JPS6221886B2 - - Google Patents

Info

Publication number
JPS6221886B2
JPS6221886B2 JP54084910A JP8491079A JPS6221886B2 JP S6221886 B2 JPS6221886 B2 JP S6221886B2 JP 54084910 A JP54084910 A JP 54084910A JP 8491079 A JP8491079 A JP 8491079A JP S6221886 B2 JPS6221886 B2 JP S6221886B2
Authority
JP
Japan
Prior art keywords
yarn
filament
yarns
core component
thick
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54084910A
Other languages
Japanese (ja)
Other versions
JPS569435A (en
Inventor
Masumi Fujimoto
Kuniaki Hayakawa
Yoshio Araya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP8491079A priority Critical patent/JPS569435A/en
Publication of JPS569435A publication Critical patent/JPS569435A/en
Publication of JPS6221886B2 publication Critical patent/JPS6221886B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は少なくとも2種以上のフイラメント糸
を使用して、紡績法で作られる本来のスラブ糸の
ようにかさ高で柔らかい太糸部と細糸部とを交互
に有するスラブ調変り糸を製造する方法に関す
る。 従来から、フイラメント糸を用いてスラブ調の
加工糸を得ようとする試みは種々なされている。
例えば特公昭50―35147号公報、特公昭45―16895
号公報、特公昭43―28258号公報の如き2種以上
のフイラメント糸の複合仮ヨリ法が多く提案され
ている。複合仮ヨリ法は仮ヨリの加ネン域で芯糸
のまわりに鞘糸を間歇的に巻きつけるかまたは巻
きつけた後しごいて節をつくるものであり、加ネ
ン域で高いヨリ数を必要とするため高速で糸加工
するには限界がある。また、芯糸のまわりに鞘糸
が巻付いているだけであつて、鞘糸をゆるく巻付
けて柔らかい節を得ようとすると、節が移動して
加工糸の取扱い性不良、製編織性不良等の欠点を
招くため、芯糸のまわりに鞘糸を強く巻付けて固
い節にする必要がある。 したがつて、紡績法で得られる本来のスラブ糸
が有するような、紡績粗糸を巻付けた如き、かさ
高で柔らかい節を得ることができない。 本発明の目的は、前記従来のフイラメント糸使
いスラブ調加工糸の製造法の欠点を改良し、さら
にそれらの方法で達成できなかつた、かさ高で柔
らかい節をもち、取扱い性や製編織性が良好なス
ラブ調変り糸をフイラメント糸で高速かつ安価に
得ることを可能にする新規な変り糸の製造法を提
供せんとすることにある。本発明では、このよう
な目的を達成するために、次のような構成を有す
る。 すなわち、本発明は2種以上のフイラメント糸
を用いて、芯成分を構成する少なくとも1種のフ
イラメント糸と鞘成分を構成する他のフイラメン
ト糸との間に実質的な糸長差を与えながら供給し
つつ合体し、続いて該合体糸条を、しごき作用付
与性能と弱旋回性付与性能と交絡付与性能とを併
有する流体処理装置に導いて流体処理に供するこ
とにより、前記糸長差を部分的に吸収して成る太
糸部と細糸部とを糸条長手方向に交互に形成せし
めることを特徴とする変り糸の製造法である。 ここで、糸長差とは、例えば第3図のような装
置で加工する場合、芯成分糸のフイードローラ3
4の表面速度をV1m/min、鞘成分糸のフイード
ローラ35の表面速度をV2m/min、リラツクス
ロラ43の表面速度をVm/min、加熱体36で
の芯成分糸の収縮率をΔS%として、次式で求め
た値である。 ただし、芯成分糸の収縮率ΔS%は、芯成分糸
のフイードローラ34とリラツクスローラ43の
表面速度差で与えられるたるみ量Lを全て加熱体
36で収縮させる条件で加工する場合ΔS(%)
=V−V/V×100として計算する。たるみ量Lの一 部を加熱体36で収縮させる条件で加工する場合
のΔS%は、あらかじめ仮ヨリ装置37、流体処
理装置41を使用しないで、芯成分糸のみ糸をか
け、芯成分糸のフイードローラ34の表面速度を
その加工条件のV1m/minに固定し、リラツクス
ローラ43の表面速度を変えて、フイードローラ
34とリラツクスローラ43との間の走行糸が加
熱体で収縮し、たるみなく走行する限界のリラツ
クスローラ43の表面速度V0m/minを求め、Δ
S(%)=V−V/V×100として計算したもので
あ る。 次に本発明を図によつて説明する。本発明は例
えば以下のような装置を用いて実施することがで
きる。第1図は熱可塑性合成繊維未延伸フイラメ
ント糸を用いて、延伸工程と連続して変り糸を得
る場合の一実施態様を示しているが、フイードロ
ーラ3,4および延伸加熱体5,6を使用しない
で、未延伸フイラメント糸1,2の代りに通常の
延伸フイラメント糸を用いることも可能であり、
この場合について説明する。第1図において、未
延伸フイラメント糸1,2の代りに延伸フイラメ
ント糸を使用し、延伸ローラ7,8に直接供給す
る。延伸ローラ7と8の表面速度は、鞘成分糸を
供給するローラ8に対し芯成分糸を供給するロー
ラ7を低くして、ローラ7,8とローラ7の表面
速度以下のリラツクスローラ14との間で供給速
度差を与え、芯成分糸と鞘成分糸の間に実質的な
糸長差を与えながら流体処理装置12でしごき作
用、弱旋回作用および交絡作用を与えて、細糸部
とかさ高で柔らかい太糸部13とを交互に有する
糸条とし、巻取り装置15で巻取りパツケージ1
6に巻取つて、本発明の変り糸が得られるのであ
る。すなわち、本発明法において前記流体処理装
置12は、芯成分糸と鞘成分糸とが合体された糸
条に対する、しごき作用付与性能と弱旋回性付与
性能と交絡付与性能の3機能を併有するように構
成されて使用されるものである。しごき作用は、
流体処理装置の前方にガイドを設け走行糸を旋回
させながら軽く該ガイドに接触させることや、走
行方向に対して逆方向にも圧縮空気が流れるよう
な流体処理装置を使用することによつて得ること
ができる。ここで、流体処理装置12の旋回作用
力と交絡作用力の関係、鞘糸の収束作用および芯
成分糸10と鞘成分糸11の張力関係が重要であ
る。本発明の目的とするかさ高で柔らかい太糸部
をつくるには、鞘成分糸と芯成分糸との間に実質
的な糸長差を与えて、鞘成分糸が芯成分糸に比較
して極低張力になるようにし、さらに流体処理装
置の旋回作用力を弱くすることで鞘成分糸が芯成
分糸に対し極ゆるく折りたたまれるか、極ゆるく
巻付きながら流体処理装置に入り、流体しごき等
の鞘糸収束作用と交絡作用を与えて、太糸部を形
成させるのである。すなわち、該太糸部は前記糸
長差を部分的に吸収することにより形成されるも
のである。この時、少なくとも太糸部の両端で構
成フイラメントを交絡させ、かさ高で柔らかいに
もかかわらず移動の少ない太糸部が得られるので
ある。また、流体処理装置としては、弱旋回性と
交絡性とを有する混繊・交絡ノズルが望ましく、
使用糸の繊度、太糸部の必要頻度、走行糸の張
力、走行糸の速度にもよるが、旋回性付与性能で
言えば流体処理装置に入る前の糸に高くても
1000T/m以下のヨリが与えられる程度のものが
望ましい。例えば、複合仮ヨリ法でスラブ調加工
糸を製造する場合のように約2000T/m以上の仮
ヨリ数を与えると、固くしまつた節になりがちで
あり、本発明で所期のねらいとするようなかさ高
で柔かい節を得ることは一般にむずかしくなる。
したがつて、本発明では弱旋回性があれば望まし
いのであつて、高度のヨリ数を必要としないた
め、高速加工が容易に達成される。 太糸部の頻度は、表1および表2に示すように
芯成分糸と鞘成分糸の糸長差の程度で変化させる
ことができ、その変り糸の使用される用途によつ
て適当に選択することができる。ただし、芯成分
糸に対し鞘成分糸の張力を極低張力に保ち、かさ
高で柔らかい太糸部を安定して得るには、少なく
とも芯成分糸と鞘成分糸との間の糸長差を2%以
上、さらに望ましくは5%以上与えるのがよい。
また、糸長差が高過ぎると、太糸部の頻度が高過
ぎて、編織物の全面に太糸部が存在することにな
り、良好な品位のスラブ調を得るには糸長差を
100%以下におさえる方が望ましい。 第2図は、通常のフイラメント糸を使用し、フ
イードローラとリラツクスローラの間で少なくと
も芯成分となるべきフイラメント糸を加熱体で収
縮させて芯成分糸と鞘成分糸との間で糸長差を与
えながら変り糸を得る場合の一実施態様を示す。
第2図において、フイラメント糸17,18をフ
イードローラ19とリラツクスローラ27の間で
リラツクス状態にし、少なくとも芯成分糸を加熱
体20で熱収縮させて、芯成分糸と鞘成分糸との
間に実質的な糸長差を与えながら、流体処理装置
25で弱旋回作用、しごき作用および交絡作用を
与えて、細糸部と太糸部26とを交互に有する糸
条とし、場合によつてはリラツクスローラ27と
巻取りローラ29の間の加熱体28で熱固定して
巻取り装置30で巻取りパツケージ31に巻取つ
て本発明製造法による変り糸が得られる。このよ
うに加熱体を使用して少なくとも芯成分糸を収縮
させることによつて芯成分糸と鞘成分糸との間に
糸長差を与える場合、少なくとも芯成分フイラメ
ント糸として熱収縮性を有する糸を使用しなけれ
ばならないことは当然であるが、工程的には簡単
で、フイードローラとリラツクスローラの表面速
度差と加熱体での熱処理条件を変えるだけで容易
に糸長差を与え、その糸長差の程度を容易に変更
することができ、さらに太糸部頻度の多種多様化
が簡単にできる利点がある。 また、少なくとも芯成分糸を加熱体で熱収縮さ
せるに当り、低張力下で加熱体の熱がフイラメン
ト糸全体に均一に伝わらないように不均一に収縮
させることがより望ましい。なぜなら、得られた
変り糸の芯成分糸の個々のフイラメントが熱処理
むらによつて高収縮部と低収縮部とをランダムに
有し、芯成分糸と鞘成分糸との間にも収縮差を生
じて、複雑かつランダムなケン縮を発現する能力
をもつため、編織物に使用した場合、かさ高性、
ドレープ性、審美性のすぐれた布帛が得られると
同時に、かさ高で柔らかい太糸部がより移動しな
い利点がある。ここで、加熱体の温度としては、
芯成分糸と鞘成分糸との間で必要な糸長差を与え
られる温度であればよく、収縮させる糸を加熱体
に接触走行させても、非接触で走行させてもよ
い。 第3図は、通常のフイラメント糸を使用し、フ
イードローラとリラツクスローラの間で少なくと
も芯成分となるべき糸を仮ヨリ加工しながら芯成
分と鞘成分との間で糸長差を与えて変り糸を得る
場合の一実施態様を示す。第3図において、フイ
ラメント糸32,33をリラツクスローラ43の
間でリラツクス状態にし、少なくとも芯成分糸を
仮ヨリ装置37で加ネンしながら加熱体36で収
縮させて、芯成分糸と鞘成分糸との間に実質的な
糸長差を与え、流体処理装置41で弱旋回作用、
しごき作用および交絡作用を与えて、細糸部と太
糸部42を交互に有する糸条とし、巻取り装置4
4で巻取りパツケージ45に巻取つて本発明法に
よるの変り糸が得られる。ここで仮ヨリ装置は特
に限定されるものではないが、加熱体36で熱収
縮させやすくするには低張力下で仮ヨリ可能な旋
回性を有する流体ノズルを使用したものが望まし
い。また、高張力下で仮ヨリして、糸に高伸縮性
を与えたい場合は、フイードローラ34と35の
間に表面速度差を与えて、実質的な糸長差を与え
てもよい。さらに、糸に高伸縮性を要求する場合
は、仮ヨリ装置を使用しないで、供給するフイラ
メント糸32,33としていずれか一方または両
方に、すでに仮ヨリ加工された糸を用い、フイー
ドローラ34と35の表面速度差を与えて、実質
的な糸長差を与えてもよい。 第4図は、本発明の製造法で得られる変り糸の
代表的な側面形態をモデル的に示したものであ
る。かさ高で柔らかい太糸部A、芯成分糸と鞘成
分糸が混繊状態の細糸部Bおよび少なくとも太糸
部の両端で芯成分糸と鞘成分糸とが混繊・交絡固
定したCとで構成されている。従来の紡績粗糸を
間歇的に巻付けたスラブヤーンは、太糸部がかさ
高で柔らかいため、編織物にした場合、細長い紡
錘形あるいは細長い繭形の節を形成し、自然なむ
ら感を呈する。一方、従来のフイラメント糸を使
用し、複合仮ヨリ法でスラブ調加工糸にしたもの
は、太糸部が固いため、編織物中では角柱あるい
は円柱形を呈し、本来の紡績粗糸使いスラブヤー
ンとは極端に異なつた外観である。これに対し、
本発明法によれば、第4図に示すような節で、太
糸部がかさ高でかつ柔らかいため、編織物中では
本来の紡績粗糸使いスラブヤーンに類似した細長
い紡錘形あるいは細長い繭形を形成し、自然なむ
ら感をもつたシヤンタン調の外観効果が得られる
のである。また、使用するフイラメント糸の物理
的・化学的性質が異なる場合、例えば、染着挙動
が異なるフイラメント糸を同時に加工して、太糸
部の色相と細糸部の色相とが異なる独得の外観効
果を表現できる変り糸を得ることもできる。 つまり、本発明ではフイラメント糸使いで本来
の紡績粗糸を間歇的に巻付けたようなかさ高で柔
らかく、細長い紡錘形あるいは細長い繭形の節を
もち、柔らかい節でありながら太糸部両端の混織
交絡部で固定されているので該節が移動すること
もほとんどなく、かつ多種多様な外観効果を表現
し得ると同時に取扱い性の良好なスラブ調加工糸
を高速かつ容易で安価に製造できるものである。 本発明に使用される素材としては、加熱体で熱
収縮させることによつて芯成分糸と鞘成分糸の間
で糸長差を与える場合は芯成分を構成させる少な
くとも1種のフイラメント糸が加熱体で熱収縮す
る素材である必要がある。しかし、フイードロー
ラとリラツクスローラの間で表面速度差をもた
せ、芯成分糸と鞘成分糸の間に糸長差を与える場
合は、フイラメント糸であれば特に限定されるも
のではない。したがつて、ビスコースレーヨン等
の再生繊維、アセテートなどの半合成繊維、ポリ
エステル系、ポリアミド系、ポリアクリロニトリ
ル系、ポリエチレン系、ポリプロピレン系、ポリ
ウレタン系、ポリビニルアルコール系、ポリ塩化
ビニリデン系、ポリ塩化ビニル系、ポリフルオロ
エチレン系等の合成繊維等いずれでもよい。また
これら2種以上の繊維の組合せでもよい。断面形
状、繊度等についても特に限定されるものではな
い。 次に実施例を上げてさらに詳しく説明する。 実施例 1 第2図のような装置を用いて実施した。ポリエ
ステル100デニール、72フイラメント三角断面糸
(糸の200℃×5分乾熱収縮率55%)を芯成分延伸
糸17に、ポリエステル100デニール、72フイラ
メント三角断面糸(糸の200℃×5分乾熱収縮率
16%)を鞘成分延伸糸18に使用し、延伸糸1
7,18をフイードローラ19と表面速度
150m/minのリラツクスローラ27の間でリラ
