JPS6230826A - Method for recovering valuable matter from scrap alloy - Google Patents

Method for recovering valuable matter from scrap alloy

Info

Publication number
JPS6230826A
JPS6230826A JP60170737A JP17073785A JPS6230826A JP S6230826 A JPS6230826 A JP S6230826A JP 60170737 A JP60170737 A JP 60170737A JP 17073785 A JP17073785 A JP 17073785A JP S6230826 A JPS6230826 A JP S6230826A
Authority
JP
Japan
Prior art keywords
arsenic
selenium
recovering
scrap alloy
scrap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60170737A
Other languages
Japanese (ja)
Other versions
JPH0373608B2 (en
Inventor
Kiyotoki Uehara
上原 精時
Nobuo Iwasaki
岩崎 信男
Shigeto Inoue
成人 井上
Itsuji Akashi
明石 逸二
Tomoyuki Deguchi
智之 出口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Shinko Corp
Shinko Chemical Co Ltd
Original Assignee
Shinko Chemical Co Ltd
Shinko Chemical Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Chemical Co Ltd, Shinko Chemical Industries Co Ltd filed Critical Shinko Chemical Co Ltd
Priority to JP60170737A priority Critical patent/JPS6230826A/en
Publication of JPS6230826A publication Critical patent/JPS6230826A/en
Publication of JPH0373608B2 publication Critical patent/JPH0373608B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To inhibit the corrosion of an device and the worsening of work environment to the minimum extent by dissolving a crushed scrap alloy in an alkali metallic hydroxide soln., oxidizing the resulting soln. and recovering a part of the constituent metallic elements of the alloy as metal. CONSTITUTION:A crushed scrap Se-As alloy consisting of <=40wt% As and the balance essentially Se is dissolved in a sodium hydroxide soln. A gaseous mixture of an inert gas with a preferably one of air, oxygen or ozone is used as an oxidizing agent and blown into the resulting soln. Metallic Se is precipitated by an oxidation reaction at 5-70 deg.C, preferably 20-40 deg.C, separated from As by filtration and recovered.

Description

【発明の詳細な説明】 〔利用される技術分野〕 この発明は乾式複写機に用いられる感光体成形時に目的
の生成物から逸脱した特性をもつ不良生成物、蒸着残留
物又は使用済乾式複写機の感光体ドラムから剥離された
セレン、砒素を主として含有するスクラップ合金からセ
レン、砒素などの有価物を分離回収する方法に関するも
のである。
[Detailed Description of the Invention] [Technical Field Applied] This invention is directed to the production of defective products, vapor deposition residues, or used dry copying machines that have characteristics that deviate from the intended product during the molding of photoreceptors used in dry copying machines. The present invention relates to a method for separating and recovering valuable materials such as selenium and arsenic from scrap alloy mainly containing selenium and arsenic peeled off from photoreceptor drums.

〔従来技術及び問題点〕[Prior art and problems]

従来より知られている技術としては特開昭59−350
06号公報が知られており、この方法はスクラップ合金
に濃硝酸を加えて加熱溶解後、蒸発乾固を行い、金属酸
化物を得る方法で濃硝酸を用いて加熱溶解を行うため、
設備の腐蝕が甚々しく、しかもこの気化ガスは作業場内
外に流出するおそれがあり、作業環境を良好に保持し難
い問題点が残る。
The conventionally known technology is JP-A-59-350.
No. 06 is known, and in this method, concentrated nitric acid is added to the scrap alloy, heated and melted, and then evaporated to dryness to obtain a metal oxide.
The equipment is severely corroded, and the vaporized gas may leak into and out of the workplace, leaving the problem that it is difficult to maintain a good working environment.

また特公昭53−37294号公報においてスクラップ
セレン−砒素合金を20〜25%アルカリ金属水酸化物
溶液に溶解し、次に酸を加え溶液のpI−Iを2以下に
し、セレン−砒素含有物質を沈澱させることによって純
度の高いセレン含有物質の沈澱を生成させることが知ら
れているが、この方法はセレン砒素合金として回収する
ものであり、また回収操作時に他の不純物が混入するお
それがある。
Furthermore, in Japanese Patent Publication No. 53-37294, a scrap selenium-arsenic alloy is dissolved in a 20 to 25% alkali metal hydroxide solution, and then an acid is added to make the pI-I of the solution 2 or less, and a selenium-arsenic containing material is dissolved. It is known to produce precipitates of highly pure selenium-containing substances by precipitation, but this method recovers selenium-arsenic alloys, and there is a risk that other impurities may be mixed in during the recovery operation.

また一定の組成物の合金しか得られない。Also, only alloys with a certain composition can be obtained.

〔解決しようとする問題点〕[Problem to be solved]

この発明は前述の先行技術のように設備の腐蝕や、作業
環境の悪化を最少限におさえ、かつ、2種以上の有価物
を分離しながら回収することを目的とするものである。
The purpose of this invention is to minimize corrosion of equipment and deterioration of the working environment as in the prior art described above, and to separate and recover two or more types of valuables.

〔問題点を解決するための手段〕[Means for solving problems]

この出願の第1番目の発明はスクラップ合金の破砕物を
アルカリ金属水酸化物溶液に溶解し、その溶液を酸化す
ることKより、このスクラップ合金中に含まれる元素の
うち、少なくとも一種の金属元素を金属として捕集回収
し、残余の金属元素と分離させることを特徴とするスク
ラップ合金から有価物を回収する方法である。
The first invention of this application is to dissolve a crushed material of a scrap alloy in an alkali metal hydroxide solution and oxidize the solution. This is a method for recovering valuables from scrap alloy, which is characterized by collecting and recovering the scrap alloy as a metal and separating it from the remaining metal elements.

また他の発明はセレンと砒素がjif比10%以下を含
有するスクラップ合金の破砕物をアルカリ金属酸化物溶
液に溶解し、この溶液を酸化することKより金属セレン
を回収し、砒素から分離させこの回収に際し発生するf
液を強酸性化し、これを還元することKよりこのろ液か
ら金属セレンを再回収することを特徴とするスクラップ
合金から有価物を回収する方法である。
In another invention, a crushed material of a scrap alloy containing selenium and arsenic with a jif ratio of 10% or less is dissolved in an alkali metal oxide solution, and this solution is oxidized to recover metallic selenium from K and separate it from arsenic. F generated during this collection
This is a method for recovering valuable materials from scrap alloy, which is characterized by making the liquid strongly acidic and reducing it to recover metallic selenium from the filtrate.

