 7 is press-fitted and a new cylindrical member 7 is added to the upper part thereof. Then, excavation, soil removal, and extension work are repeated to excavate to a predetermined depth.
[0046]
As shown in FIG. 7, when excavation is completed to a predetermined depth, the excavation blades 3 to 5 are moved horizontally. That is, the hydraulic cylinder 10 and the hydraulic cylinder 11 are operated, and the rotary pipe 8a and the rod pipe 6 are pushed and moved in the horizontal direction. Thereby, the excavation blades 3 to 5 move in the horizontal direction. At this time, as shown in FIG. 5, the horizontal movement is performed so that the entire excavation blades 3 to 5 are located inside the cylindrical member 7.
[0047]
And as shown in FIG. 8, the rod pipe | tube 6 is pulled up upwards and collection | recovery of the excavation blades 3-5 is performed. Since the entire excavation blades 3 to 5 are located inside the cylindrical member 7 by the horizontal movement of the excavation blades 3 to 5, the excavation blades 3 to 5 are grounded by pulling the rod pipe 6 upward in that state. Can be recovered.
[0048]
At this time, since the excavating means are not provided with a movable telescopic cutter or the like in order to excavate the blade edge of the cylindrical member 7 in the excavating blades 3 to 5, there is no worry about failure of the movable part, Highly reliable excavation work and recovery work can be performed. In addition, since the excavating means does not have a movable part, the configuration of the excavator can be simplified and the construction cost can be reduced.
[0049]
As described above, according to the excavation apparatus and the excavation method according to the present embodiment, by performing excavation using the excavation blade 3 having an excavation radius larger than the internal radius of the cylindrical member 7 that is the hole wall protection member, the cylindrical member 7 can be excavated, and the cylindrical member 7 can be easily press-fitted into the ground. And since the whole excavation blade 3-5 is formed smaller than the internal diameter of the cylindrical member 7, these excavation blades 3-5 are moved to the horizontal direction with the hydraulic cylinders 10 and 11, and after completion | finish of an excavation process The excavating blades 3 to 5 can be pulled up and collected through the cylindrical member 7.
[0050]
Further, since the excavating blades 3 to 5 are not provided with a movable telescopic cutter for extending the excavation radius, there is no concern about the failure of the movable part, and highly reliable excavation work and recovery work can be performed. Furthermore, the apparatus configuration can be simplified and the construction cost can be reduced.
[0051]
Further, by forming the excavation radius of the excavation blade 3 to be larger than the outer peripheral radius of the cylindrical member 7, the earth and sand under the cutting edge of the cylindrical member 7 can be excavated completely, and the excavation efficiency can be improved.
[0052]
In addition, by providing a plurality of excavation blades 3 to 5 on the outer periphery of the rod tube 6, excavation resistance due to excavation of the excavation blades 3 to 5 is dispersed around the rod tube 6, and therefore the excavation blade 3 is excavated during excavation. The horizontal movement of ˜5 can be prevented and the excavation range can be prevented from shifting.
[0053]
Further, in the excavating blades 3 to 5, the smaller the excavating radius, the more excavating bits are formed, or the smaller the excavating radius is, the larger the excavating bit is formed, thereby reducing the difference in excavation resistance between the excavating blades or reducing the excavation resistance. By making it constant, it is possible to effectively prevent the horizontal movement of the excavating blades 3 to 5 and excavation range deviation during excavation. This is particularly effective when the excavation radii of the excavation blades 3 to 5 are different.
[0054]
Further, by inclining the excavation surfaces 3b to 5b of the excavation blades 3 to 5 with respect to the horizontal direction, horizontal movement of the excavation part during excavation can be suppressed, and excavation displacement can be effectively prevented.
[0055]
In addition, although this embodiment demonstrated the excavation apparatus and excavation method which excavate with the three excavation blades 3-5, the excavation apparatus and excavation method which concern on this invention are not restricted to such a thing, A cylindrical member If the drilling blade has a drilling radius larger than the inner radius of the hole wall protecting member such as 7, the number of drilling blades may not be three, but one, two, or four or more drilling blades It may have.