ツクス状態にし、210℃の加熱体20に芯成分糸
21のみ接触走行させて熱収縮させながら、流体
処理装置25で鞘成分糸と同時に処理した後、リ
ラツクスローラ27と同一表面速度の巻取りロー
ラ29の間で130℃の加熱体28に200mm接触させ
て熱固定し、巻取り装置30で巻取りパツケージ
31に巻取つた。ここで、フイードローラ19の
表面速度と加熱体20での走行糸接触長を変え
て、芯成分糸と鞘成分糸との間の糸長差を変化さ
せ、さらに流体処理装置25に通す圧空圧力を変
化させた場合の加工性を表1に示した。さらに加
工糸の特性および得られた糸に150T/mのSヨ
リをかけてヨコ糸に、タテはポリエステル75デニ
ール、36フイラメントの三角断面糸を使用し、タ
テ92本/in、ヨコ43本/inの密度の平織にした
後、通常のポリエステル織物と同様な方法で染色
仕上加工した織物の外観特性を表2に示した。 加工の安定性、得られる節の形状等からみて、
芯成分糸と鞘成分糸との間の糸長差2%以上、走
行糸ヨリ数1000T/m以下が望ましいことがわか
る。
The present invention uses at least two or more types of filament yarns to produce a slub-tuned yarn that alternately has bulky and soft thick yarn portions and thin yarn portions, like the original slub yarn made by the spinning method. Regarding the method. Conventionally, various attempts have been made to obtain slub-like textured yarns using filament yarns.
For example, Special Publication No. 50-35147, Special Publication No. 45-16895
Many composite temporary twisting methods using two or more types of filament yarns have been proposed, such as those disclosed in Japanese Patent Publication No. 43-28258. The compound temporary twist method involves winding the sheath yarn intermittently around the core yarn in the temporary twist area, or creating knots by wrapping and squeezing the yarn, and requires a high number of twists in the temporary twist area. Therefore, there is a limit to high-speed yarn processing. In addition, the sheath yarn is simply wrapped around the core yarn, and if you try to wind the sheath yarn loosely to obtain soft knots, the knots will move, resulting in poor handling of the processed yarn and poor knitting and weaving properties. To avoid these disadvantages, it is necessary to tightly wrap the sheath yarn around the core yarn to form a hard knot. Therefore, it is not possible to obtain bulky and soft knots, such as those obtained by wrapping spun rovings, which the original slub yarn obtained by the spinning method has. The purpose of the present invention is to improve the drawbacks of the conventional methods of manufacturing slub-like textured yarn using filament yarn, and to further improve the ease of handling and knitting and weaving by having bulky and soft knots that could not be achieved by those methods. It is an object of the present invention to provide a novel method for producing a variable yarn with a good slub texture, which makes it possible to obtain a yarn with a good slab texture at high speed and at low cost. In order to achieve such an object, the present invention has the following configuration. That is, the present invention uses two or more types of filament yarns and supplies them while providing a substantial yarn length difference between at least one type of filament yarn constituting the core component and other filament yarns constituting the sheath component. The yarn length difference is partially reduced by guiding the combined yarns to a fluid treatment device that has both the ability to impart straining action, the ability to impart weak swirling properties, and the ability to impart entanglement. This is a method for manufacturing a variable yarn characterized by forming thick yarn portions and thin yarn portions that are absorbed by the yarn alternately in the longitudinal direction of the yarn. Here, the yarn length difference means, for example, when processing with a device such as that shown in FIG.
4, the surface speed of the feed roller 35 of the sheath component yarn is V 1 m/min, the surface speed of the relaxation roller 43 is Vm/min, and the shrinkage rate of the core component yarn in the heating element 36 is ΔS. As a percentage, it is a value calculated using the following formula. However, the shrinkage rate ΔS% of the core component yarn is ΔS (%) when processed under the condition that all the slack L given by the surface speed difference between the feed roller 34 and the relaxation roller 43 of the core component yarn is shrunk by the heating element 36.
Calculate as =V 1 -V/V×100. ΔS% in the case of processing under the condition that a part of the slack amount L is contracted by the heating element 36 is calculated by applying only the core component yarn without using the temporary twisting device 37 and the fluid treatment device 41 in advance, and The surface speed of the feed roller 34 is fixed at the processing condition of V 1 m/min, and the surface speed of the relaxation roller 43 is changed so that the running yarn between the feed roller 34 and the relaxation roller 43 is contracted by the heating element. Find the limit surface speed V 0 m/min of the relaxation roller 43 that runs without slack, and calculate Δ
It was calculated as S (%)=V 1 −V 0 /V×100. Next, the present invention will be explained with reference to the drawings. The present invention can be implemented using, for example, the following apparatus. FIG. 1 shows an embodiment in which a thermoplastic synthetic fiber undrawn filament yarn is used to obtain a variable yarn in succession with the drawing process, in which feed rollers 3, 4 and drawing heating elements 5, 6 are used. It is also possible to use a normal drawn filament yarn instead of the undrawn filament yarns 1 and 2.
This case will be explained. In FIG. 1, drawn filament yarns are used instead of undrawn filament yarns 1 and 2 and are directly fed to drawing rollers 7 and 8. The surface speed of the drawing rollers 7 and 8 is set so that the roller 7 that supplies the core component yarn is lower than the roller 8 that supplies the sheath component yarn, and the surface speed of the rollers 7, 8 and the relaxation roller 14 is lower than the surface speed of the roller 7. While giving a supply speed difference between the core component yarn and the sheath component yarn, and giving a substantial yarn length difference between the core component yarn and the sheath component yarn, the fluid treatment device 12 applies squeezing action, weak swirling action, and intertwining action to The yarn is made into a yarn having alternating tall and soft thick yarn portions 13, and is wound into a package 1 by a winding device 15.
By winding the yarn into yarn 6, the yarn of the present invention is obtained. That is, in the method of the present invention, the fluid treatment device 12 has three functions: the ability to impart a straining action, the ability to impart weak swirling properties, and the ability to impart entanglement to a yarn in which a core component yarn and a sheath component yarn are combined. It is configured and used. The squeezing action is