また他の発明はセレンと砒素を含をするスクラップ合金
の破砕物をアルカリ金属酸化物溶液vr−溶解し、この
溶液を酸化することにまり金屑セレンを回収し砒素より
分離させ、この際発生するろ液を強酸性化しこれを還元
することKよってこのt1液より金属セレンを再回収し
、この金属セレンを再回収した残余のFffK硫化物を
添加しこのろ液中に雑存する砒素を硫化砒素として回収
することを特徴とするスクラップ合金から有価物を回収
する方法である。
In another invention, a crushed material of a scrap alloy containing selenium and arsenic is dissolved in an alkali metal oxide solution, and this solution is oxidized to collect selenium scraps and separate them from arsenic. By making the filtrate strongly acidified and reducing it, metallic selenium is recovered from this t1 liquid, and the residual FffK sulfide from which this metallic selenium has been recovered is added to sulfide the arsenic present in this filtrate. This is a method for recovering valuable materials from scrap alloy, which is characterized by recovering as arsenic.

また他の発明はスクラップ合金の破砕物をアルカリ金属
水酸化物溶液に溶解し、その溶液を酸化することKより
、スクラップ合金中に含まれる元素のうち少な(とも一
つの金属元素を金属として残余の金属元素と分離して回
収し、この回収時に発生するろ液を酸で中和し、前記分
離した金属元素と同種の金属元素を結晶質として析出さ
せ、この結晶質の金屑元素を回収することを特徴とする
スクラップ合金から有価物を回収する方法である。
Another invention involves dissolving a crushed material of a scrap alloy in an alkali metal hydroxide solution and oxidizing the solution. The filtrate generated during this recovery is neutralized with acid, the same type of metal element as the separated metal element is precipitated as a crystal, and this crystalline scrap gold element is recovered. This is a method for recovering valuables from scrap alloy.

含有するスクラップ合金の破砕物をアルカリ金属水酸化
物溶液に溶解し、この溶液を酸化することKより金属セ
レンを回収し砒素から分離し、この回収時に発生するr
液を中和しろ液中に赤色セレンを析出させ、これを回収
した後、この赤色セレンを析出回収した残余のf液を強
酸性化し、これに硫化剤を添加することによりf液中に
残存している砒素を硫化砒素として回収することを特徴
とするスクラップ合金から有価物を回収する方法である
By dissolving the crushed material of scrap alloy contained in an alkali metal hydroxide solution and oxidizing this solution, metallic selenium is recovered from K and separated from arsenic, and the r generated during this recovery is
After neutralizing the liquid and precipitating red selenium in the filtrate and recovering it, the remaining F liquid after the red selenium was precipitated and recovered is strongly acidified, and by adding a sulfiding agent to this, it is possible to make the red selenium remain in the F liquid. This is a method for recovering valuable materials from scrap alloy, which is characterized by recovering arsenic in the form of arsenic sulfide.

今この発明を更に具体的に説明する。This invention will now be explained in more detail.

先づ、第1番目の特定発明(特許請求の範囲第1項)と
しては、他の4つの発明にそっくりそのま又含まれるも
のであり、 アルカリ金属水酸化物と1〜ては水酸化ナトリウム溶液
を用いる。またスクラップ合金としては、セレン−砒素
合金スクラップを用いるものでその合金中砒素は40重
量%以下、残余の殆んどがセレンとしである。
First, the first specified invention (Claim 1) is included in the other four inventions in its entirety, and includes an alkali metal hydroxide and sodium hydroxide. Use a solution. The scrap alloy used is selenium-arsenic alloy scrap, in which the arsenic content in the alloy is 40% by weight or less, and most of the remainder is selenium.

次に前記溶液の酸化剤としては、空気、酸素、オゾンの
うちの任意の一種に不活性ガスを混合したガス体をゆっ
くり前記溶液中に吹き込んで行う。
Next, as an oxidizing agent for the solution, a gas mixture of any one of air, oxygen, and ozone and an inert gas is slowly blown into the solution.

若しくは、空気、酸素、オゾンのうちの任意の一種に不
活性ガスを混合した雰囲気において、過酸化水素味、次
亜塩素酸ナトリウムなどの酸化剤を用いて、酸化反応を
行う。また酸化反応温度は大気圧で5乃至70℃好まし
くは20乃至40での範囲若くはオートクレープ中で加
圧下におい1行う。而してr過して金属セレンとr液に
分離する。
Alternatively, the oxidation reaction is carried out using an oxidizing agent such as hydrogen peroxide or sodium hypochlorite in an atmosphere in which an inert gas is mixed with any one of air, oxygen, and ozone. The oxidation reaction temperature ranges from 5 to 70° C., preferably from 20 to 40° C., or is carried out under pressure in an autoclave. Then, it is separated into metallic selenium and r liquid.

第2番目の発明(特許請求の範囲矛8項)第1番目の発
明のスクラップ合金と同一のセレン−砒素合金スクラッ
プであって、これを出発物として用い、第1番目の発明
を牙1工程とし、第1番目発明により金属セレンを回収
した残りの若干のセレン及び砒素を含むP液を強酸性化
剤を添加することによって強酸性溶液(pH1〜2)と
し次に還元剤を添加して、r液から再び金属セレンを回
収する方法であり、強酸性化剤としては硫酸、塩酸のう
ちの一種を用い、還元剤としてはヒドラジン、二酸化硫
黄、ヒドロキシルアミン、チオ尿素などで代表される還
元剤のうちの一種を用いるこの第2番目のセレン−砒素
のうち、この比については特に限定はないが好ましくは
砒素の含有量が10%以下であることが好ましい。
Second invention (Claim 8) A selenium-arsenic alloy scrap that is the same as the scrap alloy of the first invention, and using this as a starting material, the first invention can be processed in one step. Then, the P solution containing some selenium and arsenic remaining after recovering metallic selenium according to the first invention is made into a strong acidic solution (pH 1 to 2) by adding a strong acidifying agent, and then a reducing agent is added. This is a method of recovering metallic selenium from the r-liquid, using one of sulfuric acid and hydrochloric acid as a strong acidifying agent, and reducing agents such as hydrazine, sulfur dioxide, hydroxylamine, and thiourea. In this second selenium-arsenic ratio using one of the selenium-arsenic agents, there is no particular limitation on this ratio, but preferably the arsenic content is 10% or less.

