JPS6230678A - Manufacture of high strength silicon nitride base ceramics - Google Patents

Manufacture of high strength silicon nitride base ceramics

Info

Publication number
JPS6230678A
JPS6230678A JP60168529A JP16852985A JPS6230678A JP S6230678 A JPS6230678 A JP S6230678A JP 60168529 A JP60168529 A JP 60168529A JP 16852985 A JP16852985 A JP 16852985A JP S6230678 A JPS6230678 A JP S6230678A
Authority
JP
Japan
Prior art keywords
silicon nitride
strength
manufacture
high strength
nitride base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60168529A
Other languages
Japanese (ja)
Other versions
JPH055795B2 (en
Inventor
村知 幹夫
誠司 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP60168529A priority Critical patent/JPS6230678A/en
Publication of JPS6230678A publication Critical patent/JPS6230678A/en
Publication of JPH055795B2 publication Critical patent/JPH055795B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高強度窒化ケイ素質セラミックスの製造方法に
係り、より詳しく述べると、窒化ケイ素質焼結体を高温
表面酸化および急冷して焼結体表面に大きな圧縮応力を
形成して強化した高強度窒化ケイ素質セラミックスの製
造方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing high-strength silicon nitride ceramics, and more specifically, the present invention relates to a method for producing high-strength silicon nitride ceramics, and more specifically, sintering a silicon nitride sintered body by high-temperature surface oxidation and rapid cooling. The present invention relates to a method for manufacturing high-strength silicon nitride ceramics strengthened by forming large compressive stress on the body surface.

〔従来の技術〕[Conventional technology]

自動車エンジン部品その他の構造用セラミックス材料と
して、耐熱性、強度、耐衝撃性の観点から窒化ケイ素質
セラミックスが注目され、すでにいくつか実用化もなさ
れている。
Silicon nitride ceramics have attracted attention as structural ceramic materials for automobile engine parts and other parts from the viewpoint of heat resistance, strength, and impact resistance, and some have already been put into practical use.

従来、窒化ケイ素質焼結材の強度を向上する方法として
、適当な原料を選択し、また適当な焼結助剤を用いるこ
とが提案されている(例えば、特開昭59−19027
1号公報、同59−190272号公報、同59−19
0273号公報、特公昭4B −7486号公報、同5
2−3647号公報)。
Conventionally, as a method for improving the strength of silicon nitride sintered materials, it has been proposed to select appropriate raw materials and use appropriate sintering aids (for example, Japanese Patent Application Laid-Open No. 59-19027
Publication No. 1, Publication No. 59-190272, Publication No. 59-19
No. 0273, Special Publication No. 4B-7486, No. 5
2-3647).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記提案に係る(窒化ケイ素質)セラミックスの曲げ強
度は90kg/Im2以下であり、高応力下で使う自動
車部品としては十分な信頼性のある材料とはいえない。
The bending strength of the (silicon nitride) ceramic according to the above proposal is less than 90 kg/Im2, and it cannot be said to be a material with sufficient reliability as an automobile part used under high stress.

また、これらの材料は表面に窒化ケイ素が存在するため
高温の水蒸気雰囲気中では5iJ4の分解により材料が
侵蝕されてしまうという問題点がある。
Furthermore, since silicon nitride exists on the surface of these materials, there is a problem in that the materials are corroded by decomposition of 5iJ4 in a high-temperature steam atmosphere.

〔問題点を解決するための手段および作用〕本発明では
、上記問題点を解決するために、窒化ケイ素を主成分と
し、酸化物を含む焼結助剤を加え、成形し、焼結した窒
化ケイ素質セラミックスを高温酸化雰囲気中で処理して
表面酸化膜を形成し、次いで急冷して強化する。
[Means and effects for solving the problems] In order to solve the above problems, the present invention provides silicon nitride as a main component, with the addition of a sintering aid containing an oxide, molded and sintered. Silicon ceramics are treated in a high-temperature oxidizing atmosphere to form a surface oxide film, and then rapidly cooled to strengthen them.