This can be achieved by providing a guide in front of the fluid treatment device and letting the running yarn lightly touch the guide while rotating, or by using a fluid treatment device that allows compressed air to flow in the opposite direction to the running direction. be able to. Here, the relationship between the swirling force and the entangling force of the fluid treatment device 12, the convergence effect of the sheath yarn, and the tension relationship between the core component yarn 10 and the sheath component yarn 11 are important. In order to create the bulky, soft, and thick yarn portion that is the objective of the present invention, a substantial yarn length difference is created between the sheath component yarn and the core component yarn, so that the sheath component yarn is larger than the core component yarn. By making the tension extremely low and further weakening the swirling force of the fluid treatment device, the sheath component yarn is folded extremely loosely around the core component yarn, or enters the fluid treatment device while being wrapped extremely loosely, allowing fluid squeezing, etc. The sheath threads converge and intertwine to form thick threads. That is, the thick yarn portion is formed by partially absorbing the yarn length difference. At this time, the constituent filaments are intertwined at least at both ends of the thick yarn portion, and a thick yarn portion that is bulky and soft but has little movement can be obtained. In addition, as a fluid processing device, a mixed fiber/entanglement nozzle having weak swirling properties and entangling properties is desirable.
It depends on the fineness of the yarn used, the required frequency of thick yarn sections, the tension of the running yarn, and the speed of the running yarn, but in terms of turning ability, even if the yarn is high before entering the fluid treatment device.
It is desirable to have a twist of 1000T/m or less. For example, when a slub-like textured yarn is manufactured using the composite twist method, when a twist number of approximately 2000 T/m or more is applied, the knots tend to become hard and tight, which is the intended aim of the present invention. It is generally difficult to obtain such bulky and soft knots.
Therefore, in the present invention, it is desirable to have a weak turning ability, and a high twisting speed is not required, so that high-speed machining can be easily achieved. As shown in Tables 1 and 2, the frequency of thick yarn portions can be changed depending on the difference in yarn length between the core component yarn and the sheath component yarn, and can be appropriately selected depending on the purpose for which the variable yarn is used. can do. However, in order to keep the tension of the sheath component yarn at an extremely low level with respect to the core component yarn and to stably obtain a bulky, soft, thick yarn section, at least the difference in yarn length between the core component yarn and the sheath component yarn must be maintained. It is preferable to add 2% or more, more preferably 5% or more.
In addition, if the yarn length difference is too high, the frequency of thick yarn parts will be too high and the thick yarn parts will be present on the entire surface of the knitted fabric.
It is preferable to keep it below 100%. Figure 2 shows the difference in yarn length between the core component yarn and the sheath component yarn by using a normal filament yarn and shrinking at least the filament yarn, which is to become the core component, with a heating element between the feed roller and the relaxation roller. An embodiment is shown in which a yarn is obtained while giving the following.
In FIG. 2, the filament yarns 17 and 18 are brought into a relaxed state between the feed roller 19 and the relaxation roller 27, and at least the core component yarn is heat-shrinked by the heating element 20, so that there is a gap between the core component yarn and the sheath component yarn. While giving a substantial yarn length difference, the fluid treatment device 25 applies a weak swirling action, a squeezing action, and an entangling action to produce a yarn having alternating thin yarn portions and thick yarn portions 26, and as the case may be. The yarn is heat-fixed by a heating element 28 between a relaxing roller 27 and a winding roller 29, and then wound around a winding package 31 by a winding device 30 to obtain a variable yarn according to the manufacturing method of the present invention. In this way, when a heating element is used to shrink at least the core component yarn to create a yarn length difference between the core component yarn and the sheath component yarn, at least the core component filament yarn has heat shrinkability. Of course, the process is simple, and by simply changing the surface speed difference between the feed roller and relaxation roller and the heat treatment conditions with the heating element, it is easy to create yarn length differences. It has the advantage that the degree of length difference can be easily changed, and the frequency of thick yarn portions can be easily varied. Furthermore, when at least the core component yarn is thermally shrunk with a heating element, it is more desirable to shrink it non-uniformly under low tension so that the heat of the heating element is not uniformly transmitted to the entire filament yarn. This is because the individual filaments of the core component yarn of the obtained variable yarn randomly have high shrinkage areas and low shrinkage areas due to uneven heat treatment, and there is also a shrinkage difference between the core component yarn and the sheath component yarn. When used in knitted fabrics, it has the ability to produce complex and random crimp.
A fabric with excellent drapability and aesthetics can be obtained, and at the same time, the bulky and soft thick yarn portion has the advantage of being less likely to move. Here, the temperature of the heating element is
The temperature may be any temperature that provides the necessary yarn length difference between the core component yarn and the sheath component yarn, and the yarn to be shrunk may be run in contact with the heating element or may be run in a non-contact manner. Figure 3 shows a process in which ordinary filament yarn is used, and at least the yarn that is to become the core component is temporarily twisted between the feed roller and the relaxation roller, and a difference in yarn length is given between the core component and the sheath component. An embodiment for obtaining yarn is shown. In FIG. 3, the filament yarns 32 and 33 are brought into a relaxed state between relaxing rollers 43, and at least the core component yarns are temporarily twisted by the twisting device 37 and shrunk by the heating element 36, thereby forming the core component yarn and the sheath component. A substantial yarn length difference is created between the yarn and the fluid treatment device 41 causes a slight swirling action.