[0056]
Moreover, although this embodiment demonstrated the excavation apparatus provided with the excavation blades 3-5, the excavation apparatus which concerns on this invention is not restricted to such a thing, An excavation radius is larger than the internal radius of a hole wall protection member As long as it has an excavation part, you may have a thing other than excavation blades, such as a disk-shaped cutter, as an excavation part.
[0057]
Moreover, although this embodiment demonstrated the case where the vertical hole 2 used for construction of a foundation pile is excavated, the excavation apparatus and excavation method which concern on this invention are not restricted to such a thing, It may be used for other construction such as construction.
[0058]
【The invention's effect】
As described above, according to the present invention, the excavation means has a large-diameter excavation portion that is formed smaller than the inner diameter of the hole wall protection member and has a larger excavation radius than the inner radius of the hole wall protection member. The excavation means can be pulled up to the ground through the hole wall protection member and collected by horizontally moving the excavation means after excavation while enabling the excavation downward.
[0059]
In addition, drilling under the edge of the hole wall protection member can be performed without providing a movable telescopic cutter that extends the digging radius in the excavation means, so there is no concern about the failure of moving parts and highly reliable excavation work. And can be collected. Moreover, the configuration of the apparatus can be simplified, and the construction cost can be reduced.
[0060]
In addition, by forming the excavation radius of the large-diameter excavation part of the excavation means larger than the outer peripheral radius of the hole wall protection member, it is possible to completely excavate the earth and sand under the edge of the hole wall protection member, improving the excavation efficiency Can be planned.
[0061]
In addition, by providing a plurality of excavating parts on the outer periphery of the rotating shaft, excavation resistance caused by excavation of the excavating part is distributed around the rotating shaft, so that the excavating part can be prevented from moving horizontally during excavation, A range shift can be prevented.
[0062]
In addition, by forming a larger number of excavation bits with a smaller excavation radius among a plurality of excavation sections and forming a larger excavation bit with a smaller excavation radius, the difference in excavation resistance in each excavation section is reduced. Therefore, even if the excavation part has different excavation radii, excavation displacement during excavation can be effectively prevented.
[0063]
Further, by tilting the excavation surface of the excavation part with respect to the horizontal direction, horizontal movement of the excavation part during excavation can be suppressed, and excavation displacement can be prevented.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of a drilling apparatus and a drilling method according to an embodiment of the present invention.
2 is an explanatory diagram of a hydraulic cylinder in the excavator of FIG. 1. FIG.
3 is an explanatory diagram of a hydraulic cylinder in the excavator of FIG. 1. FIG.
FIG. 4 is an explanatory diagram of excavation blades in the excavator of FIG. 1;
FIG. 5 is an explanatory diagram of excavation blades in the excavator of FIG. 1;
6 is an explanatory diagram of excavation blades and the like in the excavator of FIG. 1. FIG.
FIG. 7 is an explanatory diagram of the operation of the excavator according to the present embodiment and the excavation method according to the present embodiment.
FIG. 8 is an explanatory diagram of the operation of the excavator according to the present embodiment and the excavation method according to the present embodiment.
[Explanation of symbols]
1 ... Drilling rig,
2 ... Vertical hole (drilling hole),
3 ... excavation blade (excavation part, large diameter excavation part),
4 ... excavation blade (excavation part),
5 ... excavation blade (excavation part),
6 ... Rod tube (rotating shaft),
7 ... Cylindrical member (hole wall protecting member),
8 ... rotary table,
10 ... hydraulic cylinder,
11 ... Hydraulic cylinder.