牙3番目の発明(%許請求の範囲第11項)第2番目の
方法に加えて、2度金属セレンを分離させた残余のf液
中に硫化剤を添加して硫化砒素として砒素をP液より回
収する方法であり硫化剤としては硫化水素又は硫化す)
 IJウムを用いる方法である。
Fang's third invention (Claim 11) In addition to the second method, a sulfiding agent is added to the remaining f liquid after separating metallic selenium twice to convert arsenic into arsenic sulfide. It is a method of recovering from liquid, and the sulfurizing agent is hydrogen sulfide or sulfurizing agent)
This is a method using IJum.

牙4番目の発明(特許請求の範囲第13項)前記21番
目の発明を矛l工程とし、次に残余のろ液に強酸性化物
質を加えて中和し、P液中に先に、tl工程で分離した
金属と同種の金属を結晶質として析出させて分離する方
法であり、前記酸性化物質としては22番目発明と同様
のものを用いる。
Fang 4th invention (Claim 13) The above 21st invention is a contradictory step, and then a strong acidifying substance is added to the remaining filtrate to neutralize it, and in the P solution, first, This is a method in which the same type of metal as the metal separated in the tl step is separated by precipitation as a crystalline substance, and the same acidifying substance as in the 22nd invention is used as the acidifying substance.

この方法はスクラップ合金中に砒素がlO乃至40重量
%含むセレン−砒素スクラップ合金な出発物質として用
いるときに適し、結晶質として析出した金属セレンは赤
色セレンである。
This method is suitable for use as a starting material for a selenium-arsenic scrap alloy containing 10 to 40% by weight of arsenic in the scrap alloy, and the metallic selenium precipitated as a crystalline substance is red selenium.

第5番目の発明(特許請求の範囲牙16項)前記牙4番
目方法発明の最後のろ液に第3番目発明と同様に硫化剤
を加え、硫化砒素として、r液より分離する。%に砒素
が10〜40%含有するセレン−砒素スクラップ合金の
処理忙適する。
Fifth Invention (Claim 16) A sulfurizing agent is added to the last filtrate of the fourth method invention in the same manner as in the third invention, and arsenic sulfide is separated from the r liquid. It is suitable for processing selenium-arsenic scrap alloys containing 10-40% arsenic.

〔第1番目発明の効果〕 紙上のようKこの発明の方法によりセレン砒素合金より
なるスクラップ合金よりセレンを回収したるところ金属
セレンについては72%〜88%の収率であり、かつ回
収された金属セレンの純度98〜99.9%のものが得
られる。
[First Effect of the Invention] As stated in the paper, selenium was recovered from scrap alloy made of selenium arsenic alloy by the method of this invention, and the yield of metallic selenium was 72% to 88%. Metallic selenium with a purity of 98 to 99.9% can be obtained.

酸化反応を行う際の反応温度と回収率の関係は第2図に
示す通りであり、また酸化剤に過酸化水素を用いた時の
酸化剤の使用量と反応温度との関係は矛3図に示す通り
であって、酸化反応の温度は5〜70 ’C好ましくは
20〜40℃が好適であり、反応温度が常温に近く取扱
い易(、収率も良(1゜ また酸化剤としては比較的価格の低廉なものでよく、ま
た反応雰囲気も空気、酸素など低廉なガス体でよ(、回
収コストを低(おさえることができる。
The relationship between the reaction temperature and the recovery rate when performing an oxidation reaction is as shown in Figure 2, and the relationship between the amount of oxidizing agent used and the reaction temperature when hydrogen peroxide is used as the oxidizing agent is shown in Figure 3. As shown in , the temperature of the oxidation reaction is preferably 5 to 70°C, preferably 20 to 40°C. It can be relatively inexpensive, and the reaction atmosphere can be an inexpensive gas such as air or oxygen (recovery costs can be kept low).

殊に酸化方法として空気を用いるときは、これを供給す
る装置の費用のみとなり一層のコスト低減がはかれる。
In particular, when air is used as the oxidation method, the only cost involved is the equipment that supplies it, resulting in further cost reduction.

酸化方法として過酸化水素又は次亜塩素酸ナトリウムな
どの酸化剤を用いた場合は酸化反応が迅速で歩留りがよ
い。
When an oxidizing agent such as hydrogen peroxide or sodium hypochlorite is used as the oxidation method, the oxidation reaction is rapid and the yield is high.

またオートクレープによる加圧下において酸化を行5と
酸化反応が促進される。
Further, the oxidation reaction is promoted by performing oxidation 5 under pressure using an autoclave.

〔才2番目の発明の効果〕 この発明の効果としては、ii番目の発明の効果の外、
第1番目の方法により戸別した溶液に前述のような処理
を加えることにより更に金属セレンを回収することがで
き、′特にスクジッグ合金傾砒素が10%以下で残りが
セレンの合金におい壬、優れた回収率を示す。
[Effects of the second invention] In addition to the effects of the second invention, the effects of this invention include:
It is possible to further recover metallic selenium by applying the above-mentioned treatment to the solution separated by the first method, and 'in particular, the Scjig alloy contains less than 10% arsenic and the rest has an excellent odor of selenium alloy. Shows the recovery rate.

また強酸性化する方法に用いられる強酸性化剤及び還元
剤も入手し易く、市販のものが利用でき特に複雑な設備
も必要としない。
Further, the strong acidifying agent and reducing agent used in the method of strongly acidifying are also easily available, commercially available ones can be used, and no particularly complicated equipment is required.

この方法により純度99.9%の金属セレンを得ること
ができる。
By this method, metallic selenium with a purity of 99.9% can be obtained.

この方法の還元反応においては80℃前後とすることK
よって還元反応が最も効果的である。
In the reduction reaction of this method, the temperature should be around 80℃.
Therefore, reduction reaction is the most effective.

〔第3番目の発明の効果〕 第2番目の発明の方法により戸別された溶液圧硫化物を
添加することによって、溶液中に含有す4〜99%を硫
化砒素として回収できる効果を有する。
[Effects of the Third Invention] By adding the solution-pressure sulfide separated door to door by the method of the second invention, 4 to 99% of the content in the solution can be recovered as arsenic sulfide.