A straining action and an entangling action are applied to form a yarn having alternating thin thread parts and thick thread parts 42, and the winding device 4
At step 4, the yarn is wound onto a winding package 45 to obtain a yarn according to the present invention. Here, the temporary twisting device is not particularly limited, but in order to facilitate thermal contraction by the heating element 36, it is desirable to use a fluid nozzle that has the ability to temporarily twist under low tension. Further, if it is desired to temporarily twist the yarn under high tension to impart high elasticity to the yarn, a surface speed difference may be provided between the feed rollers 34 and 35 to provide a substantial yarn length difference. Furthermore, if high elasticity is required for the yarn, instead of using a temporary twisting device, one or both of the filament yarns 32 and 33 to be supplied may be used with a yarn that has already been temporarily twisted, and the feed rollers 34 and 35 A substantial difference in yarn length may be provided by providing a surface velocity difference of . FIG. 4 is a model showing a typical side view of the yarn obtained by the manufacturing method of the present invention. A bulky and soft thick yarn part A, a thin yarn part B in which a core component yarn and a sheath component yarn are mixed, and a core component yarn and a sheath component yarn C in which the core component yarn and the sheath component yarn are mixed, intertwined and fixed at least at both ends of the thick yarn part. It is made up of. Conventional slub yarns made by intermittent winding of spun rovings have bulky and soft thick yarn parts, so when knitted into woven fabrics, they form elongated spindle-shaped or elongated cocoon-shaped knots, giving them a natural uneven feel. On the other hand, when a conventional filament yarn is made into a slub-like yarn using the composite temporary twist method, the thick yarn part is hard, so it takes on a prismatic or cylindrical shape in the knitted fabric, which is different from the original slub yarn using spun roving. has an extremely different appearance. In contrast,
According to the method of the present invention, the thick yarn part is bulky and soft at the knots shown in Figure 4, so it forms an elongated spindle shape or an elongated cocoon shape similar to the original slub yarn using spun roving in the knitted fabric. This results in a shantung-like appearance with a natural uneven feel. In addition, when the physical and chemical properties of the filament yarns used are different, for example, filament yarns with different dyeing behavior can be processed at the same time to create a unique appearance effect where the hue of the thick yarn and the hue of the thin yarn are different. You can also get a unique thread that can express. In other words, the present invention uses filament yarn, which is bulky and soft like the original spun roving yarn is wound intermittently, and has elongated spindle-shaped or elongated cocoon-shaped knots. Since the knots are fixed at the intertwined portions, there is almost no movement of the knots, and it is possible to produce slub-like textured yarns that can express a wide variety of appearance effects and are easy to handle at high speed, easily, and at low cost. be. When the material used in the present invention is heat-shrinked with a heating element to create a yarn length difference between the core component yarn and the sheath component yarn, at least one type of filament yarn constituting the core component is heated. The material must be heat-shrinkable with the body. However, in the case where a surface speed difference is provided between the feed roller and the relaxation roller, and a yarn length difference is provided between the core component yarn and the sheath component yarn, the yarn is not particularly limited as long as it is a filament yarn. Therefore, recycled fibers such as viscose rayon, semi-synthetic fibers such as acetate, polyester-based, polyamide-based, polyacrylonitrile-based, polyethylene-based, polypropylene-based, polyurethane-based, polyvinyl alcohol-based, polyvinylidene chloride-based, polyvinyl chloride-based Any synthetic fiber such as polyfluoroethylene or polyfluoroethylene may be used. Alternatively, a combination of two or more of these fibers may be used. There are no particular limitations on the cross-sectional shape, fineness, etc. Next, a more detailed explanation will be given using examples. Example 1 This was carried out using an apparatus as shown in FIG. Polyester 100 denier, 72 filament triangular cross section yarn (thread dry heat shrinkage rate 55% at 200℃ x 5 minutes) was used as core drawn yarn 17, polyester 100 denier, 72 filament triangular cross section yarn (thread dry at 200℃ x 5 minutes). Heat shrinkage rate
16%) was used for the drawn yarn 18 of the sheath component, and the drawn yarn 1
7, 18 is the feed roller 19 and surface speed
After being brought into a relaxed state between relaxing rollers 27 at a speed of 150 m/min, only the core component yarn 21 is made to run in contact with a heating element 20 at 210° C. to cause heat shrinkage, and treated simultaneously with the sheath component yarn in a fluid treatment device 25. The material was heat-fixed by contacting the heating element 28 at 130° C. for 200 mm between the relaxation roller 27 and the take-up roller 29 having the same surface speed, and then wound into a take-up package 31 by the take-up device 30. Here, by changing the surface speed of the feed roller 19 and the running yarn contact length with the heating element 20, the difference in yarn length between the core component yarn and the sheath component yarn is changed, and furthermore, the compressed air pressure applied to the fluid treatment device 25 is changed. Table 1 shows the workability when changing. In addition, the characteristics of the processed yarn and the obtained yarn are subjected to S twist of 150T/m to make the weft yarn.The warp is polyester 75 denier, 36 filament triangular cross section yarn is used, 92 yarns/in length and 43 yarns/inch Table 2 shows the appearance characteristics of the woven fabric which was made into a plain weave with a density of 1.5 in and then dyed and finished in the same manner as ordinary polyester woven fabrics. Considering the stability of processing, the shape of the knots obtained, etc.
It can be seen that it is desirable that the yarn length difference between the core component yarn and the sheath component yarn be 2% or more and the running yarn twist number be 1000 T/m or less.