ここに、窒化ケイ素質セラミックスは窒化ケイ素(Si
J4)を50重量%以上含む材質を示す。窒化ケイ素以
外にはジルコニア、ランタニアなどの各種酸化物などを
含むことができる。焼結助剤は、1種あるいは2種以上
を添加することができ、酸化アルミニウム、酸化マグネ
シウム、酸化イツトリウム、酸化ジルコニウムなどの酸
化物のほか、窒化物、酸窒化物などを併用してもよい。
Here, silicon nitride ceramics are silicon nitride (Si)
Indicates a material containing 50% by weight or more of J4). Other than silicon nitride, various oxides such as zirconia and lanthania can be included. One type or two or more types of sintering aids can be added, and in addition to oxides such as aluminum oxide, magnesium oxide, yttrium oxide, and zirconium oxide, nitrides, oxynitrides, etc. may also be used in combination. .

成形、焼結は慣用の手法によることができる。Molding and sintering can be carried out by conventional methods.

窒化ケイ素質セラミックを高IIAL酸化雰囲気中で処
理して表面酸化膜を形成すると、表面酸化膜が生成され
るとき、窒化ケイ素(SizN4)が酸化ケイ素(Si
Oz)になり、体積膨張が起きるため、焼結体の表面層
に圧縮圧力がかかり強度向上が図られる。
When silicon nitride ceramic is treated in a high IIAL oxidation atmosphere to form a surface oxide film, silicon nitride (SizN4) is converted to silicon oxide (Si
z) and volumetric expansion occurs, compressive pressure is applied to the surface layer of the sintered body to improve its strength.

また、表面に酸化膜が存在するため、高温水蒸気あるい
は酸素等の雰囲気中でも窒化ケイ素が分解して材料が侵
蝕されることがない。処理条件としては例えば大気中9
50〜1500°C130分〜10時間を用いる。この
処理によって、−e的には、サブミクロンから100μ
mの厚さの表面酸化膜を形成する。
Further, since an oxide film exists on the surface, silicon nitride does not decompose and the material is not corroded even in an atmosphere of high temperature steam or oxygen. As a treatment condition, for example, in the atmosphere9
The temperature is 50 to 1500°C for 130 minutes to 10 hours. Through this process, the -e range is from submicron to 100μ.
A surface oxide film with a thickness of m is formed.

本発明では、強度向上を図るために、更に、粒界層の粘
性が下がりクリープ現象を起こす温度域、一般的には、
950℃以上の温度から、急冷することによって焼結体
の表面近傍に残留圧縮応力を発生させる。また、高温か
ら急冷することにより、上記の効果の他に、高温結晶相
がそのままの状態で保持され、それより低い温度で使用
される場合には、変質が少なくなる。なお、急冷は強制
空冷によることが好ましい。冷却速度としては4″’/
min〜100@/minが好ましい。
In the present invention, in order to improve the strength, the temperature range in which the viscosity of the grain boundary layer decreases and the creep phenomenon occurs, generally, is
Residual compressive stress is generated near the surface of the sintered body by rapidly cooling it from a temperature of 950° C. or higher. Moreover, by rapidly cooling from a high temperature, in addition to the above-mentioned effects, the high-temperature crystal phase is maintained as it is, and when used at a lower temperature, deterioration is reduced. Note that the rapid cooling is preferably performed by forced air cooling. The cooling rate is 4″/
min to 100@/min is preferable.

〔実施例〕〔Example〕

±上ユ几較開) SiJa 92″t%、Yz’034wt%、MgA1
zO44L%を混合し、プレス成形後、1750’CX
 3時間N2雰囲気で焼成し、それを”300のダイヤ
モンド砥石テ加工し、3 X 4 X 4 Q amの
テストピースを作成した。
±Upper comparison) SiJa 92″t%, Yz'034wt%, MgA1
After mixing zO44L% and press molding, 1750'CX
It was fired in an N2 atmosphere for 3 hours and processed with a 300mm diamond grindstone to create a 3 x 4 x 4 Q am test piece.

このテストピースの強度を、スパン30m■、荷重速度
0.5 van /分の条件で三点曲げ試験を行なって
求めた。その強度は71 kg/mm2であった。
The strength of this test piece was determined by conducting a three-point bending test under the conditions of a span of 30 m and a loading rate of 0.5 van/min. Its strength was 71 kg/mm2.