〔牙4番目の発明の効果〕 この発明は、1−1番目の方法により戸別した溶液を中
和するだけで第1番目の方法によって分離した金属と同
種の金属を結晶質として析出分離できる。また酸性化剤
は単に注入添加でよく極めて操作が容易である。
[Effect of the Fourth Invention] According to the present invention, the same type of metal as the metal separated by the first method can be precipitated and separated as a crystalline substance by simply neutralizing the solution separated by the method 1-1. Further, the acidifying agent can be simply added by injection, and the operation is extremely easy.

またこの方法においてはスクラップ合金とじてセレン9
0〜60%、砒素10〜40%といった比較的砒素を高
含有するものを出発物質として処理する湯今に優れてお
り金属セレンの回収率は97〜98.8%で純度97〜
99%のものが得られる。
In addition, in this method, selenium 9 is used as scrap alloy.
It is excellent at treating materials with a relatively high arsenic content, such as 0-60% arsenic and 10-40% arsenic, as a starting material, and the recovery rate of metallic selenium is 97-98.8% and purity is 97-97%.
99% of them are obtained.

また中和剤として使用される酸性化剤も極くありふれた
硫酸、塩酸などでよく、回収コストを低くおさえられる
Furthermore, the acidifying agent used as a neutralizing agent may be the very common sulfuric acid, hydrochloric acid, etc., and the recovery cost can be kept low.

〔矛5番目の発明の効果〕 この発明においては、矛4番目の方法によりろ別した残
余の溶液K、再び酸性化剤を添加して、溶液を強酸性液
とし、後これに硫化剤を加え″c溶液中に含有する砒素
を硫化砒素として回収するもので、全過程において、前
記矛4番目の発明の効果の外、溶液中に含有する砒素を
硫化砒素として回収でき、砒素の回収率は95%〜98
%となる効果を有する。
[Effect of the fifth invention] In this invention, an acidifying agent is added to the remaining solution K filtered by the fourth method to make the solution a strong acidic liquid, and then a sulfurizing agent is added to the solution. In addition, the arsenic contained in the solution is recovered as arsenic sulfide.In addition to the effect of the fourth invention, the arsenic contained in the solution can be recovered as arsenic sulfide in the entire process, and the recovery rate of arsenic is improved. is 95%~98
It has an effect of %.

〔実験例〕[Experiment example]

実験例としては矛3番目の方法発明中に第1番目、第2
番目の発明がそれぞれ含まれており、また矛5番目の方
法発明中に牙1番目、矛4番目の発明が含まれるため、
矛3番目と第5番目発明の実験例を次に示す。
As an example of an experiment, the first and second methods were invented during the third method invention.
The first invention of Fang and the fourth invention of Fang are included in the method invention of No. 5, respectively.
Experimental examples of the third and fifth inventions are shown below.

a)第1番目乃至矛3番目発明の実験例実験例1 25%水酸化ナトリウム溶025gを60℃に加熱し、
セレン98重f[%、砒素2ft%を含有するスクラッ
プ合金10Kgを溶解し、非溶解物を濾過後、空気0.
2 N1′/ mを3日間溶液中に突沸させ酸化して、
再びP別したところ金属セレン8.6−1純度99.9
%以上(砒素は10 p、p、m含有)のものを得た。
a) Experimental examples of the first to third inventions Experimental example 1 025g of 25% sodium hydroxide solution was heated to 60°C,
10kg of scrap alloy containing 98% selenium and 2ft% arsenic was melted, and after filtering undissolved materials, 0.0% of air was dissolved.
2 N1'/m was oxidized by bumping into the solution for 3 days,
When P was separated again, metallic selenium was found to be 8.6-1, purity 99.9.
% or more (arsenic contains 10 p, p, m).

次にr別された残余のろ液に希硫酸を20.5Kgを加
え、pH1,5の溶液としだ後80′Cπ加熱し、還元
剤として亜硫酸ガス1.75にgを液中に吹き込んだと
ころ、金属セレン1.0Kg、純度99.9%(含有砒
素5 p、p、m )を得た。更にP別された溶液に硫
加水素200yを吹き込み、f別したところ360yの
硫化砒素を得た。これらの方法の全体において、セレン
収率は98%、砒素収率は99%であった。
Next, 20.5 kg of diluted sulfuric acid was added to the remaining filtrate separated by r to form a solution with a pH of 1.5, and then heated at 80'Cπ, and 1.75 g of sulfur dioxide gas was blown into the liquid as a reducing agent. As a result, 1.0 kg of metallic selenium with a purity of 99.9% (arsenic content: 5 p, p, m) was obtained. Furthermore, 200 y of hydrogen sulfide was blown into the P-separated solution and 360 y of arsenic sulfide was obtained after f-separating. In all of these methods, the selenium yield was 98% and the arsenic yield was 99%.

実験例2 実験例1と同様のスクラップ合金を同一の溶液により溶
解し、オートクレープに入れ、空気加圧5Kg/a11
のもとで酸化したところ、純度99.9%(砒素10 
p、p−mを含む)以上の金属セレン8.7−を得た。
Experimental Example 2 The same scrap alloy as in Experimental Example 1 was dissolved in the same solution, placed in an autoclave, and heated with air at 5 kg/a11.
When oxidized under
p, p-m) or more was obtained.

更KP液に希硫酸20.5Kgを加え溶液のpH1,5
とした後、80′Cに加熱し、亜硫酸ガス1.70 K
gを吹き込んだところ、純度99.9%(砒素7 p、
p、m)以上の金属セレン1.08 Kgを得た。更に
このろ液を、実験例1と同じ処理をしたところ硫化砒素
360yを得た。セレンの収率は98%、砒素の収率は
99%であった。
Furthermore, add 20.5 kg of dilute sulfuric acid to the KP solution and adjust the pH of the solution to 1.5.
After that, it was heated to 80'C and sulfur dioxide gas was added to 1.70K.
When g was blown into it, the purity was 99.9% (arsenic 7p,
1.08 Kg of metallic selenium having a particle size of p, m) or more was obtained. Furthermore, this filtrate was treated in the same manner as in Experimental Example 1 to obtain 360y of arsenic sulfide. The yield of selenium was 98% and the yield of arsenic was 99%.

