JPH04139065A - Gradient silicon nitride composite material and its production - Google Patents

Gradient silicon nitride composite material and its production

Info

Publication number
JPH04139065A
JPH04139065A JP2259964A JP25996490A JPH04139065A JP H04139065 A JPH04139065 A JP H04139065A JP 2259964 A JP2259964 A JP 2259964A JP 25996490 A JP25996490 A JP 25996490A JP H04139065 A JPH04139065 A JP H04139065A
Authority
JP
Japan
Prior art keywords
silicon nitride
particles
composite material
thermal expansion
green sheets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2259964A
Other languages
Japanese (ja)
Other versions
JP2675187B2 (en
Inventor
Tatsutama Matsui
松井 辰珠
Osamu Komura
修 小村
Masaya Miyake
雅也 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2259964A priority Critical patent/JP2675187B2/en
Publication of JPH04139065A publication Critical patent/JPH04139065A/en
Application granted granted Critical
Publication of JP2675187B2 publication Critical patent/JP2675187B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To obtain the inclined silicon nitride composite having excellent strength and toughness by dispersing and incorporating different particles larger in coefft. of thermal expansion than Si3N4 into the matrix of the Si3N4 so as to increase the content thereof from the surface to the inside of the matrix. CONSTITUTION:Plural green sheets of silicon nitride contg. the different particles (e.g. SiC) having the coefft. of thermal expansion larger than the coefft. of thermal expansion of the silicon nitride and different from the silicon nitride at respectively different contents are formed. An org. metallic salt contg. metallic components of a sintering assistant (e.g. yttrium stearate) is applied between the respective green sheets, and the green sheets are successively laminated in such a manner as to increase the contents of the different particles from the surface to the inside and are pressed to form the molding. This molding is then subjected to a heating treatment in an oxidative atmosphere and the above-mentioned org. metallic salt is changed to the metallic oxide of the sintering assistant. The molding is thereafter sintered under atm pressure of 1600 to 2000 deg.C in a nonoxidative atmosphere, by which the inclined silicon nitride composite is obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、強度及び靭性に優れた窒化珪素複合材料及び
その製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a silicon nitride composite material having excellent strength and toughness, and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

窒化珪素(sIN )セラミックスは強度と靭性ツバラ
ンスがとれた材料であり、近年エンジ本アリングセラミ
ックス材料として注目を集めている。
Silicon nitride (sIN) ceramics are materials with a good balance of strength and toughness, and have recently attracted attention as engineering ceramic materials.

しかしながら、窒化珪素セラミックスを構造材料として
使用するためには、強度や靭性などの機械的特性を更に
向上させ、且つ信頼性を高めなければならない。
However, in order to use silicon nitride ceramics as a structural material, it is necessary to further improve mechanical properties such as strength and toughness, and to increase reliability.

かかる機械的特性の改善方法として、従来からウィスカ
ーや長繊維を複合させることにより、破壊靭性を向上さ
せようとする試みがある。又、特開平1−298069
号公報に示される如く、窒化珪素と炭化珪素を複合させ
ることによって、高温強度及び靭性を向上させようとす
る試みもなされている0 これらのミクロ的な複合化によっても窒化珪素マ) I
Jラックス体の強度及び靭性に改善が見られるが、自動
車エンジン部品等の高い信頼性が要求される用途に用い
る為には尚充分とは云い得なかった。
As a method for improving such mechanical properties, attempts have been made to improve fracture toughness by combining whiskers or long fibers. Also, JP-A-1-298069
As shown in the above publication, attempts have been made to improve high-temperature strength and toughness by combining silicon nitride and silicon carbide.
Although improvements were seen in the strength and toughness of the J-lux body, it was still not sufficient for use in applications that require high reliability, such as automobile engine parts.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明はかかる従来の事情に鑑み、ミクロ的な複合化に
加え応力分布を考慮したマクロ的な対策を施すことによ
り、強度及び靭性を更に一層向上させた窒化珪素複合材
料及びその製造方法を提供することを目的とする。
In view of such conventional circumstances, the present invention provides a silicon nitride composite material whose strength and toughness are further improved by taking macroscopic measures that take stress distribution into consideration in addition to microcompositing, and a method for manufacturing the same. The purpose is to

