JPS6231095B2 - - Google Patents

Info

Publication number
JPS6231095B2
JPS6231095B2 JP53149024A JP14902478A JPS6231095B2 JP S6231095 B2 JPS6231095 B2 JP S6231095B2 JP 53149024 A JP53149024 A JP 53149024A JP 14902478 A JP14902478 A JP 14902478A JP S6231095 B2 JPS6231095 B2 JP S6231095B2
Authority
JP
Japan
Prior art keywords
yarn
heating element
temperature
multifilament
roller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53149024A
Other languages
Japanese (ja)
Other versions
JPS5576122A (en
Inventor
Taketoshi Sugimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP14902478A priority Critical patent/JPS5576122A/en
Publication of JPS5576122A publication Critical patent/JPS5576122A/en
Publication of JPS6231095B2 publication Critical patent/JPS6231095B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、ポリエステル等の熱可塑性合成繊維
マルチフイラメント未延伸糸、又は半延伸糸を延
伸に引続いて加熱体上に短時間接触走行せしめ
個々のフイラメントに沿つて大きさや周期のラン
ダムな熱収縮差、糸長差或いはループを与え、引
続き流体乱流域に供給し、ループやたるみ、或い
は交絡を付与して嵩高加工糸を製造する方法に関
する。 従来、上記の如き嵩高加工糸の製造法に関して
は特開昭50−89659号公報や特開昭53−106842号
公報に記載されたものが知られている。 前記特開昭50−89659号公報記載の方法は「熱
可塑性マルチフイラメント糸を熱収縮応力以下の
張力で加熱体に接触させることにより、該糸の
個々のフイラメントに沿つて大きさや周期のラン
ダムな巻縮、熱収縮差、糸長差およびループを与
えた後、実質的に緊張を与えないで流体乱流域に
通すことにより、個々のフイラメントのもつ巻縮
やループを互いに交絡させて巻取る方法」であ
り、この方法で得られる嵩高糸はマルチフイラメ
ントを単に流体乱流処理したものと比べると高い
嵩高性を有する。 しかしながら、この方法においては出発原料と
して、あらかじめ延伸された熱可塑性マルチフイ
ラメント糸を使用することを前提としているた
め、延伸工程と連続化した場合に障害となる加工
安定性や品質上の問題について全く論じられてい
ない。すなわち、この従来技術で用いられる出発
原料としての延伸糸は通常ドローツイスターと呼
ばれる延伸装置で延伸されたもので巻上時に5〜
50コ/mの撚数を付与したものであり、このよう
な延伸糸を出発原料とした場合は、延伸後のマル
チフイラメントが時間的に十分安定化しているた
め、熱に対する挙動が鋭敏で、高温加熱体に低張
力下で接触させたとき十分な熱収縮挙動を発現し
やすいこと、およびマルチフイラメントの長さ方
向に多数の撚を有することで、マルチフイラメン
トを構成するフイラメント間の収束性が高く、高
温加熱体に低張力下で接触させたとき、加熱体上
で個々のフイラメントが開繊して均一受熱化が進
行したり、加熱体に接触しない一部のフイラメン
トが加熱体上で浮き上り粗大なアーチ状のタルミ
を形成するのを未然に防止しているため広い条件
範囲で安定した加工が可能であるが、これら従来
技術の最大の欠点は延伸工程と加工工程が分離し
ているため、延伸工程で要する人的、物的な費用
や延伸工程から加工工程への原料輸送費用などの
ため、生産原価が高く付くこと、およびパーン巻
きされた延伸糸を加工工程へ給糸する際にパーン
の表層部と内層部の巻量差に起因する解舒張力の
コントロールが必要なこと、更にパーンの解舒張
力変動に起因する糸切れ発生が多いことである。 一方、延伸工程に直結した加工工程で、不均一
な加熱処理を施す方法としては、前記特開昭53−
106842号公報の実施例1に示されているが、延伸
条件が特定されておらず、したがつて、加熱体上
の走行糸の安定性、得られた嵩高加工糸の染斑あ
るいは嵩高性に不安定な面があつた。 本発明の目的は延伸工程と加工工程を直結する
に際し、加熱延伸ピンの温度及び加工工程におけ
る加熱体の温度が、品質良好な嵩高加工糸を安定
して製造するための重要な要因であることを見い
出し、延伸直結加工工程で生ずる種々の問題点を
解決すると共に工程の省力化、高生産性をはか
り、コストを低減化し、更に品質ムラのない良好
な嵩高加工糸を安定して製造する方法を提供する
ものであり、次の如き構成を有する。 すなわち、熱可塑性合成繊維マルチフイラメン
ト未延伸糸、又は半延伸糸を加熱延伸ピンを使用
して400m/min以下で延伸したのち、引続いて
加熱体上に短時間接触走行せしめ不均一熱処理
し、引続き流体乱流域に供給するに際し、上記加
熱延伸ピンの温度T1(℃)及び加熱体表面温度
T2(℃)を下記(1)及び(2)式に示す範囲とする嵩
高加工糸の製法である。 Tg+10<T1<Tg+50 ……(1) 145+5R<T2<250 ……(2) 但し、Tg:供給糸条のガラス転移点温度
(℃) R:加熱体への糸条過供給率(%) つぎに図面を用いて本発明を詳細に説明する。
第1図は本発明の製造法の一実施態様を示す工程
図である。 適当なパツケージ1から取出された複屈折率が
0.100(Δn)以下であるような実質的に無撚状
の未延伸糸または半延伸糸状態の熱可塑性マルチ
フイラメント糸Aは、ガイド2、第1フイードロ
ーラ3、加熱延伸ピン4、ドローローラ5、流体
噴射ノズル6、加熱体7、第1リラツクスローラ
8、給水ガイド9、圧縮流体乱流ノズル10、第
2リラツクスローラ11、追油ローラ12を通つ
て巻取機13で巻取られ、パツケージ14を形成
する。 複屈折率が0.100(Δn)以下であるような未
延伸糸または半延伸糸状態の熱可塑性マルチフイ
ラメント糸Aは第1フイードローラ3とドローロ
ーラ5の間に設置された延伸ピンに1〜2回巻付
けられ、加熱延伸ピン前後で張力勾配を与えられ
ながら、複屈折率が0.140(Δn)以上になるよ
うに延伸されるが、加熱延伸ピンの温度が低すぎ
ると延伸斑が発生し、加工糸の染斑発生原因とな
り加工糸品位が著しく低下する。他方、加熱延伸
ピン温度が高すぎると受熱不足による延伸斑の発
生は解消されるが、加工工程で加熱体7に接触し
たときの熱収縮挙動が不十分となり、加工安定性
が著しく損なわれるため良好な嵩高加工糸が得ら
れなくなるなど品質面および加工安定性の面から
困難な問題が発生する。 そのため、本発明にあつては加熱延伸ピン温度
T1(℃)をTg+10<T1<Tg+50〔Tg=供給糸
条(未延伸糸又は半延伸糸の)ガラス転移点温度
(℃)〕の範囲とする必要がある。 また、この場合延伸速度は400m/min以下と
する必要があり、好ましくは350m/min以下と
することにより、加工糸の品質および加工安定性
を満足させることができる。更に延伸後のマルチ
フイラメントの配向を複屈折率で0.140(Δn)
以上とすることにより加熱体7へ接触時の熱収縮
挙動が十分に得られ良好な嵩高加工糸を得ること
ができる。 ドローローラ5を通過した延伸糸は巻取られる
ことなく連続して過剰供給状態で加熱体7に短時
間接触走行せしめられ、該糸の個々のフイラメン
トに沿つて大きさや周期のランダムな熱収縮差、
巻縮、糸長差およびループが付与される。一方、