Claims (4)

掘削孔に設置される孔壁保護部材の内部直径より小さく形成され、前記孔壁保護部材の内部半径より掘削半径の大きい大径掘削部を少なくとも有し、前記孔壁保護部材の下方に配置され回転して掘削を行う掘削手段と、
前記掘削手段を水平方向に移動させる移動手段と、
を備え、
前記掘削手段は、前記孔壁保護部材に挿通される回転軸の外周に突設され前記回転軸の外周の周方向に所定の間隔で配設される複数の掘削部を有し、
前記大径掘削部は、前記掘削半径が前記孔壁保護部材の外周半径より大きく構成され、
前記複数の掘削部は、掘削半径が小さいものほど多くの掘削ビットが形成されていること、
を特徴とする掘削装置。
It has a large-diameter excavation portion that is formed smaller than the inner diameter of the hole wall protection member installed in the excavation hole and has a larger excavation radius than the inner radius of the hole wall protection member, and is disposed below the hole wall protection member. Excavation means for rotating and excavating;
Moving means for moving the excavating means in a horizontal direction;
With
The excavation means has a plurality of excavation portions that protrude from the outer periphery of the rotating shaft inserted through the hole wall protecting member and are disposed at predetermined intervals in the circumferential direction of the outer periphery of the rotating shaft,
The large-diameter excavation part is configured such that the excavation radius is larger than the outer peripheral radius of the hole wall protection member,
The plurality of excavation parts, more excavation bits are formed as the excavation radius is smaller,
Drilling rig characterized by.
掘削孔に設置される孔壁保護部材の内部直径より小さく形成され、前記孔壁保護部材の内部半径より掘削半径の大きい大径掘削部を少なくとも有し、前記孔壁保護部材の下方に配置され回転して掘削を行う掘削手段と、
前記掘削手段を水平方向に移動させる移動手段と、
を備え、
前記掘削手段は、前記孔壁保護部材に挿通される回転軸の外周に突設され前記回転軸の外周の周方向に所定の間隔で配設される複数の掘削部を有し、
前記大径掘削部は、前記掘削半径が前記孔壁保護部材の外周半径より大きく構成され、
前記複数の掘削部は、掘削半径が小さいものほど大きい掘削ビットが形成されていること、
を特徴とする掘削装置。
It has a large-diameter excavation portion that is formed smaller than the inner diameter of the hole wall protection member installed in the excavation hole and has a larger excavation radius than the inner radius of the hole wall protection member, and is disposed below the hole wall protection member. Excavation means for rotating and excavating;
Moving means for moving the excavating means in a horizontal direction;
With
The excavation means has a plurality of excavation portions that protrude from the outer periphery of the rotating shaft inserted through the hole wall protecting member and are disposed at predetermined intervals in the circumferential direction of the outer periphery of the rotating shaft,
The large-diameter excavation part is configured such that the excavation radius is larger than the outer peripheral radius of the hole wall protection member,
The plurality of excavation parts are formed with larger excavation bits as the excavation radius is smaller,
Drilling rig characterized by.
前記大径掘削部は、掘削面が水平方向に対し傾斜していることを特徴とする請求項1又は2に記載の掘削装置。The excavation apparatus according to claim 1, wherein an excavation surface of the large-diameter excavation part is inclined with respect to a horizontal direction. 前記掘削部は、掘削面が水平方向に対し傾斜していることを特徴とする請求項1〜3のいずれかに記載の掘削装置。The excavation apparatus according to claim 1, wherein an excavation surface of the excavation part is inclined with respect to a horizontal direction.
JP2001151333A 2001-05-21 2001-05-21 Drilling rig Expired - Lifetime JP4485098B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001151333A JP4485098B2 (en) 2001-05-21 2001-05-21 Drilling rig

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001151333A JP4485098B2 (en) 2001-05-21 2001-05-21 Drilling rig

Publications (2)

Publication Number Publication Date
JP2002339679A JP2002339679A (en) 2002-11-27
JP4485098B2 true JP4485098B2 (en) 2010-06-16