【表】【table】

【表】【table】

【表】 ここで、太糸部の繊維充填密度とは、太糸部の
かさ高性、柔らかさを表わす指標で、スラブ糸ま
たはスラブ調加工糸1本当り20gの荷重をかけて
糸の不自然な曲りあるいは織編みぐせを除いた状
態で透明なガラス板上に接着テープではりつけた
後、他の透明なガラス板を糸の上に重ねてはさ
み、糸の側面拡大写真をとり、太糸部の投影側面
最外郭面積Scm2を求める。さらに側面面積測定部
の重さWmgを求め、次式で繊維充填密度Dを求
めた。 繊維充填密度D=W/S(mg/cm2) 参考までに、前記測定法で求めた従来の紡績粗
糸使いスラブ糸と複合仮ヨリ法で得られるスラブ
調加工糸の太糸部繊維充填密度は、紡績粗糸使い
が2〜11mg/cm2、複合仮ヨリ法が13〜25mg/cm2
であつた。 また、細糸部の交絡度とは、細糸部を構成する
フイラメントの混繊・交絡の程度を表わす指標
で、特開昭52―18949号公報で使用されている装
置と同様なものを用いて測定した値である。 実施例 2 第1図に示すような装置で実施した。未延伸糸
1として175.5デニール、24フイラメントのポリ
エステル丸断面糸、未延伸糸2として351デニー
ル96フイラメントのポリエステル三角断面糸を使
用し、芯成分となるべき未延伸糸1は、表面速度
121m/minの延伸ローラ7とフイードローラ3
の間で100℃の延伸加熱体5に1回巻いて3.51倍
に延伸し、鞘成分となるべき未延伸糸2は、表面
速度137m/minの延伸ローラ8とフイードロ
ーラ4の間で100℃の延伸加熱体6に1回巻いて
3.51倍に延伸する。さらに、表面速度120m/min
のリラツクスローラ14と延伸ローラ7,8の間
で、芯成分延伸糸10と鞘成分延伸糸11との間
に糸長差約14.2%を与えながら4.5Kg/cm2の圧空
を通した流体処理装置12で両成分糸を同時に処
理する。ここで、芯成分糸10の張力は約12g/
本、鞘成分糸11の張力は0.4g/本で、流体処理
装置に入る前の糸の走行糸ヨリ数は450〜800T/
mであつた。さらに、巻取り装置15で巻取りパ
ツケージ16に巻取つて、本発明糸を得た。得ら
れた糸は、細糸部の交絡度58で芯成分糸と鞘成
分糸が混繊状態を形成し、太糸部の頻度約110
個/100mで、繊維充填密度2.5〜5.0mg/cm2の柔
らかい節を形成していた。また、得られた糸を、
実施例1と同一のタテ糸に、ヨコ密度50本/inの
平織でヨコ打込みした後、通常のポリエステル織
物と同様な方法で染色仕上加工したところ、太糸
部は細長い玉繭調の柔らかい節を形成し、絹織物
様の光沢、触感を有する良好な織物であつた。さ
らに得られた糸をチーズ染色し、36口の丸編に編
成し、通常の仕上加工したところ、柔らかいスラ
ブまたはネツプ調の節を有し、絹様の外観・風合
いで、良好な先染め編物が得られた。 実施例 3 実施例1の水準Eは、芯成分糸21の加熱体2
0での接触長が100mm、表面速度177.3m/minの
フイードローラ19と加熱体20の間の走行糸張
力が6g/本であつた。ここで、芯成分糸の加熱
体20での接触長を50mm、フイードローラ19と
加熱体20の間の走行糸張力を0.7g/本にして、
芯成分糸のフイラメント全体に加熱体20の熱が
均一に伝わらない条件で約15.4%収縮させなが
ら、他の条件は実施例1の水準Eと同一条件で加
工した。この条件下での流体処理装置25とガイ
ド22の間の芯成分糸の張力は約13g/本、鞘成
分糸24の張力は約0.5g/本で、流体処理装置2
5とガイド22の間の走行糸ヨリ数はほぼ400〜
800T/mであつた。得られた糸は、細糸部の交
絡度85、太糸部の頻度約154個/100m、繊維充
填密度2〜5.5mg/cm2の柔らかい節を形成し、こ
の節は、実施例1の水準Eと比較してさらに移動
しないものであつた。また、実施例1のE水準と
実施例3の糸を綛にして、200℃の乾燥機中、自
由状態で5分間処理したところ、実施例3の糸の
細糸部は、実施例1の水準Eの糸の細糸部に比べ
て、複雑でこまかく、ランダムなケン縮を発現し
た。さらに、実施例1の水準Eと同一条件で製
織・染色仕上加工したところ、実施例3の織物
は、実施例1の水準Eの織物の節と同一形状であ
るが、織物全体としてかさ高性、ドレープ性が高
く、深みのある色相の織物が得られた。 実施例 4 第3図に示すような装置を用いて実施した。芯
成分を構成する延伸糸32として50デニール、24
フイラメントの丸断面ポリエステル糸、鞘成分を
構成する延伸糸33として70デニール、68フイラ
メントの丸断面ポリアミド糸を使用する。芯成分
糸は、表面速度112m/minのフイードローラ3
4と表面速度110m/minのリラツクスローラ4
3の間の流体仮ヨリ装置37と加熱体36で仮ヨ
リし、鞘成分糸は表面速度129m/minのフイー
ドローラ35とリラツクスローラ43の間でリラ
ツクス状態(糸長差17.3%)にして、芯成分糸と
鞘成分糸を同時に5Kg/cm2の圧空を通した流体処
理装置41で処理して、巻取り装置44で巻取り
パツケージ45に巻取つた。ここで加熱体36の
温度は210℃、長さ1200mmで、流体仮ヨリ装置3
7には5Kg/cm2の圧空を通した。得られた糸は、
細糸部の交絡度32、太糸部の頻度約128個/
100m、繊維充填密度3〜6.5mg/cm2の柔らかい
節を形成し、細糸部の伸縮性が高い糸であつた。
また、この糸を実施例1と同一のタテ糸に、ヨコ
密度60本/inの平織でヨコ打込みした後、ポリア
ミド糸を赤、ポリエステル糸を白残しで染色仕上
加工したところ、織物全体は杢調の色合いで、先
染め粗糸を巻付けたような節の外観を示し、ヨコ
方向に伸縮性を有する良好な風合いの織物が得ら
れた。 実施例 5 第3図のような装置の仮ヨリ装置37と加熱体
36を使用しないで実施した。芯成分となる延伸
糸32としてポリエステル100デニール、48フイ
ラメントの五葉形断面仮ヨリ糸を、鞘成分となる
延伸糸33としてビスコースレーヨン50デニー
ル、20フイラメントとポリアミド50デニール、48
フイラメントとを引揃えて使用した。表面速度
160m/minのフイードローラ34および表面速
度176m/minのフイードローラ35と表面速度
160m/minのリラツクスローラの間で鞘成分糸
を約10%リラツクス状態(糸長差10%)にしなが
ら4.7Kg/cm2の圧空を通した流体処理装置41で
芯成分糸と鞘成分糸を同時に処理し、巻取り装置
44で巻取りパツケージ45に巻取つた。得られ
た糸は、細糸部の交絡度25、太糸部の頻度約89
個/100m、繊維充填密度3〜6.5mg/cm2の柔ら
かい節を形成し、細糸部の伸縮性が高い糸であつ
た。この糸を用いて天竺組織の編地に編成し、ポ
リアミド糸を黄色、ビスコースレーヨン糸を赤
色、ポリエステル糸を白残しで染色仕上加工した
ところ、柔らかいスラブまたはネツプ調の節を有
し、2色の先染め粗糸使いシヤンタン調で、良好
な編物が得られた。 実施例 6 実施例5において、鞘成分側のフイードローラ
35の表面速度のみ変更し、芯成分糸と鞘成分糸
の間の糸長差10、20、30、50、70、90、100、
110、120%で実施した。糸長差100%まではほぼ
安定して加工できるが、110、120%については、
芯糸に対する鞘糸の巻付きが不安定であつた。さ
らに、これらの糸をヨコ糸として実施例1と同一
タテ糸に同一条件で製織した後、ポリエステルの
み染色し、仕上加工したところ、糸長差10〜50%
の範囲の糸を使用した織物は、良好なスラブ感を
有し、70〜100%の範囲の糸を使用した織物は、
非常にスラブ密度の高い織物であるが比較的太細
感が認められ、110〜120%の範囲の糸を使用した
織物は、布帛表面全面に太糸部が存在するかの如
き厚手の織物であつた。つまり、糸加工の安定性
およびスラブ調の外観を得るには、芯成分糸と鞘
成分糸の間の糸長差を100%程度以下にすること
が望ましい。
[Table] Here, the fiber packing density of the thick yarn section is an index that expresses the bulkiness and softness of the thick yarn section. After removing the natural bends or weaving patterns, attach it to a transparent glass plate with adhesive tape, place another transparent glass plate on top of the thread, take an enlarged photo of the side of the thread, and measure the thickness of the thread. Find the outermost area of the projected side surface Scm 2 of the area. Furthermore, the weight Wmg of the side surface area measurement part was determined, and the fiber packing density D was determined using the following formula. Fiber packing density D = W/S (mg/cm 2 ) For reference, the fiber filling in the thick yarn part of the conventional slub yarn using spun roving determined by the above measurement method and the slub-like processed yarn obtained by the composite temporary twist method The density is 2 to 11 mg/cm 2 for the spun roving method, and 13 to 25 mg/cm 2 for the composite temporary twist method.
It was hot. In addition, the degree of entanglement of the fine yarn portion is an index representing the degree of mixing and intertwining of the filaments constituting the fine yarn portion. This is the value measured. Example 2 The experiment was carried out using an apparatus as shown in FIG. Undrawn yarn 1 is a 175.5 denier, 24 filament polyester round cross section yarn, undrawn yarn 2 is a 351 denier, 96 filament polyester triangular cross section yarn, and undrawn yarn 1, which is to be the core component, has a surface speed of
121m/min stretching roller 7 and feed roller 3