加熱体7に接触させる直前の糸条に流体噴射ノズ
ル6によつて、マルチフイラメントまたは個々の
フイラメントに振動及び交絡を与えながら加熱体
7へ糸条を供給することが好ましい。 すなわち、本発明では実質的に無撚状のマルチ
フイラメント糸が加熱体上へ供給されるため、マ
ルチフイラメントを構成する個々のフイラメント
間の収束性が著しく低く、過供給状態で加熱体へ
接触したとき、個々のフイラメントが加熱体上で
開繊し、均一受熱化が進行しやすく、かつ加熱体
に接触しない一部のフイラメントが浮き上り粗大
なアーチ状タルミを形成しやすいため、加工性が
不安定となり得られた加工糸は嵩高性が不十分で
パツケージからの解舒性も悪くなるという欠点を
有するので、加熱体に接触させる直前に流体噴射
によつて、マルチフイラメントまたは個々のフイ
ラメントに振動を与えることで、マルチフイラメ
ントおよび個々のフイラメントは複雑な弦振動を
起し、この弦振動によつてマルチフイラメントお
よび個々のフイラメントはきわめて短い周期で、
且つ効率よく加熱体への接触、非接触を交互にく
りかえすことになり、マルチフイラメントを構成
する一部のフイラメントについて均一受熱化が進
行したり、他の一部のフイラメントが浮き上り、
粗大なアーチ状タルミを形成するのを防止するこ
とができる。 この場合流体流による糸条の交絡の程度はCF
値で1.05〜3.00とすることが好ましい。 上記の流体噴射ノズル6は、例えば特公昭36−
12230号公報に記載されたものを使用することが
できる。 次に本発明にあつては、延伸の完了された糸条
を加熱体7上に接触走行せしめるものであるが、
このとき加熱体の温度が低いと、マルチフイラメ
ントの十分な熱収縮挙動が発現しないため、加工
安定性が悪く、且つ加工糸の嵩高性も不十分とな
る。また、加熱体の温度が高すぎると加工安定性
や加工糸の嵩高性は向上するが、加熱体上で一部
のフイラメントに融着が生じ、融着部と非融着部
の染着能力差に起因する染斑が発生しやすく、更
に加熱体上へ供給される糸条の過供給率によつて
も、加熱体の最適温度領域は変化する。本発明者
が鋭意検討の結果、安定加工が可能で、且つ品質
の良好な加工糸を得る条件として145+5R<T2
250(R=糸条過供給率=
ドローローラ速度−第1リラツクスローラ速度/第1リ
ラツクスローラ速度× 100% T2=加熱体表面温度(℃))の範囲に設
定することが必要であることを見い出したのであ
る。 次に本発明にあつては、加熱体7で不均一加熱
処理された糸条を、更に次の如き流体乱流域の工
程に通し嵩高加工をする。すなわち、第1リラツ
クスローラ8を通過した糸条を第1リラツクスロ
ーラ8と第2リラツクスローラ11の間で過供給
状態を保ちながら両ローラ間に設けられた給水ガ
イド9を経て、圧縮流体乱流ノズル10へ導くの
である。給水ガイド9は糸条へ水を付与し、マル
チフイラメントの開繊性を高めて、流体乱流域で
の交絡効果を高めるとともに、流体乱流の運動エ
ネルギーによつて生じるループの生成効率を高め
ることを目的に使用するもので、糸条へ定常的に
水を付与できるものであればいかなるものでもよ
い。圧縮流体乱流ノズル10は圧縮流体で乱流域
を形成できるものであり、例えば特公昭34−8969
号公報に示されたノズルや方法を採用することが
できる。圧縮流体乱流ノズル10へ供給される糸
条の過供給率は、第1および第2リラツクスロー
ラへ逆巻きして巻取られる限界以下であれば、い
くらであつてもよいが、ループ生成による嵩高性
の点から7%以上が望ましい。 第2リラツクスローラ11を通過した糸条は、
仕上油剤付着用の追油ローラ12を通り巻取機1
3で巻取られてパツケージ14を形成し、工程を
終了する。仕上油剤の追油はパツケージからの糸
解舒性や、織工程でのおさ摩耗、編工程での編針
摩耗などを改善する目的で使用するが用途によつ
ては使用してもしなくても良い。 以上説明したように本発明は延伸工程と加工工
程を直結するのに際し、延伸加熱ピンの温度及び
加熱体7の温度をある特定の範囲に設定すること
により、品質良好な嵩高加工糸を安定して製造す
ることができると共に、延伸後の巻取り工程を省
略することができたので高速度生産が可能でコス
トを低減することができ、解舒張力変動による糸
切れ発生などのトラブルを防止することができる
効果を奏する。 実施例 ポリエチレンテレフタレートを溶融紡糸して、
巻取速度を変更して巻取り、複屈折率の異なる各
種未延伸糸または半延伸糸状態の72フイラメント
からなるマルチフイラメントを、複屈折率が
0.160〜0.170(Δn)になるように延伸した後の
デニールが150デニールになるように製造した。 上記原糸を用いて、第1図に示す態様で実施し
た。 加熱延伸ピン4として外径35mmの金属梨地表面
仕上げのもので表面温度を110℃、ドローローラ
5の周速を300m/min、流体噴射ノズル6の糸
通路径13mmφ、長さ15mm、圧空噴射孔径1.2mm
φ、圧空吹込み圧を0.5Kg/cm2・G、加熱体7と
して外径58mmφの金属梨地表面仕上げのもので表
面温度を210℃、ドローローラ5と第1リラツク
スローラ8の間の糸条過供給率を10%、圧空流体
乱流ノズル10としてUSP3545057の図4に記載
のノズルを用い、ノズルへの圧空吹込み圧を5.5
Kg/cm2・G、第1リラツクスローラ8と第2リラ
ツクスローラ11の間の糸条過供給率を15%、第
2リラツクスローラ11と巻取機13の間の糸条
過供給率を−6.5%とした。なお、給水ガイド9
で10c.c./minの水を糸条に付与し、追油ローラ1
2で0.5%の仕上げ油剤を付与した。 上記条件を基本に加熱延伸ピン温度、延伸速度
及び加熱体表面温度を種々変更して加熱体上の走
行糸安定性、加工糸の染斑、加工糸の嵩高性を調
べた結果を第1〜3表に示す。
The present invention involves stretching a thermoplastic synthetic fiber multifilament undrawn yarn or semi-drawn yarn such as polyester, and then running it in contact with a heating element for a short period of time to cause heat shrinkage of random size and period along each filament. The present invention relates to a method for producing a bulky textured yarn by providing a yarn length difference or a loop, and then supplying the yarn to a fluid turbulence region to create a loop, slack, or entanglement. Conventionally, methods for producing bulky textured yarns as described above are known, as described in Japanese Patent Application Laid-Open No. 50-89659 and Japanese Patent Application Laid-Open No. 53-106842. The method described in Japanese Patent Application Laid-open No. 50-89659 is ``by bringing a thermoplastic multifilament yarn into contact with a heating element under a tension less than the heat shrinkage stress, a random pattern of size and period is generated along each filament