実験例3 実験例1と同様のスクラップ合金爵解液に酸素0、I 
Ni7m  を3日間前記溶液中に突沸させ酸化したと
ころ、純度99.9%′(砒素9p、p、m)以上の金
属セレン8.7Kgを得た。さらにf液を35%塩酸1
8Kgを添加しpH2の強酸性とした後、80でに加熱
し、更に抱水ヒドラジンを添加したところ金属セレ70
.7 Kgを得た。更にこのf液に硫化ナトリウム約4
60yを添加したところ硫化砒素370yを得た。セレ
ンの収率9670、砒素の収率は99%であった。
Experimental Example 3 Oxygen 0, I was added to the same scrap alloy solution as in Experimental Example 1.
When Ni7m was oxidized by bumping into the solution for 3 days, 8.7 kg of metallic selenium with a purity of 99.9%' (arsenic 9p, p, m) or more was obtained. Furthermore, add 1 part of 35% hydrochloric acid to the f solution.
After adding 8 kg of hydrazine to make it strongly acidic to pH 2, it was heated to 80°C and hydrazine hydrate was added.
.. 7 Kg was obtained. Furthermore, approximately 4% sodium sulfide is added to this f-liquid.
When 60y was added, 370y of arsenic sulfide was obtained. The yield of selenium was 9670, and the yield of arsenic was 99%.

実験例4 実験例1と同じスクラップ合金を同一の方法により溶解
し、非溶解物をr別した後、室温下で30%過酸化水素
水3.751を約1.5時間かけ又添加したところ、金
属セレン8.7Kg、純度99.9%(含有砒素10 
p、p、m)以上のものを得た。更にこのF?[K硫酸
20.5 KgでpH1,5とした後、80 ’CK加
熱し、還元剤として亜硫酸ガス約2.10塘をm液中に
吹き込み金属セレン0.9Kgを得た。更にそのろ液に
実験例1と同じ処理をしたところ硫化砒素360yを得
た。セレンの収率は98.0%、砒素の収率は99%で
あった。
Experimental Example 4 The same scrap alloy as Experimental Example 1 was melted by the same method, and after separating the undissolved materials, 3.75% of 30% hydrogen peroxide solution was added at room temperature for about 1.5 hours. , 8.7 kg of metallic selenium, purity 99.9% (contains arsenic 10
p, p, m) or more were obtained. Furthermore, this F? [After adjusting the pH to 1.5 with 20.5 kg of potassium sulfuric acid, it was heated for 80'CK, and about 2.10 tons of sulfur dioxide gas was blown into the m solution as a reducing agent to obtain 0.9 kg of metallic selenium. Further, the filtrate was treated in the same manner as in Experimental Example 1 to obtain 360y of arsenic sulfide. The yield of selenium was 98.0% and the yield of arsenic was 99%.

実験例5 25%水酸化ナトリウム溶液25Jを60′Cに加熱し
、セレン95重f%、砒素5重f%を含有するスクラッ
プ合金10KIIを溶解する。非溶解物をf側抜、この
溶液に室温下で30%過酸化水素水3.5 !Iを約1
.5時間かけて注入したところ金属セV 78.4 K
g、純度99.9%(砒素含有6 p、p、m)のもの
を得た。さらにこのろ別に希硫酸20.5 KgでpH
1,,7とした後s o ’cに加熱し、亜硫酸ガス約
2.0 Kgを液中に吹き込んだところ、金属セレン0
.9−1純度は99.9%(砒素含有5p、p、m)の
ものを得た。更にそのろ液に硫化水素ガス約500ノを
液中に吹き込んだ所、硫化砒素880/を得た。セレン
収率97゜9%、砒素収率99%であった。
Experimental Example 5 25J of 25% sodium hydroxide solution is heated to 60'C to dissolve scrap alloy 10KII containing 95% by weight of selenium and 5% by weight of arsenic. Undissolved substances were removed from the f side, and 3.5 ml of 30% hydrogen peroxide solution was added to this solution at room temperature. I about 1
.. When injected over 5 hours, the metal cell V was 78.4 K.
g, purity 99.9% (arsenic content: 6 p, p, m) was obtained. Furthermore, apart from this filtration, add 20.5 kg of diluted sulfuric acid to adjust the pH.
After setting the temperature to 1,,7, it was heated to SO'C and about 2.0 kg of sulfur dioxide gas was blown into the liquid, and 0 of metallic selenium was found.
.. 9-1 purity was 99.9% (arsenic content: 5p, p, m). Furthermore, when about 500 tons of hydrogen sulfide gas was blown into the filtrate, 880 tons of arsenic sulfide was obtained. The selenium yield was 97.9% and the arsenic yield was 99%.

牙1番目発明、矛4番目発明及び第5番目発明の実験例 実験例6 25%水酸化ナトリウム101を60℃に加熱し、セレ
ン70重量%、砒素30jtf%を含有するスクラップ
合金10〜を溶解する。この溶液を濾過抜水20gで希
釈した後、室温下で30%過酸化水素141を約6時間
かけて添加したところ純度98.4%(砒素1.5%を
含む)の金属セレン6・O〜を得た。さらにこのろ液に
希硫酸を加えて中和したところ、純度99.9%(砒素
20 p、p、m)の赤色セレン1.0 Kgを得た。
Experimental Examples of the First Fang Invention, the Fourth Invention, and the Fifth Invention Experimental Example 6 Heat 25% sodium hydroxide 101 to 60°C and dissolve scrap alloy 10 containing 70% by weight of selenium and 30jtf% of arsenic. do. After diluting this solution with 20 g of filtered water, 30% hydrogen peroxide 141 was added at room temperature over about 6 hours. I got ~. Further, this filtrate was neutralized by adding dilute sulfuric acid to obtain 1.0 kg of red selenium with a purity of 99.9% (arsenic: 20 p, p, m).

更にそのf液に硫酸を加えてpH2としたところ砒素5
5.5%を含む硫化砒素5.20Kgを得た。セレン回
収率は98.6%、砒素回収率は96.2%であった。
Furthermore, when sulfuric acid was added to the f solution to adjust the pH to 2, arsenic was found to be 5.
5.20 kg of arsenic sulfide containing 5.5% was obtained. The selenium recovery rate was 98.6% and the arsenic recovery rate was 96.2%.