次に、上記と同様にして作成したテストピースを130
0℃×3時間大気雰囲気中で加熱した後、100°Cま
で約10時間かけて炉内放冷した。
Next, the test piece made in the same manner as above was
After heating in the air at 0°C for 3 hours, it was allowed to cool in the furnace to 100°C over about 10 hours.

このテストピースについて上記同様の試験を行ない強度
を求めたところ、102 kg / am 2であった
This test piece was subjected to the same test as above to determine its strength, which was found to be 102 kg/am2.

肛 Si、N492″t%、Y2O34L%、M8A I□
044″′t%を混合し、プレス成形後、1750°C
X3時間N2雰囲気で焼成し、それを”300のダイヤ
モンl°砥石で加工し、3 X 4 X 4 Q m+
mのテストピースを作成した。
Anal Si, N492″t%, Y2O34L%, M8A I□
044'''t% mixed and press molded at 1750°C.
Fired in N2 atmosphere for 3 hours, processed with a 300 diamond l° grindstone, 3 x 4 x 4 Q m+
A test piece of m was prepared.

このテストピースを1300℃×3時間大気雰囲気中で
加熱した後、1300°Cから100℃まで約2分間で
冷却する様に圧縮空気をテストピースに当てて急冷した
This test piece was heated at 1300°C for 3 hours in the air, and then compressed air was applied to the test piece to cool it rapidly from 1300°C to 100°C in about 2 minutes.

この様な方法で、焼成後の再加熱の温度および時間を下
記第1表に示す種々の条件で行ない、強度比較を行った
。強度試験は例1と同様の条件で行なった。
Using this method, the reheating temperature and time after firing were performed under various conditions shown in Table 1 below, and the strengths were compared. The strength test was conducted under the same conditions as in Example 1.

その結果を下記第1表にまとめて示す。第1表には比較
のために例1の結果も示した。
The results are summarized in Table 1 below. Table 1 also shows the results of Example 1 for comparison.

第  1  表 □ 炎ユ 5i3N4904%、Y2O35′t%、Al2O35
wL%を混合し、プレス成形後、1750℃×3時間N
2雰囲気で焼成し、”300のダイヤモンド砥石で加工
し、3X4X40嘗重のテストピースにカロエした。
Table 1 □ Flame Yu5i3N4904%, Y2O35't%, Al2O35
After mixing wL% and press molding, 1750°C x 3 hours N
It was fired in two atmospheres, processed with a 300mm diamond grindstone, and made into a 3X4X40mm test piece.

この加工したテストピースを例2と同様に加熱処理し、
例1と同様の強度試験を行った。また、比較のために、
焼成、加工のみを行ない、再加熱および急冷を行なわな
いテストピースの強度を求めた。
This processed test piece was heat treated in the same manner as in Example 2,
A strength test similar to Example 1 was conducted. Also, for comparison,
The strength of test pieces that were only fired and processed without being reheated or rapidly cooled was determined.

その結果を下記第2表に示す。The results are shown in Table 2 below.

第  2  表 炎↓ 5iJ4921′L%、Y2O:l 4 t%、MgA
l□044″t%を混合し、プレス成形後、1750℃
×3時間N2雰囲気で焼成し、それを”300のダイヤ
モンド砥石で加工し、3 X 4 X 40 x*のテ
ストピースを作成した。
2nd table flame ↓ 5iJ4921'L%, Y2O:l4t%, MgA
1750℃ after press molding.
It was fired in an N2 atmosphere for 3 hours and processed with a 300mm diamond grindstone to create a 3 x 4 x 40 x* test piece.

このテストピースを1300℃x3 Hr大気雰囲気中
で加熱した後、1300℃よりの冷却速度を様々に変化
させて、その効果を比較した。その結果を下記第3表に
示す。強度は例1と同一条件で測定した。
After heating this test piece in an air atmosphere at 1300°C x 3 hours, the cooling rate from 1300°C was varied and the effects were compared. The results are shown in Table 3 below. The strength was measured under the same conditions as in Example 1.

