JPS6230891A - Dry etching method - Google Patents

Dry etching method

Info

Publication number
JPS6230891A
JPS6230891A JP16982885A JP16982885A JPS6230891A JP S6230891 A JPS6230891 A JP S6230891A JP 16982885 A JP16982885 A JP 16982885A JP 16982885 A JP16982885 A JP 16982885A JP S6230891 A JPS6230891 A JP S6230891A
Authority
JP
Japan
Prior art keywords
etching
magnetic field
plasma
substrate
cusp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16982885A
Other languages
Japanese (ja)
Inventor
Ichiro Sasaki
一郎 佐々木
Fumikazu Ito
伊藤 文和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP16982885A priority Critical patent/JPS6230891A/en
Publication of JPS6230891A publication Critical patent/JPS6230891A/en
Pending legal-status Critical Current

Links

Landscapes

  • ing And Chemical Polishing (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To execute efficient dry-etching with less damages and at a high selection ratio by etching a substrate with the high-density plasma in a mirror or cusp magnetic field then etching the substrate with the neutral radicals of the cusp magnetic field. CONSTITUTION:A reactive gas is introduced from an introducing pipe 1 into a plasma generating chamber 2 and microwaves 4 are introduced via a waveguide 3 into the chamber; at the same time, a magnetic field is impressed by coils 5, 9 connecting to DC power sources 10, 12 to form the plasma by which the substrate 8 disposed in a sample chamber 7 is dry-etched. Electric current in the same direction is first passed to the coils 5, 9 to form the mirror magnetic field (not shown) in the chamber 7 by which the plasma ions are increased in the concn. and the high-speed anisotropic etching is executed in the above-mentioned method. The current is thereafter changed over by a switch 11 to pass the current in the opposite direction, thereby forming the cusp magnetic field 34. The substrate 8 is disposed to the neutral plane 40 of the magnetic field 34 and the low-damage high-selection ratio etching is executed by utilizing the neutral radicals.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はプラズマイオンにより基板をエツチングするド
ライエツチング方法に係り、特に高密度プラズマイオン
を主体とした高速、異方性エツチングを施した後に中性
ラジカルを利用し7て低ダメ−・ジ、高選択比エツチン
グを実現すべくしたドライエツチング方法に関するもの
である。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a dry etching method for etching a substrate with plasma ions. This invention relates to a dry etching method that utilizes radicals to achieve low damage and high selectivity etching.

〔発明の背景〕[Background of the invention]

プラズマを利用した半導体プロセスでは、プラズマ密度
を濃縮することにより反応速度の向上が可能となる。そ
の−例として特開昭57−45224に開示される堆積
膜製造法がある。これは第6図に示す如(、適量、適圧
の反応ガスの流通するプラズマ反応室101内に設置さ
れた基板106を、対峙する伍界発生用コイル108 
、109を同一方向に励磁することによって生ずる磁場
領域A、Bの内の比較的低密度領域B近傍に配置し、領
域Bに閉じ込められたプラズマガスイオンにより基板1
06上に効率的に堆積膜を形成するものである。
In semiconductor processes using plasma, reaction speed can be improved by concentrating the plasma density. An example of this is a deposited film manufacturing method disclosed in Japanese Patent Laid-Open No. 57-45224. This is as shown in FIG.
, 109 in the same direction, the plasma gas ions confined in the region B cause the substrate 1 to
06 to form a deposited film efficiently.

半導体LSIの回路パターンの微細化に伴い、エツチン
グは上記の如(、プラズマイオンによるスパッタエツチ
ングを行うものが主流となっているが、基板て入射する
上記イオンによる素子ダメージや選択比低下が生じ、問
題とされている。そのためエツチング過程の大半を上記
の如き、イオンを主体としたスパッタエツチングで行い
、残りをイオンの影響のな(・中性ラジカルによってエ
ツチングする2ステツプのエツチングが推奨されている
が、上記した従来技術ではこれを行うことはできない。
With the miniaturization of semiconductor LSI circuit patterns, etching methods such as those described above (sputter etching using plasma ions have become mainstream), but the ions incident on the substrate cause element damage and decrease in selectivity. Therefore, it is recommended that most of the etching process be performed by sputter etching using ions as mentioned above, and the rest be etched by neutral radicals, which is free from the influence of ions. However, this cannot be done with the above-mentioned conventional technology.