The undrawn yarn 2, which is to become a sheath component, is wound once around the drawing heating element 5 at 100°C and stretched 3.51 times. Wrap it once around the stretching heating element 6.
Stretch 3.51 times. Additionally, the surface speed is 120m/min.
Between the relaxation roller 14 and the drawing rollers 7 and 8, a fluid of 4.5 kg/cm 2 is passed through a compressed air while giving a yarn length difference of about 14.2% between the core drawn yarn 10 and the sheath drawn yarn 11. A processing device 12 processes both component yarns simultaneously. Here, the tension of the core component yarn 10 is approximately 12 g/
The tension of the main and sheath component yarns 11 is 0.4 g/strand, and the running yarn twist number of the yarn before entering the fluid treatment device is 450 to 800 T/strand.
It was m. Further, the yarn was wound around a winding package 16 using a winding device 15 to obtain a yarn of the present invention. In the obtained yarn, the core component yarn and sheath component yarn form a mixed fiber state with an entanglement degree of 58 in the fine yarn portion, and a frequency of approximately 110 in the thick yarn portion.
fibers/100m, forming soft knots with a fiber packing density of 2.5 to 5.0 mg/ cm2 . In addition, the obtained thread
The same warp yarn as in Example 1 was wefted with a plain weave with a weft density of 50 threads/in, and then dyed and finished in the same manner as ordinary polyester fabrics. The fabric was of good quality and had the luster and feel of silk fabric. Furthermore, when the obtained yarn is cheese dyed, knitted into 36 circular knits, and subjected to the usual finishing process, it has soft slub or netp-like knots, and has a silk-like appearance and texture, making it a good yarn-dyed knit. was gotten. Example 3 Level E of Example 1 is the heating element 2 of the core component yarn 21.
The running yarn tension between the feed roller 19 and the heating element 20 with a contact length of 100 mm at zero and a surface speed of 177.3 m/min was 6 g/strand. Here, the contact length of the core component yarn with the heating body 20 is 50 mm, and the running yarn tension between the feed roller 19 and the heating body 20 is 0.7 g/strand.
The filament of the core component yarn was processed under the same conditions as Level E of Example 1, except that the filament of the core component yarn was shrunk by about 15.4% under the condition that the heat of the heating element 20 was not uniformly transmitted to the entire filament. Under this condition, the tension of the core component yarn between the fluid treatment device 25 and the guide 22 is approximately 13 g/strand, the tension of the sheath component yarn 24 is approximately 0.5 g/strand, and the tension of the core component yarn between the fluid treatment device 25 and the guide 22 is approximately 0.5 g/strand.
The number of running thread twists between 5 and guide 22 is approximately 400 ~
It was 800T/m. The obtained yarn formed soft knots with a degree of entanglement in the fine thread part of 85, a frequency of about 154 pieces/100m in the thick thread part, and a fiber packing density of 2 to 5.5 mg/ cm2 , and this knot was at the level of Example 1. Compared to E, it moved even less. Furthermore, when the threads of E level of Example 1 and the threads of Example 3 were treated as skeins in a dryer at 200°C for 5 minutes in a free state, the fine yarn portion of the thread of Example 3 was different from that of Example 1. Compared to the fine yarn part of the yarn of level E, complex, fine, and random crimp was developed. Furthermore, when the fabric of Example 3 was woven and dyed and finished under the same conditions as Level E of Example 1, the fabric of Example 3 had the same shape as the knots of the fabric of Level E of Example 1, but the fabric as a whole was bulkier. A fabric with good drapability and a deep hue was obtained. Example 4 This was carried out using an apparatus as shown in FIG. 50 denier, 24 denier as the drawn yarn 32 constituting the core component
A polyester yarn with a round cross section of filaments and a polyamide yarn with a round cross section of 70 denier and 68 filaments are used as the drawn yarn 33 constituting the sheath component. The core component yarn is fed by feed roller 3 with a surface speed of 112 m/min.
4 and Relax Roller 4 with a surface speed of 110m/min
The sheath component yarn is temporarily twisted by a fluid temporary twisting device 37 and a heating element 36 between 3, and the sheath component yarn is placed in a relaxed state (yarn length difference 17.3%) between a feed roller 35 with a surface speed of 129 m/min and a relaxing roller 43. The core component yarn and the sheath component yarn were treated at the same time in a fluid treatment device 41 through which a pressure of 5 kg/cm 2 was passed, and then wound into a winding package 45 by a winding device 44. Here, the temperature of the heating body 36 is 210°C, the length is 1200 mm, and the fluid temporary twisting device 3
7 was passed through compressed air of 5 kg/cm 2 . The obtained thread is
The degree of entanglement in the thin yarn part is 32, and the frequency in the thick yarn part is approximately 128 pieces/