of the yarn. A method of winding by intertwining the crimp and loops of individual filaments by applying crimp, heat shrinkage difference, yarn length difference, and loop, and then passing it through a fluid turbulence region without applying substantial tension. '', and the bulky yarn obtained by this method has higher bulkiness than multifilament simply treated with fluid turbulence. However, since this method is based on the use of pre-drawn thermoplastic multifilament yarn as a starting material, there are no problems with processing stability or quality that would be a problem if the process was continuous with the drawing process. Not discussed. That is, the drawn yarn as a starting material used in this prior art is usually drawn with a drawing device called a draw twister, and when wound up, it has a
The number of twists is 50 twists/m, and when such a drawn yarn is used as a starting material, the multifilament after drawing is sufficiently stabilized over time, so its behavior with respect to heat is sensitive. The ability to easily exhibit sufficient thermal shrinkage behavior when brought into contact with a high-temperature heating body under low tension, and the fact that the multifilament has a large number of twists in the length direction, improves the convergence between the filaments that make up the multifilament. When brought into contact with a high-temperature heating element under low tension, individual filaments may open on the heating element to promote uniform heat reception, or some filaments that do not come into contact with the heating element may float on the heating element. Stable processing is possible under a wide range of conditions because it prevents the formation of rough arch-shaped sagging, but the biggest drawback of these conventional techniques is that the drawing process and processing process are separated. Therefore, the production cost is high due to the human and material costs required in the drawing process and the cost of transporting raw materials from the drawing process to the processing process, and when feeding the pirn-wound drawn yarn to the processing process. In addition, it is necessary to control the unwinding tension due to the difference in the amount of winding between the surface layer and the inner layer of the pirt, and yarn breakage often occurs due to fluctuations in the unwinding tension of the pirn. On the other hand, as a method of applying non-uniform heat treatment in a processing process directly connected to the stretching process, there is
Although this is shown in Example 1 of Publication No. 106842, the stretching conditions are not specified, and therefore the stability of the running yarn on the heating element, the dyeing spots or the bulkiness of the obtained bulky processed yarn may be affected. There was an unstable aspect to it. The purpose of the present invention is to directly connect the drawing process and the processing process, and the temperature of the heating drawing pin and the temperature of the heating element in the processing process are important factors for stably producing bulky textured yarn of good quality. A method to solve the various problems that occur in the direct drawing processing process, save labor in the process, increase productivity, reduce costs, and stably produce bulky processed yarn with uniform quality. It provides the following configuration. That is, after stretching a thermoplastic synthetic fiber multifilament undrawn yarn or semi-drawn yarn at 400 m/min or less using a heated drawing pin, the yarn is then run in contact with a heating body for a short time to undergo non-uniform heat treatment, When subsequently supplying the fluid to the turbulent region, the temperature T 1 (°C) of the heating stretching pin and the surface temperature of the heating element