ヱた他の従来技術でも、市販のRFプラズマを用いて、
エツチング過程の大半をイオンによるスパッタエツチン
グで行ない、残りをダメージの少ないケミカルドライエ
ツチングで行うものが採用されているが、マイクロ波に
よる高密度プラズマを用いたもので、上記2ステツプエ
ツチングを行うものは開示されていない。
In other conventional techniques, using commercially available RF plasma,
Most of the etching process is performed by sputter etching using ions, and the rest is performed by chemical dry etching, which causes less damage. However, the method that uses high-density plasma using microwaves and performs the above two-step etching Not disclosed.

〔発明の目的〕[Purpose of the invention]

本発明は上記事情に鑑み″I:創案されたものであり、
プラズマ閉込めによる高密度イオンと、中性ラジカルの
みとにより、主としてマイクロ波を用いて、上記ステッ
プエツチングを行ない、エツチング時の低ダメージ化、
選択比の向上を可能とするドラ・イエッチング方法を提
供することにある。
The present invention was created in view of the above circumstances.
The above-mentioned step etching is performed mainly using microwaves using only high-density ions generated by plasma confinement and neutral radicals, resulting in low damage during etching.
It is an object of the present invention to provide a dry etching method that makes it possible to improve the selectivity.

〔発明の概要〕[Summary of the invention]

本発明は上記目的を達成するために、プラズマ発生室内
に1対の対峙するコイルを同一方向又は逆方向に励磁し
て形成されるミラー磁場又はカスプ磁場を形成し、基板
をまず高密度プラズマイオンの存在する上記ミラー磁場
又はカスプa場内圧配置し、スパッタエツチングをした
後、上記カスプ伍場内の上記プラズマイオンの影響のな
い位置で中性ラジカルによって基板をエツチングしてド
ライエツチングを完成すべくしたドライエツチング方法
を特徴としたものである。
In order to achieve the above object, the present invention creates a mirror magnetic field or a cusp magnetic field by exciting a pair of opposing coils in the same direction or in opposite directions in a plasma generation chamber, and first applies high-density plasma ions to the substrate. After performing sputter etching by arranging the mirror magnetic field or the internal pressure of the cusp a field in the presence of , the substrate was etched by neutral radicals at a position within the cusp field not affected by the plasma ions to complete dry etching. This method is characterized by a dry etching method.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明方法の実施に好適な実施例を図面に基づき
説明する。
Hereinafter, preferred embodiments for carrying out the method of the present invention will be described based on the drawings.

まず本実施例の概要を第1図および第2図により説明す
る、 導入管1からの反応ガスは導波管5からのマイクロ波4
と共にマイクロ波プラズマ発生室2内に導入される。マ
イクロ波プラズマ発生室2の外周側にはコイル5および
9が対峙して配設される。コイル5にはDCt源10が
連結し、コイル9には後に説明するDCz源12がそれ
ぞれ連結する。マイクロ波プラズマ発生室2内の試料室
Z内のコイル5および9に挾まれる位置にはエツチング
されろ基板8が配設される。
First, the outline of this embodiment will be explained with reference to FIG. 1 and FIG.
At the same time, it is introduced into the microwave plasma generation chamber 2. Coils 5 and 9 are arranged facing each other on the outer circumferential side of the microwave plasma generation chamber 2 . A DCt source 10 is connected to the coil 5, and a DCz source 12, which will be described later, is connected to the coil 9. A substrate 8 to be etched is disposed in a sample chamber Z in the microwave plasma generation chamber 2 at a position sandwiched between the coils 5 and 9.