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するため、本発明の窒化珪素複合材料は
、窒化珪素のマトリックス中に熱膨張係数が窒化珪素よ
り大きい窒化珪素と異なる異種粒子を分散して含有し、
当該異種粒子の含有量がマトリックス表面から内部に向
かって増加している傾斜窒化珪素複合材料であることを
特徴とする。
In order to achieve the above object, the silicon nitride composite material of the present invention contains dispersed particles of a different type from silicon nitride having a coefficient of thermal expansion larger than that of silicon nitride in a matrix of silicon nitride,
The material is characterized in that it is a graded silicon nitride composite material in which the content of the foreign particles increases from the matrix surface toward the inside.

又、本発明の傾斜窒化珪素複合材料の製造方法は、熱膨
張係数が窒化珪素より大きい窒化珪素と異なる異種粒子
をそれぞれ異なる含有量で含む複数の窒化珪素のグリー
ンシートを作成し、各グリーンシート間に焼結助剤の金
属成分を含む有機金属塩のスラリーを塗布し、異種粒子
の含有量が表面から内部に向かって増加するようにグリ
ーンシートを順次積層し、ブレスして成形体とした後、
該成形体を酸化性雰囲気中で加熱処理して前記有機金属
塩を焼結助剤である金属酸化物に変化させ、次に非酸化
性雰囲気中にて1600〜2000 Cで常圧焼結する
ことを特徴とする。
Further, the method for producing a graded silicon nitride composite material of the present invention involves creating a plurality of silicon nitride green sheets each containing different contents of silicon nitride and different particles having a larger coefficient of thermal expansion than silicon nitride, and each green sheet A slurry of organometallic salt containing a metal component as a sintering aid was applied between the green sheets, and the green sheets were sequentially stacked so that the content of different particles increased from the surface to the inside, and pressed to form a molded body. rear,
The molded body is heat-treated in an oxidizing atmosphere to convert the organic metal salt into a metal oxide that is a sintering aid, and then sintered at 1600 to 2000 C under normal pressure in a non-oxidizing atmosphere. It is characterized by

〔作用〕[Effect]

本発明の傾斜窒化珪素複合材料では、窒化珪素マトリッ
クス中に異種粒子を分散させるミクロ的な復合化に加え
、熱膨張係数が窒化珪素より大きい異種粒子の量を図面
に模式的に示すように表面から内部に向かって増加させ
た傾斜組成としている。従って、複合材料の内部から表
面に向かって熱膨張係数が減少し、焼結後の冷却時に表
面部分に強い圧縮応力を残すことが出来る。その結果、
破壊の際に応力が集中する表面部分が特に強化され、亀
裂の発生並びに進展に対する抵抗力が高められるので強
度及び靭性を更に改善向上させることが出来る。
In the graded silicon nitride composite material of the present invention, in addition to micro-coagulation to disperse dissimilar particles in the silicon nitride matrix, the amount of dissimilar particles with a coefficient of thermal expansion larger than that of silicon nitride is increased on the surface as shown schematically in the drawing. The composition has a gradient that increases from Therefore, the coefficient of thermal expansion decreases from the inside of the composite material toward the surface, and strong compressive stress can be left in the surface portion during cooling after sintering. the result,
The surface areas where stress is concentrated in the event of fracture are particularly strengthened and resistance to crack initiation and propagation is increased, so that strength and toughness can be further improved.

異種粒子としては、窒化珪素以外のセラミックス粒子が
好ましく、例えばSin、 Tag、 TiJ BN。
The foreign particles are preferably ceramic particles other than silicon nitride, such as Sin, Tag, and TiJ BN.

ZrO、TiOなどを使用できる。中でも熱膨張係数が
大きく且つ粒径が小さいほど、発生残留応力が大きくな
るので強度向上に一層効果的である。
ZrO, TiO, etc. can be used. Among them, the larger the coefficient of thermal expansion and the smaller the particle size, the larger the generated residual stress, which is more effective in improving strength.