実験例7 25%水酸化ナトリウム浴液101を60℃に加熱し、
セレン70重量%、砒素30重t%を含有するスクラッ
プ合金10Kgを溶解する。非酵解物を濾過後、70℃
に加熱し、30%過酸化水素14gを約5時間かけ工添
加した所、純度98.3%(砒素1.7%含有ンの金属
セレン5.9Kgを得た。
Experimental Example 7 25% sodium hydroxide bath solution 101 was heated to 60°C,
10 kg of scrap alloy containing 70% by weight of selenium and 30% by weight of arsenic is melted. After filtering the non-fermented product, 70℃
14 g of 30% hydrogen peroxide was added over about 5 hours to obtain 5.9 kg of metallic selenium with a purity of 98.3% (containing 1.7% arsenic).

さらにP液を希硫酸で中和したところ純度99.9%(
砒素25 p、p訂6゛有)以上の赤色セレン結晶1.
0〜を得た。更にこのろ液に硫酸を加えpH1,5とし
た後、硫化水素ガス約3Kgを吹き込んだところ砒素5
5.4%を含む硫化砒素5.20 Kgを得た。
Furthermore, when the P solution was neutralized with dilute sulfuric acid, the purity was 99.9% (
Arsenic 25p, p edition 6゛) or more red selenium crystal 1.
I got 0~. Furthermore, sulfuric acid was added to this filtrate to adjust the pH to 1.5, and when approximately 3 kg of hydrogen sulfide gas was blown into the filtrate, 5.5 kg of arsenic was added.
5.20 Kg of arsenic sulphide containing 5.4% was obtained.

セレンの回収率は97.1%、砒素の収率は96.0%
であった。
Selenium recovery rate is 97.1%, arsenic yield is 96.0%
Met.

実験例8 25%水酸化ナトリウム溶液10tIを60℃に加熱し
、セレン70重量%、砒素30重i%を含有するスクラ
ップ合金10Kgを溶解する。
Experimental Example 8 10 tI of 25% sodium hydroxide solution is heated to 60° C. and 10 kg of scrap alloy containing 70% by weight of selenium and 30% by weight of arsenic is dissolved.

このf液を濾過して非溶融物を濾過後、水で3倍に希釈
し、溶液をオートクレープに入れ、空気圧5Kg/cd
で加圧を行って溶液を酸化させたところ砒素1・8%を
含有する金属セレン5.4Kgを得た。
After filtering this f-liquid to remove unmelted substances, it was diluted 3 times with water, and the solution was placed in an autoclave at an air pressure of 5 kg/cd.
When the solution was oxidized by applying pressure, 5.4 kg of metallic selenium containing 1.8% arsenic was obtained.

更にこのろ液を希硫酸で中和したところ、純度99.9
%(砒素20gp、mを含有)の金属セレン1.6−を
得た。さらKこのF液に希硫酸を加えpH2とした後、
硫化水素ガス約3Kgを溶液中に吹き込%であった。
Furthermore, when this filtrate was neutralized with dilute sulfuric acid, the purity was 99.9.
% (containing 20 gp, m arsenic) of metallic selenium 1.6-% was obtained. Furthermore, after adding dilute sulfuric acid to this F solution and adjusting the pH to 2,
About 3 kg of hydrogen sulfide gas was blown into the solution.

実験例9 解し、他の実験例同様に非溶解物をP別後、水で3倍に
希釈した後、溶液をオートクレープに入れ酸素加圧10
Kg/cIlで加圧を行ったところ、純度98.2%(
含有砒素1.7%)の金属セレンを得た二叉にこのろ液
を希硫酸で中和したところ純度99゜9%(含有砒素2
5 p、p、m)の金属セレン1.0〜を得た。更にそ
のろ液に希硫酸を加えてpH2とした後、硫化水素ガス
を溶液中に吹き込んだ所、砒素上記実験中、実験例6〜
9のようにスクラップ合金中に砒素が10〜40%も含
まれるものにおいては、水酸化ナトリウムで溶融し、後
酸化した段階で得られる金属セレン中には、砒素が比較
的多((1,5〜1.8%〕含有するため、この金属セ
Experimental Example 9 After separating undissolved substances from P and diluting them three times with water as in other experimental examples, the solution was placed in an autoclave and heated with oxygen for 10 minutes.
When pressurized at Kg/cIl, the purity was 98.2% (
The filtrate obtained from metallic selenium with arsenic content of 1.7%) was neutralized with dilute sulfuric acid, resulting in a purity of 99.9% (arsenic content of 2.0%).
5 p, p, m) metallic selenium of 1.0~ was obtained. Furthermore, after adding dilute sulfuric acid to the filtrate to adjust the pH to 2, hydrogen sulfide gas was blown into the solution, and arsenic was detected during the above experiment.
In scrap alloys containing 10 to 40% arsenic, such as No. 9, the metallic selenium obtained by melting with sodium hydroxide and post-oxidation contains a relatively large amount of arsenic ((1, 5 to 1.8%], this metal separator

【図面の簡単な説明】[Brief explanation of the drawing]

図中、牙1図はこの出願の発明の大要を示したブロック
線図、第2図は酸化反応時における温度とセレンの回収
率との関係を示すグラフ、牙3図は過酸化水素の使用量
と反応温度の関係を示すグラフである。 以上 特許出願人  新興化学工業株式会社 仝 代理人  弁理士 山田王国°−゛′グ;、−1′
− (%) 0  20  40  60  8o (℃)反応温度 (tttl) 0  20 40 60 80(’C)反応温度
In the figure, Fig. 1 is a block diagram showing the outline of the invention of this application, Fig. 2 is a graph showing the relationship between temperature and selenium recovery rate during oxidation reaction, and Fig. 3 is a graph showing the relationship between selenium recovery rate and temperature during oxidation reaction. It is a graph showing the relationship between usage amount and reaction temperature. Applicant for the above patents: Shinko Kagaku Kogyo Co., Ltd. Agent: Patent attorney: Yamada Kingdom
- (%) 0 20 40 60 8o (℃) Reaction temperature (tttl) 0 20 40 60 80 ('C) Reaction temperature

Claims (1)