第3表 〔発明の効果〕 以上の説明から明らかな通り、本発明により、窒化ケイ
素を主成分とし、焼結助剤を添加し、焼結した窒化ケイ
素質セラミックスを高温酸化処理後急冷することによっ
て、強度、特に曲げ強度が大きく向上しかつ水または酸
素に耐蝕性が付与された高強度窒化ケイ素質セラミック
スが提供される。
Table 3 [Effects of the Invention] As is clear from the above explanation, according to the present invention, silicon nitride ceramics containing silicon nitride as a main component, adding a sintering aid, and sintered can be rapidly cooled after high-temperature oxidation treatment. This provides high-strength silicon nitride ceramics that have greatly improved strength, especially bending strength, and are resistant to water or oxygen corrosion.

Claims (1)

【特許請求の範囲】[Claims] 1、窒化ケイ素を主成分とし、酸化物を含む焼結助剤を
加え、成形し、焼結した窒化ケイ素質セラミックスを高
温酸化雰囲気中で処理して表面酸化膜を形成し、次いで
急冷することを特徴とする高強度窒化ケイ素質セラミッ
クスの製造方法。
1. Silicon nitride ceramics whose main component is silicon nitride, with the addition of sintering aids containing oxides, molded, and sintered are treated in a high-temperature oxidizing atmosphere to form a surface oxide film, and then rapidly cooled. A method for producing high-strength silicon nitride ceramics characterized by:
JP60168529A 1985-08-01 1985-08-01 Manufacture of high strength silicon nitride base ceramics Granted JPS6230678A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60168529A JPS6230678A (en) 1985-08-01 1985-08-01 Manufacture of high strength silicon nitride base ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60168529A JPS6230678A (en) 1985-08-01 1985-08-01 Manufacture of high strength silicon nitride base ceramics

Publications (2)

Publication Number Publication Date
JPS6230678A true JPS6230678A (en) 1987-02-09
JPH055795B2 JPH055795B2 (en) 1993-01-25

Family

ID=15869709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60168529A Granted JPS6230678A (en) 1985-08-01 1985-08-01 Manufacture of high strength silicon nitride base ceramics

Country Status (1)

Country Link
JP (1) JPS6230678A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06227866A (en) * 1993-02-02 1994-08-16 Ngk Insulators Ltd Sintered compact of silicon nitride and its production

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59116175A (en) * 1982-12-22 1984-07-04 株式会社東芝 Ceramic sintered member

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59116175A (en) * 1982-12-22 1984-07-04 株式会社東芝 Ceramic sintered member

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06227866A (en) * 1993-02-02 1994-08-16 Ngk Insulators Ltd Sintered compact of silicon nitride and its production

Also Published As

Publication number Publication date
JPH055795B2 (en) 1993-01-25

Similar Documents

Publication Publication Date Title
JPH0212893B2 (en)
JPS6230678A (en) Manufacture of high strength silicon nitride base ceramics
US3287478A (en) Method of sintering aluminum nitride refractories
JPS6027653A (en) Ceramic resistor material
JPS61101465A (en) Manufacture of silicon nitride bonded silicon carbide sintered body
JPS6152110B2 (en)
JP3007732B2 (en) Silicon nitride-mixed oxide sintered body and method for producing the same
JPS62153170A (en) Silicon nitride ceramic sintered body and manufacture
JPH0579625B2 (en)
JPH07165462A (en) Alumina-beta-sialon-yag composite material
JPS6047228B2 (en) Silicon nitride sintered body
JPH03223167A (en) Production of silicon carbide-based refractory having silicon nitride bond
JPS6230679A (en) Structural ceramics
JP3027215B2 (en) Silicon nitride bonded SiC refractories
JPS6191083A (en) Enhancement for alumina ceramics
JPS589882A (en) Super hard heat-resistant ceramics and manufacture
JPH0269359A (en) Production of sintered silicon nitride body
JP3007731B2 (en) Silicon carbide-mixed oxide sintered body and method for producing the same
JPS62252388A (en) Silicon nitride sintered body
JPH04139065A (en) Gradient silicon nitride composite material and its production
JPS6340768A (en) Silicon nitride base ceramics
JPH02221160A (en) Production of high-density silicon nitride sintered body
JP2997645B2 (en) Manufacturing method of ceramic laminate
JPS6319473B2 (en)
JP3368035B2 (en) Setter