熱膨張係数については、マトリックスの窒化珪素よりも
大きいことが必要であるが、大きすぎると焼結時に割れ
易くなるので15.OX 10”−@/IT以下が好ま
しく、7X10−’〜12. OX 10−@、ヤの範
囲が特に好ましい。又、異種粒子の粒径が5.0μmを
超えると破壊の起点となり易いので、平均粒径は5.0
非以下が好ましく、特に50〜500 nmの範囲が好
ましい。又、異種粒子の含有量が多くなると焼結が回置
になるので、その含有量はマトリックス内部の最大含有
領域で50体積%以下とすることが好ましい。
The coefficient of thermal expansion needs to be larger than that of the silicon nitride matrix, but if it is too large, it will easily break during sintering, so 15. OX 10''-@/IT or less is preferred, and a range of 7X10-' to 12. Average particle size is 5.0
It is preferably within the range of 50 to 500 nm, particularly preferably from 50 to 500 nm. Further, if the content of foreign particles increases, sintering becomes dislocated, so the content is preferably 50% by volume or less in the maximum content area inside the matrix.

次に本発明方法において、窒化珪素のグリーンシートに
は異種粒子の他に通常のAI OやYO等の焼結助剤粉
末を混合することができ、又各グリーンシート間には焼
結助剤の金属成分を含む有$111属塩、例えばステア
リン酸アルミニウムやステアリン酸イツトリウム等のス
ラリーを塗布する。
Next, in the method of the present invention, a sintering aid powder such as ordinary AIO or YO can be mixed in the silicon nitride green sheets in addition to different particles, and a sintering aid powder can be added between each green sheet. A slurry of a group 111 salt containing a metal component such as aluminum stearate or yttrium stearate is applied.

これらの有機金属塩は、焼結前に酸化性雰囲気中で加熱
処理(好ましくは600〜900C)することにより、
焼結助剤のAI OやYO等のような金属酸化物に変化
する。
These organometallic salts are heat-treated in an oxidizing atmosphere (preferably at 600 to 900C) before sintering.
The sintering aid AIO changes into metal oxides such as O and YO.

かかる有機金属塩スラリーの塗布及び加熱処理によって
、各グリーンシート間の密着性が向上し、又各グリーン
シート界面に焼結助剤が残存するので、後の常圧焼結時
に界面の濡れ性が改善され且つ界面での異種粒子の拡散
が促進されて、分散している異種粒子の量の連続的な変
化が可能になると共に、界面剥離や界面亀裂の発生を抑
えることが出来る。
The application and heat treatment of the organic metal salt slurry improves the adhesion between each green sheet, and since the sintering aid remains at the interface of each green sheet, the wettability of the interface is improved during subsequent pressureless sintering. This improves and promotes the diffusion of foreign particles at the interface, making it possible to continuously change the amount of dispersed foreign particles, and suppressing the occurrence of interfacial peeling and interfacial cracking.

尚、マトリックス表面から内部まで異種粒子の含有量を
連続的に変化させるためには、窒化珪素のグリーンシー
トを出来るだけ薄くすることが好ましく、具体的にはグ
リーンシートの厚さを0.01〜O,lRIとすること
が好ましく、0.1〜0.311sの範囲が更に好まし
い。
In order to continuously change the content of foreign particles from the surface of the matrix to the inside, it is preferable to make the silicon nitride green sheet as thin as possible. Specifically, the thickness of the green sheet is 0.01~ It is preferable to set it as O,lRI, and the range of 0.1-0.311s is more preferable.

積層したグリーンシートを成形体とするブレス時の温度
は20〜300 rの範囲が好ましく、50〜100C
の範囲が更に好ましい。又、成形体の焼結温度を160
0〜2000 Cとするのは、1600 C未満では窒
化珪素の焼結が起こらず、2000 Cを超えると窒化
珪素が昇華・分解してしまうからである。
The temperature when pressing the laminated green sheets as a molded body is preferably in the range of 20 to 300 r, and 50 to 100 C.
The range is more preferable. In addition, the sintering temperature of the molded body was set to 160
The reason why the temperature is set at 0 to 2000 C is that sintering of silicon nitride does not occur at a temperature below 1600 C, and silicon nitride sublimes and decomposes at a temperature exceeding 2000 C.