コイル5および9の励磁によりマイクロ波プラズマ発生
室2内にはプラズマが発生するが、コイル5,9が同一
方向に励磁された場合には、第2図に示す如く伍東密度
の高い部分50.51とこの間に挾まれた磁束密度の低
い部分52とが形成される(すなわちミラー磁場55が
形成されるχプラズマイオンは磁束密度の低い部分52
に閉じ込められるためこの部分のプラズマイオン濃度が
高くなる。基板8は図示の如(丁度上記のプラズマイオ
ン濃度の高い部分に配設されるため基板8は高濃度のプ
ラズマイオン疋より反応性スパッタエツチングが行+>
れる−p記条件で約80%以上のエツチングを行った後
、コイル9をコイル5と逆方向に励磁すると、第1図に
示す如く、カスプ磁場54が形成される。カスプ磁場5
4は後記する如くプラズマイオンがカスプ中立面40を
ほとんど越えないため、図示の如(このカスプ中立面4
0以下の位置に基板8を配置することによりイオンの影
響をほとんど受けない中性ラジカルのみによるエツチン
グが行われる。
Plasma is generated in the microwave plasma generation chamber 2 by the excitation of the coils 5 and 9, but when the coils 5 and 9 are excited in the same direction, a portion 50 with high Goto density is generated as shown in FIG. .51 and a region 52 with low magnetic flux density sandwiched therebetween (i.e., the mirror magnetic field 55 is formed).
The plasma ion concentration in this area increases because the plasma ions are confined in the ion. As shown in the figure, the substrate 8 is disposed in the area where the plasma ion concentration is high, so the substrate 8 is subjected to reactive sputter etching due to the high concentration of plasma ions.
When the coil 9 is excited in the opposite direction to the coil 5 after performing etching of about 80% or more under the conditions described above, a cusp magnetic field 54 is formed as shown in FIG. Cusp magnetic field 5
4, as will be described later, since plasma ions hardly cross the cusp neutral surface 40, as shown in the figure (this cusp neutral surface 40
By arranging the substrate 8 at a position below 0, etching is performed using only neutral radicals that are hardly affected by ions.

次九本実施例を更に詳しく説明する。The following nine embodiments will be described in more detail.

第5図<c)t<b)に示す如く、カスプ磁場54内に
挿入された荷電粒子はその進行方向をZとするとカスプ
中立面ao(Z == o)をわずか越えたZttbr
nの位置を越えない範囲内で第5図(α)のf+線およ
び第5図(b)の渦状線の如き軌跡を形成することが知
も八でいる。すなわちこの事実は例えばシューマン、ク
ルーバ、プラズマ物理。
As shown in Fig. 5<c)t<b), the charged particle inserted into the cusp magnetic field 54 reaches Zttbr slightly beyond the cusp neutral plane ao (Z == o), assuming that its traveling direction is Z.
It is well known that loci such as the f+ line in FIG. 5(α) and the spiral line in FIG. 5(b) are formed within a range not exceeding the position n. In other words, this fact is based on, for example, Schumann, Kluba, and plasma physics.

7 、245頁(1965年) (W、Schvurm
a214.tigKltbiver、Plazrna 
Physics、7.2&5.1965)に掲載されて
いる。上記した如く、7.t tLrn以下にはプラズ
マイオンは存在しないためこの部分ではイオンの影響の
ない中性ラジカルのみによるエツチングが行われろ。
7, p. 245 (1965) (W, Schwurm
a214. tigKltbiver, Plazrna
Physics, 7.2 & 5.1965). As mentioned above, 7. Since plasma ions do not exist below t tLrn, etching should be performed in this area using only neutral radicals that are not affected by ions.

。欠に、コイル9に連結するDC電1渾12を説明する
. In short, the DC power supply 12 connected to the coil 9 will be explained.

DC源12は切換スイッチ11.整流器15.電力管1
4.電圧制λ1回路15等とから情呪され、切換tr スイッチ11を操作した際の−Lttに相当するコイル
起電力を押えるためのスローダウン、スローアップ同格
を形成してコイル9をコイル5と同一方向又は逆方向π
励@させる。また電圧制御回路15は設定器16で設定
される電圧基準信号17と分圧器18からの出力′11
信号19とを比較して1力ffi動消号20を出力する
と共に、コンデンサ21の容:k 調uにより電圧の立
上り、立下り時間を任意に設定するように形成される。
The DC source 12 is connected to a changeover switch 11. Rectifier 15. power tube 1
4. Slow down and slow up to suppress the coil electromotive force corresponding to -Ltt when the switching tr switch 11 is operated by the voltage control λ1 circuit 15 etc., and the coil 9 is made the same as the coil 5. direction or opposite direction π
Encourage @. Further, the voltage control circuit 15 outputs the voltage reference signal 17 set by the setting device 16 and the output '11 from the voltage divider 18.
It is formed so that it compares it with the signal 19 and outputs a single power ffi dynamic signal 20, and also sets the rise and fall times of the voltage arbitrarily by adjusting the capacitance of the capacitor 21.