This is a method for producing bulky textured yarn in which T 2 (°C) is within the range shown in formulas (1) and (2) below. Tg+10< T1 <Tg+50...(1) 145+5R< T2 <250...(2) However, Tg: Glass transition temperature of the supplied yarn (℃) R: Excess supply rate of yarn to the heating element (%) ) Next, the present invention will be explained in detail using the drawings.
FIG. 1 is a process diagram showing one embodiment of the manufacturing method of the present invention. The birefringence taken out from a suitable package 1 is
The thermoplastic multifilament yarn A in a substantially untwisted, undrawn yarn or semi-drawn yarn state with a thickness of 0.100 (Δn) or less is a guide 2, a first feed roller 3, a heated drawing pin 4, a draw roller 5, The fluid passes through the fluid injection nozzle 6, the heating element 7, the first relaxation roller 8, the water supply guide 9, the compressed fluid turbulence nozzle 10, the second relaxation roller 11, and the additional oil roller 12, and is wound up by the winding machine 13, A package 14 is formed. The thermoplastic multifilament yarn A in an undrawn or semi-drawn state with a birefringence index of 0.100 (Δn) or less is passed once or twice to a drawing pin installed between the first feed roller 3 and the draw roller 5. It is wound and stretched so that the birefringence becomes 0.140 (Δn) or more while applying a tension gradient before and after the hot-stretching pin. However, if the temperature of the hot-stretching pin is too low, stretching unevenness occurs and processing This causes dyeing spots on the yarn, and the quality of the processed yarn deteriorates significantly. On the other hand, if the heated drawing pin temperature is too high, the occurrence of drawing spots due to insufficient heat reception will be eliminated, but the thermal shrinkage behavior will be insufficient when it comes into contact with the heating element 7 during the processing process, and processing stability will be significantly impaired. Difficult problems arise in terms of quality and processing stability, such as the inability to obtain a good bulky textured yarn. Therefore, in the present invention, the heated drawing pin temperature is
T 1 (°C) must be in the range of Tg + 10 < T 1 < Tg + 50 [Tg = glass transition temperature (°C) of supplied yarn (undrawn yarn or semi-drawn yarn)]. Further, in this case, the drawing speed needs to be 400 m/min or less, preferably 350 m/min or less, so that the quality and processing stability of the processed yarn can be satisfied. Furthermore, the orientation of the multifilament after stretching is set to a birefringence of 0.140 (Δn).
By doing so, sufficient thermal shrinkage behavior can be obtained upon contact with the heating body 7, and a good bulky textured yarn can be obtained. The drawn yarn that has passed through the draw roller 5 is not wound up and is continuously run in contact with the heating element 7 for a short time in an oversupplied state, causing random thermal shrinkage differences in size and period along the individual filaments of the yarn. ,
Crinkling, yarn length difference and loops are applied. on the other hand,