The yarn formed soft knots with a length of 100 m and a fiber packing density of 3 to 6.5 mg/cm 2 and had high elasticity in the fine yarn portion.
In addition, this yarn was wefted into the same warp yarn as in Example 1 in a plain weave with a weft density of 60 threads/in, and then finished by dyeing the polyamide yarn in red and the polyester yarn in white, and the entire fabric was heathered. A fabric with a neutral color, a knotty appearance similar to that of yarn-dyed roving wrapped around it, and a good texture with stretchability in the horizontal direction was obtained. Example 5 An experiment was carried out without using the temporary twisting device 37 and heating element 36 of the apparatus shown in FIG. The drawn yarn 32 that will be the core component is polyester 100 denier, 48 filaments, pentalobal cross-section temporary twisted yarn, and the drawn yarn 33 that will be the sheath component is viscose rayon 50 denier, 20 filaments and polyamide 50 denier, 48
It was used together with a filament. surface speed
Feed roller 34 with a surface speed of 160 m/min and feed roller 35 with a surface speed of 176 m/min and surface speed
The core component yarn and sheath component yarn are separated by a fluid treatment device 41 in which compressed air of 4.7 Kg/cm 2 is passed through the sheath component yarn while relaxing the sheath component yarn by approximately 10% between relaxing rollers at 160 m/min (10% yarn length difference). were simultaneously processed and wound into a winding package 45 by a winding device 44. The obtained thread has a degree of entanglement in the fine thread part of 25 and a frequency of about 89 in the thick thread part.
The yarn formed soft knots with a fiber packing density of 3 to 6.5 mg/cm 2 and a high elasticity in the fine yarn portion. This yarn was knitted into a jersey fabric, and the polyamide yarn was dyed yellow, the viscose rayon yarn was dyed red, and the polyester yarn was left white, resulting in soft slub or netp-like knots. A good quality knitted fabric was obtained using yarn-dyed roving yarn in a shantan style. Example 6 In Example 5, only the surface speed of the feed roller 35 on the sheath component side was changed, and the yarn length difference between the core component yarn and the sheath component yarn was 10, 20, 30, 50, 70, 90, 100,
It was carried out at 110 and 120%. It is possible to process almost stably up to a yarn length difference of 100%, but for yarn length differences of 110 and 120%,
The winding of the sheath yarn around the core yarn was unstable. Furthermore, after weaving these yarns as weft yarns into the same warp yarns under the same conditions as in Example 1, only the polyester was dyed and finished, the yarn length difference was 10 to 50%.
Fabrics using yarns in the range of 70% to 100% have a good slubby feel;
Although it is a fabric with a very high slab density, it has a relatively thick and thin feel, and fabrics using yarns in the range of 110 to 120% are so thick that they appear to have thick yarns on the entire surface of the fabric. It was hot. In other words, in order to obtain stability in yarn processing and a slab-like appearance, it is desirable that the yarn length difference between the core component yarn and the sheath component yarn be approximately 100% or less.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図および第3図は、本発明糸の変
り糸の製造法の一実施態様を示す概略図、第4図
は、本発明で得られる変り糸の代表的な側面をモ
デル的に示した図である。 1:未延伸糸、2:未延伸糸、3:フイードロ
ーラ、4:フイードローラ、5:延伸加熱体、
6:延伸加熱体、7:延伸ローラ、8:延伸ロー
ラ、9:ガイド、10:芯成分糸、11:鞘成分
糸、12:流体処理装置、13:太糸部、14:
リラツクスローラ、15:巻取り装置、16:巻
取りパツケージ、17:延伸糸、18:延伸糸、
19:フイードローラ、20:加熱体、21:芯
成分糸、22:ガイド、23:ガイド、24:鞘
成分糸、25:流体処理装置、26:太糸部、2
7:リラツクスローラ、28:加熱体、29:巻
取りローラ、30:巻取り装置、31:巻取りパ
ツケージ、32:延伸糸、33:延伸糸、34:
フイードローラ、35:フイードローラ、36:
加熱体、37:仮ヨリ装置、38:芯成分糸、3
9:ガイド、40:鞘成分糸、41:流体処理装
置、42:太糸部、43:リラツクスローラ、4
4:巻取り装置、45:巻取りパツケージ、A:
太糸部、B:細糸部、C:太糸部両端の混繊交絡
部。
Figures 1, 2, and 3 are schematic diagrams showing one embodiment of the manufacturing method of the variable yarn of the present invention, and Figure 4 is a model of typical aspects of the variable yarn obtained by the present invention. FIG. 1: undrawn yarn, 2: undrawn yarn, 3: feed roller, 4: feed roller, 5: stretched heating element,
6: Stretching heating body, 7: Stretching roller, 8: Stretching roller, 9: Guide, 10: Core component yarn, 11: Sheath component yarn, 12: Fluid processing device, 13: Thick yarn section, 14:
Relax roller, 15: winding device, 16: winding package, 17: drawn yarn, 18: drawn yarn,
19: Feed roller, 20: Heating body, 21: Core component yarn, 22: Guide, 23: Guide, 24: Sheath component yarn, 25: Fluid processing device, 26: Thick yarn section, 2
7: Relaxation roller, 28: Heating body, 29: Winding roller, 30: Winding device, 31: Winding package, 32: Stretched yarn, 33: Stretched yarn, 34:
Feed roller, 35: Feed roller, 36:
Heating body, 37: Temporary twisting device, 38: Core component yarn, 3
9: Guide, 40: Sheath component yarn, 41: Fluid treatment device, 42: Thick yarn section, 43: Relaxation roller, 4
4: Winding device, 45: Winding package, A:
Thick thread part, B: Thin thread part, C: Mixed fiber intertwining part at both ends of the thick thread part.