本実t@列ではコイル9を直径240m?7L 、長さ
120m77L、巻数1700ターンに形成した場合に
はインダクタンスLは約6.6X10−’ Hとなり、
コイル9に1OAの電流を流すと、インダクタンスLに
よるt流立上り、立下り時の逆起電力を10v以下にす
るには約1秒の立上り、立下り時間を設定すればよい。
In the real t@ column, coil 9 has a diameter of 240 m? 7L, length 120m77L, and number of turns 1700, the inductance L will be approximately 6.6X10-'H,
When a current of 1 OA is passed through the coil 9, the rise and fall times of about 1 second can be set to make the back electromotive force at the rise and fall of the t current due to the inductance L to be 10 V or less.

次に、本実施例のエツチング方法を更に詳しく説明する
Next, the etching method of this embodiment will be explained in more detail.

プラズマ発生室2内には、通常の反応性スパッタエツチ
ングと同様に基板已に高周波電圧を印加して発生するD
Cバイアス電圧によりイオンを基板8に入射させるか、
又は基板8を70−ティング電位としプラズマポテンシ
ャル(約20V)に相当する電界でイオンを加東し、こ
れを基板8に入射させるかする。上記した如く、エツチ
ング時間の80係が経過するまではコイル519を同一
方向に励磁し反応性スパッタエツチングを行ない、高速
、異方性のあるパターニングを行う。次にコイル9の電
流を下げ、切換スイッチ11で極性を逆転し、′電流を
再び立上げて上記のカスプ磁場54を形成し、磁場に左
右されずに拡散してくる中性ラジカルのみによって等方
性エツチングを続ける。例えば100mm1分で第4図
(α)に示すD=0.5μmのエツチングを行う場合、
上記の切換((+、2Dの位置)までの時間はエツチン
グ開始後約4分となる。この切換時期は上記の如く時間
で判断してもよいが、プラズマの発光分光によって行っ
てもよい。
Inside the plasma generation chamber 2, D is generated by applying a high frequency voltage across the substrate as in normal reactive sputter etching.
Ions are made to enter the substrate 8 by C bias voltage, or
Alternatively, the substrate 8 is set at a potential of 70°, and ions are stimulated by an electric field corresponding to the plasma potential (about 20 V), and the ions are made incident on the substrate 8. As described above, the coil 519 is energized in the same direction until the etching time of 80 minutes has elapsed to perform reactive sputter etching, thereby performing high-speed, anisotropic patterning. Next, the current in the coil 9 is lowered, the polarity is reversed with the changeover switch 11, and the current is raised again to form the above-mentioned cusp magnetic field 54, which is generated only by the neutral radicals that diffuse without being affected by the magnetic field. Continue directional etching. For example, when etching D = 0.5 μm as shown in FIG. 4 (α) in 1 minute at 100 mm,
The time required for the above switching ((+, 2D position)) is approximately 4 minutes after the start of etching. Although the timing of this switching may be determined based on time as described above, it may also be determined based on plasma emission spectroscopy.

中性ラジカルのみによる等方性エツチングは化学反応の
ため、下地に対する選択比は高(、イオン入射によるダ
メージも発生しない。
Isotropic etching using only neutral radicals is a chemical reaction, so the selectivity to the underlying layer is high (and no damage occurs due to ion injection).

第4図(α)に示すが如き異方性エツチングをした後に
、上記の如く等方性エツチングをすることにより第4図
(b)の如くエツチングされる。
After performing anisotropic etching as shown in FIG. 4(α), isotropic etching is performed as described above to obtain etching as shown in FIG. 4(b).

この場合図示の如(0,2Dのサイドエツチングと底部
にR部が形成される。これ等は極めて小さな値のため特
に問題ないが、0.2Dのサイドエツチングは予めレジ
ストパターンをこの量だけ大きくしておくことにより回
避することも可能である。
In this case, as shown in the figure (0.2D side etching and an R part are formed at the bottom. These values are extremely small, so there is no particular problem. However, when performing 0.2D side etching, the resist pattern is enlarged by this amount in advance. This can also be avoided by keeping it in place.