Family

ID=18996203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001151333A Expired - Lifetime JP4485098B2 (en) 2001-05-21 2001-05-21 Drilling rig

Country Status (1)

Country Link
JP (1) JP4485098B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5454402A (en) * 1977-10-07 1979-04-28 Takenaka Komuten Co Method of construction of executing concrete piling for placing position and its excavator guide device
JPS6088780A (en) * 1983-09-23 1985-05-18 ヤン エドバルド ペルソン Drilling apparatus
JPS61180289U (en) * 1985-04-30 1986-11-10
JPH07247782A (en) * 1994-03-14 1995-09-26 Nippon Sharyo Seizo Kaisha Ltd Hammer grab
JPH08158773A (en) * 1994-12-07 1996-06-18 Mitsubishi Materials Corp Bore-increasing bit
JPH10299372A (en) * 1997-04-25 1998-11-10 Tokyu Constr Co Ltd Excavating device
JPH1162463A (en) * 1997-08-25 1999-03-05 Kajima Corp Shaft excavating construction method and device
JP2000186485A (en) * 1998-12-22 2000-07-04 Mitsubishi Materials Corp Excavating tool

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5454402A (en) * 1977-10-07 1979-04-28 Takenaka Komuten Co Method of construction of executing concrete piling for placing position and its excavator guide device
JPS6088780A (en) * 1983-09-23 1985-05-18 ヤン エドバルド ペルソン Drilling apparatus
JPS61180289U (en) * 1985-04-30 1986-11-10
JPH07247782A (en) * 1994-03-14 1995-09-26 Nippon Sharyo Seizo Kaisha Ltd Hammer grab
JPH08158773A (en) * 1994-12-07 1996-06-18 Mitsubishi Materials Corp Bore-increasing bit
JPH10299372A (en) * 1997-04-25 1998-11-10 Tokyu Constr Co Ltd Excavating device
JPH1162463A (en) * 1997-08-25 1999-03-05 Kajima Corp Shaft excavating construction method and device
JP2000186485A (en) * 1998-12-22 2000-07-04 Mitsubishi Materials Corp Excavating tool

Also Published As

Publication number Publication date
JP2002339679A (en) 2002-11-27

Similar Documents

Publication Publication Date Title
JP6144542B2 (en) Nakabori excavator
JP2006241919A (en) Pile construction machine and pile construction method
JP4344762B2 (en) Drilling method and drilling device
JP5246669B2 (en) Rolling correction device for rectangular machine
JP4775737B2 (en) Drilling drill detachable drilling hole forming method and apparatus therefor
JP4485098B2 (en) Drilling rig
JP2006083573A (en) All casing method and its apparatus
JP2009074309A (en) Vertical shaft and its construction method
JPH07310489A (en) Excavating device
JP3638386B2 (en) Vertical excavation method and vertical excavation apparatus
JP4516494B2 (en) Obstacle removal method and excavation device in propulsion method
JP6077986B2 (en) Obstacle ground pile placing device and method of placing a steel pipe pile on the obstacle ground
JP3064258B2 (en) Construction method of casing shaft
JP4714060B2 (en) Excavator and drilling system
JP2002349171A (en) Vertical hole excavator and vertical hole excavation method
JP2020169455A (en) Construction method of soil cement continuous wall
JPH0762656A (en) Excavator for rotary type all casing construction method
JP3164289B2 (en) Shaft construction method
JP2005098048A (en) Bedrock drilling unit
JP3187326B2 (en) Vertical drilling machine
JP2005314871A (en) Removing device for underground obstacle and removing method for underground obstacle
JPH0428077B2 (en)
JP3019988B2 (en) Auger for hard ground excavation
JP6945329B2 (en) Underground obstacle removal method
KR20060127465A (en) Shield type complex exvavator of multi-direction

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090728

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100323

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100324

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160402

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250