It is preferable to supply the yarn to the heating element 7 while applying vibration and entanglement to the multifilament or individual filaments using the fluid jet nozzle 6 just before the yarn is brought into contact with the heating element 7. That is, in the present invention, since a substantially non-twisted multifilament yarn is supplied onto the heating body, the convergence between the individual filaments constituting the multifilament is extremely low, and the yarn may come into contact with the heating body in an oversupplied state. When the individual filaments are opened on the heating element, uniform heat reception tends to proceed, and some filaments that do not come into contact with the heating element tend to rise and form coarse arch-shaped slumps, resulting in poor workability. The resulting stabilized processed yarn has the disadvantages of insufficient bulkiness and poor unwinding properties from the package, so the multifilament or individual filaments are vibrated by a fluid jet just before contacting the heating element. By applying this, the multifilament and each filament cause complex string vibrations, and this string vibration causes the multifilament and each individual filament to vibrate in an extremely short period.
In addition, contact and non-contact with the heating body are alternately repeated efficiently, and some of the filaments that make up the multi-filament progress to receive heat uniformly, and some of the other filaments float up.
It is possible to prevent the formation of coarse arch-like sagging. In this case, the degree of entanglement of yarns due to fluid flow is CF
The value is preferably 1.05 to 3.00. The above fluid injection nozzle 6 is, for example,
Those described in Japanese Patent No. 12230 can be used. Next, in the present invention, the stretched yarn is caused to run in contact with the heating element 7.
At this time, if the temperature of the heating element is low, the multifilament will not exhibit sufficient thermal shrinkage behavior, resulting in poor processing stability and insufficient bulkiness of the processed yarn. In addition, if the temperature of the heating element is too high, the processing stability and bulkiness of the processed yarn will improve, but some of the filaments will fuse on the heating element, and the dyeing capacity of the fused and non-fused areas will increase. Dyeing spots due to the difference are likely to occur, and the optimum temperature range of the heating element also changes depending on the overfeeding rate of yarn fed onto the heating element. As a result of intensive studies, the present inventor found that 145+5R<T 2 <
250 (R= Yarn overfeed rate=
It has been found that it is necessary to set the speed in the range of draw roller speed - first relaxation roller speed / first relaxation roller speed x 100% T 2 = heating element surface temperature (° C.). Next, in the present invention, the yarn that has been subjected to the non-uniform heat treatment by the heating element 7 is further subjected to the following process in a fluid turbulence region to make it bulky. That is, the yarn passed through the first relaxation roller 8 is compressed through the water supply guide 9 provided between the first relaxation roller 8 and the second relaxation roller 11 while maintaining an oversupply state between the two rollers. It leads to the fluid turbulence nozzle 10. The water supply guide 9 applies water to the yarns, improves the opening property of the multifilament, enhances the entangling effect in the fluid turbulence area, and increases the efficiency of loop generation caused by the kinetic energy of the fluid turbulence. Any material may be used as long as it is used for this purpose and can constantly apply water to the yarn. The compressed fluid turbulence nozzle 10 is capable of forming a turbulent region with compressed fluid, and is, for example, disclosed in Japanese Patent Publication No. 34-8969.