第5図は本発明の他の実施例を示すものである。図にお
いて第1図等と同一符号のものレヱ同−物又は同一機能
の物を示す。
FIG. 5 shows another embodiment of the invention. In the figures, the same reference numerals as in FIG. 1 etc. indicate the same parts or parts with the same functions.

本実施例は第1図と異なりコイル9にDC電源12の如
きものが付設さルないもので、コイル9は常にコイル5
こ逆方向に励磁され、プラズマ発生室2は常にカスプ磁
場54を形成する。
In this embodiment, unlike in FIG.
Excited in the opposite direction, the plasma generation chamber 2 always forms a cusp magnetic field 54.

基板8はプラズマ発生室2に摺動可能に支持される軸5
5に連結する。また軸55はモータ45によって回転す
る偏心カム44により移動可能に形成される。なおモー
タ45にはモータ駆動回路42゜タイマ41がそれぞれ
係合する。
The substrate 8 is supported by a shaft 5 slidably in the plasma generation chamber 2.
Connect to 5. Further, the shaft 55 is movable by an eccentric cam 44 rotated by a motor 45. Note that a motor drive circuit 42 and a timer 41 are respectively engaged with the motor 45.

上記構造により、まず基板8をカスプ中方面40より図
の上方位置(2点鎖線で示す)のプラズマイオンの影響
のある位置に配置し、第1ステツプのパターンエツチン
グを行う。次にモータ45を駆動し、カム44により軸
55を移動し、カスプ中立面40より下の図示の位置(
実線)に基板8を移動するこの移動時期等の調整はモー
タ駆動回路42.タイマ41により行う。上記のカスプ
中立面40以下の位置では上記実施例とは同様に中性ラ
ジカルによる第2ステツプのエツチングが行わ几る。
With the above structure, the substrate 8 is first placed at a position above the cusp center surface 40 in the figure (indicated by the two-dot chain line) where it is affected by plasma ions, and the first step of pattern etching is performed. Next, the motor 45 is driven, and the shaft 55 is moved by the cam 44 to the illustrated position below the cusp neutral surface 40 (
Adjustments such as the timing of moving the board 8 (solid line) are performed by the motor drive circuit 42. This is done by the timer 41. At the position below the cusp neutral plane 40, the second step of etching by neutral radicals is carried out similarly to the above embodiment.

上記の如く、2ステツプのエツチングを行うことにより
、低ダメージ化9選択比の向上が実現され、スループッ
トと歩留の向上し得る効果が上げられろ。
As described above, by performing the two-step etching, it is possible to reduce damage and improve the selectivity, thereby increasing throughput and yield.

なお、上記実施例はプラズマ発生源としてマイクロ波を
用いたが、これに限定するものでなく RF等を使用し
ても購わない。
Note that although microwaves are used as the plasma generation source in the above embodiments, the present invention is not limited to this, and RF or the like may also be used.