〔実施例〕〔Example〕

Si N  粉末に焼結助剤としてA’l O粉末及び
YO粉末をそれぞれ5 wt%添加し、更に第1表に示
す各種の異種粒子を種々の割合で混合し、バインダーと
してポリビニル系樹脂を加え、異種粒子の含有量が異な
るグリーンシートをそれぞれ作成した。
5 wt% each of A'I O powder and YO powder were added as sintering aids to the Si N powder, and various different particles shown in Table 1 were mixed in various proportions, and polyvinyl resin was added as a binder. , green sheets with different contents of different particles were created.

得られた各グリーンシートの表面に、ステアリン酸アル
ミニウムとステアリン酸イツトリウムをモル比で1:2
の割合で混合したスラリーを、グリーンシートの厚さの
1/100の厚さに塗布した。
Aluminum stearate and yttrium stearate were added to the surface of each obtained green sheet in a molar ratio of 1:2.
A slurry mixed at a ratio of 1 was applied to a thickness of 1/100 of the thickness of the green sheet.

次に、異種粒子の含有量が異なるグリーンシートを、異
種粒子の含有量が第1表に示す如く両側表面部で最小と
なり内部中央部で最大となるように含有量を順次変化さ
せて全体で50枚積層し、100Cの温度にて両表面側
から50o ktiAm”の圧力でブレスして成形体と
した。各成形体を大気中にて6000で4時間加熱処理
した後、窒素ガス雰囲気中にて1850 Cで5時間常
圧焼結した。
Next, green sheets with different contents of different types of particles were prepared by sequentially changing the content of different types of particles so that the content of different types of particles was the minimum on both side surfaces and the maximum in the inner center as shown in Table 1. 50 sheets were laminated and pressed at a temperature of 100 C with a pressure of 50 ktiAm'' from both surfaces to form a molded body. Each molded body was heat treated at 6000 °C in the air for 4 hours, and then placed in a nitrogen gas atmosphere. Then, pressureless sintering was performed at 1850 C for 5 hours.

第 表 得られた各傾斜窒化珪素複合材料の試料について、相対
密度、室温並びに1300 Cでの四点曲げ強度、及び
破壊靭性値を測定し、結果を第2表に示した。
Table 2: Relative density, four-point bending strength at room temperature and 1300 C, and fracture toughness were measured for each sample of the graded silicon nitride composite material obtained, and the results are shown in Table 2.

第  2  表 〔発明の効果〕 本発明によれば、表面部分に残留圧縮応力が発生して亀
裂の発生及び進展に対する抵抗力を高めるので、強度及
び靭性を更に一層向上させた傾斜窒化珪素複合材料を提
供することが出来る。
Table 2 [Effects of the Invention] According to the present invention, residual compressive stress is generated in the surface portion to increase resistance to crack initiation and propagation, so the graded silicon nitride composite material has further improved strength and toughness. can be provided.

従って、この傾斜窒化珪素複合材料は自動車エンジン部
品等の、高い機械的強度と靭性、並びに高い信頼性の要
求される分野において特に有効である。
Therefore, this graded silicon nitride composite material is particularly effective in fields that require high mechanical strength, toughness, and high reliability, such as automobile engine parts.

【図面の簡単な説明】[Brief explanation of drawings]

図面は、本発明の傾斜窒化珪素複合材料における異種粒
子の傾斜組成を模式的に示した断面図である。 1・・マトリックス 2・・異種粒子 出願人  住友電気工業株式会社
The drawing is a cross-sectional view schematically showing the gradient composition of different particles in the gradient silicon nitride composite material of the present invention. 1. Matrix 2. Different particle applicant Sumitomo Electric Industries, Ltd.

Claims (4)