The nozzle and method shown in the publication can be adopted. The overfeed rate of the yarn supplied to the compressed fluid turbulent flow nozzle 10 may be any value as long as it is below the limit that allows it to be wound backward onto the first and second relaxation rollers, but From the viewpoint of bulkiness, 7% or more is desirable. The yarn that has passed through the second relaxation roller 11 is
It passes through the additional oil roller 12 for applying finishing oil agent and winds up the winder 1.
3 to form a package 14, and the process is completed. Addition of finishing oil is used to improve yarn unwinding from the package cage, reed wear during the weaving process, knitting needle wear during the knitting process, etc., but it may or may not be used depending on the purpose. good. As explained above, in the present invention, when the drawing process and the processing process are directly connected, the temperature of the drawing heating pin and the temperature of the heating element 7 are set within a certain range, thereby stabilizing bulky textured yarn of good quality. In addition to being able to omit the winding process after stretching, high-speed production is possible, reducing costs, and preventing problems such as yarn breakage due to fluctuations in unwinding tension. It has the effect that it can. Example Melt spinning polyethylene terephthalate,
By changing the winding speed, a multifilament consisting of 72 filaments in various undrawn or semi-drawn yarn states with different birefringence indexes is wound.
It was produced so that the denier after stretching to 0.160 to 0.170 (Δn) was 150 denier. The experiment was carried out in the manner shown in FIG. 1 using the above yarn. The heated drawing pin 4 has a metal satin finish with an outer diameter of 35 mm, the surface temperature is 110°C, the circumferential speed of the draw roller 5 is 300 m/min, the thread passage diameter of the fluid injection nozzle 6 is 13 mmφ, the length is 15 mm, and the compressed air injection hole diameter. 1.2mm
φ, the compressed air blowing pressure is 0.5 Kg/cm 2 ·G, the heating element 7 is a metal matte surface finish with an outer diameter of 58 mmφ and the surface temperature is 210°C, and the thread between the draw roller 5 and the first relaxing roller 8 is Using the nozzle described in Figure 4 of USP 3545057 as the compressed air fluid turbulence nozzle 10 with a feed rate of 10% and a compressed air blowing pressure to the nozzle of 5.5
Kg/cm 2・G, the yarn overfeed rate between the first relaxation roller 8 and the second relaxation roller 11 is 15%, and the yarn overfeed between the second relaxation roller 11 and the winder 13 The rate was set to -6.5%. In addition, water supply guide 9
Apply 10c.c./min of water to the yarn with
2, 0.5% finishing oil was applied. Based on the above conditions, the heating drawing pin temperature, drawing speed, and heating element surface temperature were variously changed to investigate the running yarn stability on the heating element, the dyeing spots of the processed yarn, and the bulkiness of the processed yarn. It is shown in Table 3.