〔発明の効果〕〔Effect of the invention〕

以上の説明によって明らかな如く、本発明によれば高速
、異方性エツチングと、それに続(中性ラジカルによる
低ダメージ、高選択比エツチングにより、低ダメージ化
、選択比の向上が図れ、製品の歩留り、スルーブツトを
向上し得る効果がある。
As is clear from the above explanation, according to the present invention, high-speed, anisotropic etching and subsequent (low-damage, high-selectivity etching with neutral radicals) can reduce damage and improve selectivity, thereby improving product quality. This has the effect of improving yield and throughput.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明−実梅例の構成とカスプ磁場を示す正面
断面図、第2図は実施例の構成とミラー磁場を示す正面
断面図、第5図(α)はカスプ磁場における荷電粒子の
移動状態を示す第5図Cb)のZ線上の断面図、第5図
(b)はカスプ磁場における荷電粒子の移動状態を示す
正面図、第4図(cL)はパターンエツチングの1例を
示す断面図、第4図(h)は中性ラジカルによるエツチ
ングの1例を示す1折面図、第5図は本発明の他の実惰
例の構成と作用を示す正面断面図、第6図は従来技術の
1例を示す正面断面図である。 1・・・導入′R12・・・マイクロ波プラズマ発生室
、5・・・導波管、4・・・マイクロ波、5.9・・・
コイル、730.試料室、8・・・基板、10,12・
・・DCC温源11・・・切換スイッチ、15・・・整
流器、14・・・1力管、15・・・′1圧制御回路、
16・・・設定器、17・・・電圧基准信号、181.
2分圧器、19・・・出力電力信号、20・・・電力管
駆動(i号、  21・・・コンデンサ、53・・ベラ
−磁場、34・・・カスプ磁場、55・・・軸、40・
・・カスプ中立面、41・・・タイマ、42・・・モー
タ駆動回路、45・・・モータ、44・・・カム。 7・′7 5、−。
Fig. 1 is a front cross-sectional view showing the configuration of the present invention-Jetume example and the cusp magnetic field, Fig. 2 is a front cross-sectional view showing the configuration of the embodiment and the mirror magnetic field, and Fig. 5 (α) is a charged particle in the cusp magnetic field. 5(b) is a front view showing the moving state of charged particles in the cusp magnetic field, and FIG. 4(cL) is an example of pattern etching. FIG. 4(h) is a cross-sectional view showing an example of etching by neutral radicals, FIG. 5 is a front sectional view showing the structure and operation of another practical example of the present invention, and FIG. The figure is a front sectional view showing an example of the prior art. 1... Introduction 'R12... Microwave plasma generation chamber, 5... Waveguide, 4... Microwave, 5.9...
Coil, 730. Sample chamber, 8... Substrate, 10, 12...
...DCC temperature source 11...changeover switch, 15...rectifier, 14...1 power tube, 15...'1 pressure control circuit,
16... Setting device, 17... Voltage reference signal, 181.
2 Voltage divider, 19... Output power signal, 20... Power tube drive (No.・
...Cusp neutral surface, 41...Timer, 42...Motor drive circuit, 45...Motor, 44...Cam. 7・'7 5,-.

Claims (1)

【特許請求の範囲】[Claims] 1、プラズマ発生室内に設置された基板をプラズマによ
りエッチングするドライエッチング方法において、対峙
するコイルを同一方向又は逆方向に励磁することにより
上記プラズマ発生室内に生ずるミラー磁場又はカスプ磁
物内の高密度プラズマイオンにより上記基板のエッチン
グを行った後、上記プラズマイオンの影響のほとんどな
い上記カスプ磁場の中性ラジカルにより基板をエッチン
グしてドライエッチングを完了するようにすることを特
徴とするドライエッチング方法。
1. In a dry etching method in which a substrate placed in a plasma generation chamber is etched by plasma, high density mirror magnetic fields or cusp magnetic fields are generated in the plasma generation chamber by exciting opposing coils in the same or opposite directions. A dry etching method characterized in that after etching the substrate with plasma ions, the substrate is etched with neutral radicals of the cusp magnetic field that are hardly affected by the plasma ions to complete the dry etching.
JP16982885A 1985-08-02 1985-08-02 Dry etching method Pending JPS6230891A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16982885A JPS6230891A (en) 1985-08-02 1985-08-02 Dry etching method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16982885A JPS6230891A (en) 1985-08-02 1985-08-02 Dry etching method

Publications (1)

Publication Number Publication Date
JPS6230891A true JPS6230891A (en) 1987-02-09

Family

ID=15893661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16982885A Pending JPS6230891A (en) 1985-08-02 1985-08-02 Dry etching method

Country Status (1)

Country Link
JP (1) JPS6230891A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63299338A (en) * 1987-05-29 1988-12-06 Matsushita Electric Ind Co Ltd Plasma treatment equipment
JPH01184827A (en) * 1988-01-13 1989-07-24 Hitachi Ltd Method and device for microwave plasma processing
US4926791A (en) * 1987-04-27 1990-05-22 Semiconductor Energy Laboratory Co., Ltd. Microwave plasma apparatus employing helmholtz coils and ioffe bars
JPH02310383A (en) * 1989-05-08 1990-12-26 Applied Materials Inc Magnetically reinforced plasma reaction sys- tem for treatment of semiconductor
US5133825A (en) * 1987-04-08 1992-07-28 Hi Tachi, Ltd. Plasma generating apparatus
EP0497563A2 (en) * 1991-01-29 1992-08-05 Hitachi, Ltd. Surface processing method using charged or not charged particles and apparatus for carrying out the same
US5203959A (en) * 1987-04-27 1993-04-20 Semiconductor Energy Laboratory Co., Ltd. Microwave plasma etching and deposition method employing first and second magnetic fields
US5421891A (en) * 1989-06-13 1995-06-06 Plasma & Materials Technologies, Inc. High density plasma deposition and etching apparatus