【特許請求の範囲】 1)スクラップ合金の破砕物をアルカリ金属水酸化物溶
液に溶解し、その溶液を酸化することにより、このスク
ラップ合金中に含まれる元素のうち、少なくとも一種の
金属元素を金属として捕集回収し、残余の金属元素と分
離させることを特徴とするスクラップ合金から有価物を
回収する方法。 2)前記スクラップ合金が、砒素及びセレンを含有して
なるスクラップ合金であり、回収される金属が、金属セ
レンで砒素から分離されたものである特許請求の範囲第
1項記載のスクラップ合金から有価物を回収する方法。 3)砒素の含有量を40重量%以下とした特許請求の範
囲第2項記載のスクラップ合金から有価物を回収する方
法。 4)前記溶液の酸化方法は空気、酸素、オゾン若くは酸
素、オゾンのうちの一種と不活性ガスの混合体のグルー
プのうちの一種を前記溶液中に吹き込みながら行う特許
請求の範囲第2項記載のスクラップ合金から有価物を回
収する方法。 5)前記溶液の酸化方法は空気、酸素、オゾン若くは酸
素オゾンと不活性ガス雰囲気において、過酸化水素、次
亜塩素酸ナトリウムなどの酸化剤を使用して行う特許請
求の範囲第2項記載のスクラップ合金から有価物を回収
する方法。 6)前記溶液の酸化はオートクレープ中での加圧下で行
う特許請求の範囲第2項又は第4項記載のスクラップ合
金から有価物を回収する方法。 7)前記酸化反応温度を5〜70℃好ましくは20〜4
0℃とする特許請求の範囲第5項記載のスクラップ合金
から有価物を回収する方法。 8)セレンと砒素が重量比10%以下を含有するスクラ
ップ合金の破砕物をアルカリ金属酸化物溶液に溶解し、
この溶液を酸化することにより金属セレンを回収し砒素
から分離させ、この回収に際し発生するろ液を強酸性化
し、これを還元することによりこのろ液から金属セレン
を再回収することを特徴とするスクラップ合金から有価
物を回収する方法。 9)前記強酸性化は、硫酸、塩酸のうちの一種によりろ
液を強酸性化する方法である特許請求の範囲第8項記載
のスクラップ合金から有価物を回収する方法。 10)前記還元には、ヒドラジン、二酸化硫黄、ヒドロ
キシルアミン、チオ尿素のうちの一種を還元剤として用
いる特許請求の範囲第9項記載のスクラップ合金から有
価物を回収する方法。 11)セレンと砒素を含有するスクラップ合金の破砕物
をアルカリ金属酸化物溶液に溶解し、この溶液を酸化す
ることにより金属セレンを回収し砒素より分離させ、こ
の際発生するろ液を強酸性化しこれを還元することによ
つてこのろ液より金属セレンを再回収し、この金属セレ
ンを再回収した残余のろ液に硫化物を添加しこのろ液中
に残存する砒素を硫化砒素として回収することを特徴と
するスクラップ合金から有価物を回収する方法。 12)前記硫化物は、硫化水素、硫化ナトリウムのうち
の一種である特許請求の範囲第11項記載のスクラップ
合金から有価物を回収する方法。 13)スクラップ合金の破砕物をアルカリ金属水酸化物
溶液に溶解し、その溶液を酸化することにより、スクラ
ップ合金中に含まれる元素のうち少なくとも一つの金属
元素を金属として残余の金属元素と分離して回収し、こ
の回収時に発生するろ液を酸で中和し、前記分離した金
属元素と同種の金属元素を結晶質として析出させ、この
結晶質の金属元素を回収することを特徴とするスクラッ
プ合金から有価物を回収する方法。 14)前記スクラップ合金は砒素10乃至40重量%、
セレン90乃至60重量%含有のスクラップ合金であり
、回収される金属は砒素から分離された金属セレンであ
ることを特徴とする特許請求の範囲第13項記載のスク
ラップ合金から有価物を回収する方法。 15)前記中和は、硫酸、塩酸のうちの一種を用いて行
う特許請求の範囲第13項記載のスクラップ合金から有
価物を回収する方法。 16)砒素10乃至40重量%とセレンを含有するスク
ラップ合金の破砕物をアルカリ金属水酸化物溶液に溶解
し、この溶液を酸化することにより金属セレンを回収し
砒素から分離し、この回収時に発生するろ液を中和しろ
液中に赤色セレンを析出させ、これを回収した後、この
赤色セレンを析出回収した残余のろ液を強酸性化し、こ
れに硫化剤を添加することによりろ液中に残存している
砒素を硫化砒素として回収することを特徴とするスクラ
ップ合金から有価物を回収する方法。 17)前記硫化物は、硫化水素、硫化ナトリウムのうち
の一種である特許請求の範囲第16項記載のスクラップ
合金から有価物を回収する方法。
[Scope of Claims] 1) By dissolving the crushed material of the scrap alloy in an alkali metal hydroxide solution and oxidizing the solution, at least one metal element among the elements contained in the scrap alloy is dissolved into metal. A method for recovering valuable materials from scrap alloy, which is characterized by collecting and recovering valuable materials from scrap alloys and separating them from remaining metal elements. 2) The scrap alloy is a scrap alloy containing arsenic and selenium, and the recovered metal is separated from the arsenic by metallic selenium. How to collect things. 3) A method for recovering valuables from a scrap alloy according to claim 2, wherein the arsenic content is 40% by weight or less. 4) The method of oxidizing the solution is carried out while blowing air, oxygen, ozone, or a mixture of one of oxygen and ozone and an inert gas into the solution. A method for recovering valuables from the described scrap alloy. 5) The method of oxidizing the solution is carried out using an oxidizing agent such as hydrogen peroxide or sodium hypochlorite in an atmosphere of air, oxygen, ozone, or oxygen and ozone and an inert gas atmosphere. A method for recovering valuables from scrap alloy. 6) The method for recovering valuables from scrap alloy according to claim 2 or 4, wherein the oxidation of the solution is carried out under pressure in an autoclave. 7) The oxidation reaction temperature is 5 to 70°C, preferably 20 to 4°C.
A method for recovering valuables from scrap alloy according to claim 5, wherein the temperature is 0°C. 8) Dissolving a crushed scrap alloy containing selenium and arsenic at a weight ratio of 10% or less in an alkali metal oxide solution,
The method is characterized by recovering metallic selenium and separating it from arsenic by oxidizing this solution, making the filtrate generated during this recovery strongly acidic, and recovering metallic selenium from this filtrate by reducing it. A method for recovering valuables from scrap alloy. 9) The method for recovering valuables from scrap alloy according to claim 8, wherein the strong acidification is a method of making the filtrate strong acidic with one of sulfuric acid and hydrochloric acid. 10) The method for recovering valuables from scrap alloy according to claim 9, wherein one of hydrazine, sulfur dioxide, hydroxylamine, and thiourea is used as a reducing agent in the reduction. 11) Dissolve the crushed material of scrap alloy containing selenium and arsenic in an alkali metal oxide solution, oxidize this solution to recover metallic selenium and separate it from arsenic, and make the filtrate generated at this time strongly acidic. Metal selenium is recovered from this filtrate by reducing it, and sulfide is added to the remaining filtrate after recovering this metal selenium, and arsenic remaining in this filtrate is recovered as arsenic sulfide. A method for recovering valuables from scrap alloy. 12) The method for recovering valuables from scrap alloy according to claim 11, wherein the sulfide is one of hydrogen sulfide and sodium sulfide. 13) By dissolving the crushed material of the scrap alloy in an alkali metal hydroxide solution and oxidizing the solution, at least one metal element among the elements contained in the scrap alloy is separated as a metal from the remaining metal elements. Scrap characterized by collecting the filtrate generated during the collection with an acid, precipitating a metal element of the same type as the separated metal element as a crystalline substance, and recovering the crystalline metal element. A method of recovering valuables from alloys. 14) The scrap alloy contains 10 to 40% by weight of arsenic;
A method for recovering valuables from a scrap alloy according to claim 13, wherein the scrap alloy contains 90 to 60% by weight of selenium, and the recovered metal is metallic selenium separated from arsenic. . 15) The method for recovering valuables from scrap alloy according to claim 13, wherein the neutralization is performed using one of sulfuric acid and hydrochloric acid. 16) A crushed product of scrap alloy containing 10 to 40% by weight of arsenic and selenium is dissolved in an alkali metal hydroxide solution, and this solution is oxidized to recover metallic selenium and separate it from arsenic. After neutralizing the filtrate to precipitate red selenium in the filtrate and recovering it, the remaining filtrate from which the red selenium has been precipitated and recovered is strongly acidified, and a sulfiding agent is added to the filtrate. A method for recovering valuable materials from scrap alloy, characterized by recovering arsenic remaining in the scrap alloy as arsenic sulfide. 17) The method for recovering valuables from scrap alloy according to claim 16, wherein the sulfide is one of hydrogen sulfide and sodium sulfide.
JP60170737A 1985-08-02 1985-08-02 Method for recovering valuable matter from scrap alloy Granted JPS6230826A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60170737A JPS6230826A (en) 1985-08-02 1985-08-02 Method for recovering valuable matter from scrap alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60170737A JPS6230826A (en) 1985-08-02 1985-08-02 Method for recovering valuable matter from scrap alloy