【表】【table】

【表】 ○良好 △やや不良 ×不良
[Table] ○Good △Slightly poor ×Poor

〔ガラス転移点温度〕[Glass transition temperature]

重量既知の絶乾試料を毛細管が連結している小
容器内に入れ、容器の空間を水銀で満たし、この
容器をグリセリン熱媒中に浸して、グリセリン熱
媒を除々に加熱し、試料の膨張に従つて毛細管の
水銀柱が上下する値を読み取り、その値から温度
−比容曲線を作製した。同曲線で70℃付近に現わ
れた屈曲線をガラス転位点とし、このときの温度
をTg(ガラス転位点温度)とした。本発明で使
用した未延伸糸のTgを上記方法で測定したとこ
ろ73℃であつた。
An absolutely dry sample of known weight is placed in a small container connected to a capillary tube, the space in the container is filled with mercury, the container is immersed in a glycerin heating medium, and the glycerin heating medium is gradually heated to cause the sample to expand. The value of the rise and fall of the mercury column in the capillary tube was read, and a temperature-specific volume curve was created from that value. The curved line that appeared near 70°C on the same curve was defined as the glass transition point, and the temperature at this time was defined as Tg (glass transition temperature). The Tg of the undrawn yarn used in the present invention was measured by the above method and was 73°C.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明製造法の一実施態様を示す工程
図である。 〔主な符号の説明〕、1:パツケージ、A:マ
ルチフイラメント糸、2:ガイド、3:第1フイ
ードローラ、4:加熱延伸ピン、5:ドローロー
ラ、6:流体噴射ノズル、7:加熱体、8:第1
リラツクスローラ、9:給水ガイド、10:圧縮
流体乱流ノズル、11:第2リラツクスローラ、
12:追油ローラ、13:巻取機、14:パツケ
ージ。
FIG. 1 is a process diagram showing one embodiment of the manufacturing method of the present invention. [Description of main symbols], 1: package, A: multifilament yarn, 2: guide, 3: first feed roller, 4: heated drawing pin, 5: draw roller, 6: fluid injection nozzle, 7: heating element, 8: 1st
Relaxation roller, 9: Water supply guide, 10: Compressed fluid turbulence nozzle, 11: Second relaxation roller,
12: Adding oil roller, 13: Winding machine, 14: Package cage.