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5133825A (en) * 1987-04-08 1992-07-28 Hi Tachi, Ltd. Plasma generating apparatus
US5685913A (en) * 1987-04-27 1997-11-11 Semiconductor Energy Laboratory Co., Ltd. Plasma processing apparatus and method
US4926791A (en) * 1987-04-27 1990-05-22 Semiconductor Energy Laboratory Co., Ltd. Microwave plasma apparatus employing helmholtz coils and ioffe bars
US5203959A (en) * 1987-04-27 1993-04-20 Semiconductor Energy Laboratory Co., Ltd. Microwave plasma etching and deposition method employing first and second magnetic fields
US5858259A (en) * 1987-04-27 1999-01-12 Semiconductor Energy Laboratory Co., Ltd. Plasma processing apparatus and method
US6217661B1 (en) 1987-04-27 2001-04-17 Semiconductor Energy Laboratory Co., Ltd. Plasma processing apparatus and method
US6423383B1 (en) 1987-04-27 2002-07-23 Semiconductor Energy Laboratory Co., Ltd. Plasma processing apparatus and method
US6838126B2 (en) 1987-04-27 2005-01-04 Semiconductor Energy Laboratory Co., Ltd. Method for forming I-carbon film
JPS63299338A (en) * 1987-05-29 1988-12-06 Matsushita Electric Ind Co Ltd Plasma treatment equipment
JPH01184827A (en) * 1988-01-13 1989-07-24 Hitachi Ltd Method and device for microwave plasma processing
JPH02310383A (en) * 1989-05-08 1990-12-26 Applied Materials Inc Magnetically reinforced plasma reaction sys- tem for treatment of semiconductor
US5421891A (en) * 1989-06-13 1995-06-06 Plasma & Materials Technologies, Inc. High density plasma deposition and etching apparatus
EP0497563A2 (en) * 1991-01-29 1992-08-05 Hitachi, Ltd. Surface processing method using charged or not charged particles and apparatus for carrying out the same
US5462635A (en) * 1991-01-29 1995-10-31 Hitachi, Ltd. Surface processing method and an apparatus for carrying out the same

Similar Documents

Publication Publication Date Title
US6471821B2 (en) Plasma reactor and method
US5345145A (en) Method and apparatus for generating highly dense uniform plasma in a high frequency electric field
JPH08181125A (en) Plasma treatment and device thereof
JPH08288259A (en) Helicon plasma system and dry etching method using the same
US5332880A (en) Method and apparatus for generating highly dense uniform plasma by use of a high frequency rotating electric field
JP2957403B2 (en) Plasma etching method and apparatus
JPS6230891A (en) Dry etching method
JP2703432B2 (en) Dry etching method for perovskite oxide film
JP3217875B2 (en) Etching equipment
JPH0362517A (en) Microwave plasma processor
JP2002280369A (en) Apparatus and method of forming oxide film on silicon substrate
JP2001244250A (en) Method and apparatus for surface treatment
JP2002222801A (en) Device and method for plasma processing
JP2750430B2 (en) Plasma control method
JP2623827B2 (en) Microwave plasma processing equipment
TWI796727B (en) Plasma treatment device and plasma treatment method
JPH0684835A (en) Method and apparatus for surface treatment
JPH0527967B2 (en)
JPH0831799A (en) Etching device
JPS6015931A (en) Reactive ion etching process
JP2639292B2 (en) ECR plasma processing equipment
JP2004079600A (en) Plasma processing apparatus and method
JPH07183095A (en) Microwave plasma processing device
JPS642321A (en) Plasma etching device
JPH06111242A (en) Fabrication of thin film magnetic head