Claims (1)

【特許請求の範囲】 1 2種以上のフイラメント糸を用いて、芯成分
を構成する少なくとも1種のフイラメント糸と鞘
成分を構成する他のフイラメント糸との間に実質
的な糸長差を与えながら供給しつつ合体し、続い
て該合体糸条を、しごき作用付与性能と弱旋回性
付与性能と交絡付与性能とを併有する流体処理装
置に導いて流体処理に供することにより、前記糸
長差を部分的に吸収して成る太糸部と細糸部とを
糸条長手方向に交互に形成せしめることを特徴と
する変り糸の製造法。 2 実質的な糸長差を与えながら供給され合体さ
れる2種以上のフイラメント糸のうち少なくとも
1種のフイラメント糸は、仮ヨリ加工されながら
合体せしめられるように構成したことを特徴とす
る特許請求の範囲第1項記載の変り糸の製造法。 3 実質的な糸長差を与える手段が、少なくとも
1種のフイラメント糸を加熱体に接触させて収縮
させることにより、他のフイラメント糸との糸長
差を生ぜしめるものであることを特徴とする特許
請求の範囲第1項または第2項記載の変り糸の製
造法。 4 少なくとも1種のフイラメント糸を加熱体に
接触させて収縮させるに際して、該加熱体の熱が
該フイラメント糸全体に均一に伝わらないよう
に、低張力下状態で該加熱体に接触せしめること
を特徴とする特許請求の範囲第3項記載の変り糸
の製造法。
[Claims] 1. Two or more types of filament yarns are used to provide a substantial difference in yarn length between at least one type of filament yarn constituting the core component and other filament yarns constituting the sheath component. The above-mentioned yarn length difference is reduced by feeding and combining the yarns, and then introducing the combined yarns to a fluid treatment device that has the ability to impart a straining effect, the ability to impart weak swirling properties, and the ability to impart entanglement, and subject them to fluid treatment. 1. A method for producing a variable yarn, characterized in that thick yarn parts and thin yarn parts formed by partially absorbing the yarn are formed alternately in the longitudinal direction of the yarn. 2. A patent claim characterized in that at least one type of filament yarn among two or more types of filament yarns that are fed and combined while giving a substantial difference in yarn length is configured to be combined while being temporarily twisted. A method for producing a special yarn according to item 1. 3. The means for providing a substantial yarn length difference is characterized in that at least one type of filament yarn is brought into contact with a heating element and contracted, thereby causing a yarn length difference with other filament yarns. A method for producing a yarn according to claim 1 or 2. 4. When at least one type of filament yarn is brought into contact with a heating body and contracted, the filament yarn is brought into contact with the heating body under low tension so that the heat of the heating body is not uniformly transmitted to the entire filament yarn. A method for producing a yarn as set forth in claim 3.
JP8491079A 1979-07-06 1979-07-06 Production of fancy yarn Granted JPS569435A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8491079A JPS569435A (en) 1979-07-06 1979-07-06 Production of fancy yarn

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8491079A JPS569435A (en) 1979-07-06 1979-07-06 Production of fancy yarn

Publications (2)

Publication Number Publication Date
JPS569435A JPS569435A (en) 1981-01-30
JPS6221886B2 true JPS6221886B2 (en) 1987-05-14

Family

ID=13843877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8491079A Granted JPS569435A (en) 1979-07-06 1979-07-06 Production of fancy yarn

Country Status (1)

Country Link
JP (1) JPS569435A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH053031Y2 (en) * 1987-05-19 1993-01-25

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58132134A (en) * 1982-01-29 1983-08-06 ユニチカ株式会社 Production of silk-like composite yarn
JPS62282031A (en) * 1986-05-27 1987-12-07 ユニチカ株式会社 Polyester false twisted crimp yarn
JPS646137A (en) * 1987-06-23 1989-01-10 Unitika Ltd Confounded composite yarn
JP2820997B2 (en) * 1990-03-06 1998-11-05 株式会社クラレ Mixed yarn with small protrusions and slack
JP2950678B2 (en) * 1992-05-14 1999-09-20 東レ・テキスタイル株式会社 False twist composite yarn and method for producing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5242955A (en) * 1975-10-01 1977-04-04 Mitsubishi Rayon Co Method of producing spun yarnnlike specially processed yarn
JPS52132144A (en) * 1976-04-28 1977-11-05 Mitsubishi Rayon Co Bulky crimp processed yarn and its manufacture
JPS5415050A (en) * 1977-07-07 1979-02-03 Teijin Ltd Silky fabric
JPS5464130A (en) * 1977-11-01 1979-05-23 Teijin Ltd Production of polyester crimped yarns

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5242955A (en) * 1975-10-01 1977-04-04 Mitsubishi Rayon Co Method of producing spun yarnnlike specially processed yarn
JPS52132144A (en) * 1976-04-28 1977-11-05 Mitsubishi Rayon Co Bulky crimp processed yarn and its manufacture
JPS5415050A (en) * 1977-07-07 1979-02-03 Teijin Ltd Silky fabric
JPS5464130A (en) * 1977-11-01 1979-05-23 Teijin Ltd Production of polyester crimped yarns

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH053031Y2 (en) * 1987-05-19 1993-01-25

Also Published As

Publication number Publication date
JPS569435A (en) 1981-01-30

Similar Documents

Publication Publication Date Title
US3940917A (en) Composite elastic yarns and process for producing them
US4081887A (en) Production of bulky, continuous filament yarn
JPS6221886B2 (en)
KR100895513B1 (en) High elongate fiber or yarn dyed fabric and method thereof
JPS6223088B2 (en)
JPS6018343B2 (en) Slab yarn manufacturing method
JP2000144540A (en) Production of multilayered composite bulky yarn
JPH093742A (en) Long and short composite yarn and its production
JPS6249374B2 (en)
JPS6113013B2 (en)
JP2019073807A (en) False twisted yarn and woven or knitted fabric
JP2813525B2 (en) False twist composite yarn and method for producing the same
JPH034652B2 (en)
JP2971084B2 (en) Method for producing composite bulky yarn
JPS6014132B2 (en) Slab yarn manufacturing method
JP4824866B2 (en) Special false twisted yarn, method for producing the same, and woven / knitted fabric
JP3059211B2 (en) Method for producing composite crimped yarn
JP3480058B2 (en) False twisted composite yarn
JPH09132834A (en) Worsted-tone composite combined filament yarn
JPS5813656B2 (en) Method for producing latent bulk yarn
JP3686640B2 (en) False twisted composite yarn and fabric and knitted fabric using the same
JPS6138927Y2 (en)
JPS6328139B2 (en)
JPH02307923A (en) Textured yarn having composite structure
JPS6218652B2 (en)