Publications (2)

Publication Number Publication Date
JPS6230826A true JPS6230826A (en) 1987-02-09
JPH0373608B2 JPH0373608B2 (en) 1991-11-22

Family

ID=15910449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60170737A Granted JPS6230826A (en) 1985-08-02 1985-08-02 Method for recovering valuable matter from scrap alloy

Country Status (1)

Country Link
JP (1) JPS6230826A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5010605A (en) * 1988-04-13 1991-04-30 Ricoh Company, Ltd. Body massaging apparatus of water current type
JP2014172796A (en) * 2013-03-11 2014-09-22 Nihon Yamamura Glass Co Ltd System and method of recovering selenium in exhaust gas
JP2019203764A (en) * 2018-05-23 2019-11-28 一般財団法人電力中央研究所 Method for reducing heavy metal and method for measuring elution amount of heavy metal using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5010605A (en) * 1988-04-13 1991-04-30 Ricoh Company, Ltd. Body massaging apparatus of water current type
JP2014172796A (en) * 2013-03-11 2014-09-22 Nihon Yamamura Glass Co Ltd System and method of recovering selenium in exhaust gas
JP2019203764A (en) * 2018-05-23 2019-11-28 一般財団法人電力中央研究所 Method for reducing heavy metal and method for measuring elution amount of heavy metal using the same

Also Published As

Publication number Publication date
JPH0373608B2 (en) 1991-11-22

Similar Documents

Publication Publication Date Title
JP5739350B2 (en) How to remove arsenic as scorodite
BRPI0620785B1 (en) method for the recovery of rare metals in a zinc leaching process
JP6299620B2 (en) Method for producing nickel sulfate
US3826648A (en) Method of purifying zinc sulphate solutions
JP2010209384A (en) Method for recovering manganese
US2876065A (en) Process for producing pure ammonium perrhenate and other rhenium compounds
JPS6153103A (en) Recovery of high-purity tellurium from crude tellurium dioxide
JPH0242886B2 (en)
US1148062A (en) Method of utilizing battery-waste.
JP3052535B2 (en) Treatment of smelting intermediates
JPS6221728B2 (en)
JPS6230826A (en) Method for recovering valuable matter from scrap alloy
JP3197288B2 (en) Simultaneous wet treatment of zinc concentrate and zinc leaching residue
JPH06212304A (en) Method for smelting zinc
JP2010059035A (en) Method for producing aqueous arsenous acid solution of high purity from copper removal slime
US1835474A (en) Leaching ore
US3684489A (en) Method of recovering metals from sulfide-containing mixtures
US3804846A (en) Process for purifying 2-mercapto-benzothiazole
SU793373A3 (en) Method of purifying zinc sulfate solutions
JPS6179736A (en) Recovering method of platinum group metal
JPS60195021A (en) Method of recovery of arsenious acid from exhaust gas of refining
US2780528A (en) Process for recovering iodine from iodine-containing aqueous glycol solutions
EP0671965A1 (en) Separating zinc and manganese oxides
CA2278834A1 (en) Improved tellurium extraction from copper electrorefining slimes
US2960400A (en) Process for separating nickel contained in solutions of mixed cobalt and nickel salts

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term