Claims (1)

【特許請求の範囲】 1 熱可塑性合成繊維マルチフイラメント未延伸
糸又は半延伸糸を加熱延伸ピンを使用して400
m/min以下で延伸したのち、引続いて加熱体上
に短時間接触走行せしめ不均一熱処理し、引続き
流体乱流域に供給するに際し、上記加熱延伸ピン
の温度T1(℃)及び加熱体表面温度T2(℃)
を、下記(1)及び(2)式に示す範囲とすることを特徴
とする嵩高加工糸の製法。 Tg+10<T1<Tg+50 ……(1) 145+5R<T2<250 ……(2) 但し、Tg:供給糸条のガラス転移点温度
(℃) R:加熱体への糸条過供給率(%)
[Claims] 1 Thermoplastic synthetic fiber multifilament undrawn yarn or semi-drawn yarn is heated to 400 mm using a heated drawing pin.
After stretching at a speed of m/min or less, the temperature T 1 (°C) of the heated stretching pin and the surface of the heating body are determined. Temperature T 2 (℃)
A method for producing bulky textured yarn, characterized in that: is within the range shown by the following formulas (1) and (2). Tg+10< T1 <Tg+50...(1) 145+5R< T2 <250...(2) However, Tg: Glass transition temperature of the supplied yarn (℃) R: Excess supply rate of yarn to the heating element (%) )
JP14902478A 1978-12-04 1978-12-04 Production of high bulk processed yarn Granted JPS5576122A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14902478A JPS5576122A (en) 1978-12-04 1978-12-04 Production of high bulk processed yarn

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14902478A JPS5576122A (en) 1978-12-04 1978-12-04 Production of high bulk processed yarn

Publications (2)

Publication Number Publication Date
JPS5576122A JPS5576122A (en) 1980-06-09
JPS6231095B2 true JPS6231095B2 (en) 1987-07-07

Family

ID=15465994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14902478A Granted JPS5576122A (en) 1978-12-04 1978-12-04 Production of high bulk processed yarn

Country Status (1)

Country Link
JP (1) JPS5576122A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3476359D1 (en) * 1983-09-02 1989-03-02 Toyota Motor Co Ltd Mounting construction of window sealed glass

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4913421A (en) * 1972-05-23 1974-02-05

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4913421A (en) * 1972-05-23 1974-02-05

Also Published As

Publication number Publication date
JPS5576122A (en) 1980-06-09

Similar Documents

Publication Publication Date Title
US3691748A (en) Textured polyethylene terephthalate yarns
US3142147A (en) Voluminous yarn from synthetic continuous thermoplastic filaments
US3365874A (en) Treatment of synthetic filaments
US3001355A (en) Method and apparatus for processing yarn
US3949544A (en) Process for producing high bulky yarn by false-twisting system
US4578940A (en) Method for manufacturing sewing thread
JPS6231095B2 (en)
JPS6231096B2 (en)
JPS5822573B2 (en) Manufacturing method of special bulky yarn
JP2930981B2 (en) Manufacturing method of different shrinkage mixed fiber
JPS6221886B2 (en)
JPH0124889B2 (en)
JPS6229533B2 (en)
US4043108A (en) Process
US4656825A (en) Sewing thread and method for manufacturing the same
JP2971084B2 (en) Method for producing composite bulky yarn
JPH0453969B2 (en)
JPS6315226B2 (en)
JPS5898441A (en) Production of spun yarn like polyester false twisted processed yarn
GB1441923A (en) Variable knop yarns and methods for their manufacture
US3413701A (en) Production of entangled novelty yarn
JP2024018984A (en) Thick and thin yarn manufacturing method
JPS6156336B2 (en)
JPH05171533A (en) Production of conjugate textured yarn
JP3128950B2 (en) Manufacturing method of false twisted yarn