【特許請求の範囲】[Claims] (1)窒化珪素のマトリツクス中に、熱膨張係数が窒化
珪素より大きい窒化珪素と異なる異種粒子を分散して含
有し、当該異種粒子の含有量がマトリツクス表面から内
部に向かつて増加していることを特徴とする傾斜窒化珪
素複合材料。
(1) The silicon nitride matrix contains dispersed particles of a different type from silicon nitride with a coefficient of thermal expansion larger than that of silicon nitride, and the content of the different types of particles increases from the surface of the matrix toward the inside. A graded silicon nitride composite material featuring:
(2)前記異種粒子の熱膨張係数が窒化珪素より大きく
15.0×10^−^6/℃以下であり、その平均粒径
が5.0μm以下であることを特徴とする、請求項(1
)記載の傾斜窒化珪素複合材料。
(2) Claim (2) characterized in that the coefficient of thermal expansion of the dissimilar particles is larger than that of silicon nitride and is 15.0 x 10^-^6/°C or less, and the average particle size thereof is 5.0 μm or less. 1
) graded silicon nitride composite material.
(3)前記異種粒子のマトリツクス内部の最大含有領域
における含有量が50体積%以下であることを特徴とす
る、請求項(1)記載の傾斜窒化珪素複合材料。
(3) The graded silicon nitride composite material according to claim (1), wherein the content of the foreign particles in the maximum content region inside the matrix is 50% by volume or less.
(4)熱膨張係数が窒化珪素より大きい窒化珪素と異な
る異種粒子をそれぞれ異なる含有量で含む複数の窒化珪
素のグリーンシートを作成し、各グリーンシート間に焼
結助剤の金属成分を含む有機金属塩のスラリーを塗布し
、異種粒子の含有量が表面から内部に向かつて増加する
ようにグリーンシートを順次積層し、ブレスして成形体
とした後、該成形体を酸化性雰囲気中で加熱処理して前
記有機金属塩を焼結助剤である金属酸化物に変化させ、
次に非酸化性雰囲気中にて1600〜2000℃で常圧
焼結することを特徴とする傾斜窒化珪素複合材料の製造
方法。
(4) Create a plurality of silicon nitride green sheets containing silicon nitride with a larger thermal expansion coefficient than silicon nitride and different types of particles in different contents, and between each green sheet an organic material containing a metal component of a sintering aid. A slurry of metal salt is applied, green sheets are sequentially laminated so that the content of dissimilar particles increases from the surface toward the inside, and the green sheets are pressed to form a molded body, and then the molded body is heated in an oxidizing atmosphere. processing to convert the organometallic salt into a metal oxide that is a sintering aid;
A method for producing a graded silicon nitride composite material, which is then subjected to pressureless sintering at 1,600 to 2,000°C in a non-oxidizing atmosphere.
JP2259964A 1990-09-28 1990-09-28 Gradient silicon nitride composite material and method of manufacturing the same Expired - Lifetime JP2675187B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2259964A JP2675187B2 (en) 1990-09-28 1990-09-28 Gradient silicon nitride composite material and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2259964A JP2675187B2 (en) 1990-09-28 1990-09-28 Gradient silicon nitride composite material and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH04139065A true JPH04139065A (en) 1992-05-13
JP2675187B2 JP2675187B2 (en) 1997-11-12

Family

ID=17341377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2259964A Expired - Lifetime JP2675187B2 (en) 1990-09-28 1990-09-28 Gradient silicon nitride composite material and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2675187B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010264574A (en) * 2009-05-18 2010-11-25 Kyocera Corp Cutting tool
CN114835501A (en) * 2022-05-19 2022-08-02 广东工业大学 Silicon nitride-based textured gradient material and preparation method and application thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109761622A (en) * 2019-03-27 2019-05-17 广东工业大学 A kind of silicon nitride base gradient composite material and preparation method thereof based on outfield ancillary technique

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010264574A (en) * 2009-05-18 2010-11-25 Kyocera Corp Cutting tool
CN114835501A (en) * 2022-05-19 2022-08-02 广东工业大学 Silicon nitride-based textured gradient material and preparation method and application thereof

Also Published As

Publication number Publication date
JP2675187B2 (en) 1997-11-12

Similar Documents

Publication Publication Date Title
JP3624225B2 (en) Silicon nitride or sialon ceramics and molding method thereof
EP0111922B1 (en) Sintered ceramic body
JPS63185864A (en) Composite ceramics and manufacture
WO1996009266A1 (en) Bonded body of aluminum and silicon nitride and production method thereof
WO2002081405A1 (en) Method for producing sic fiber-reinforced sic composite material by means of hot press
JPH04139065A (en) Gradient silicon nitride composite material and its production
US5425909A (en) Heat treatment for particle reinforced alumina ceramic composite
JPH0212893B2 (en)
JP2004175605A (en) Oxidation-resistant c/c composite material and its manufacturing process
JP3035230B2 (en) Manufacturing method of multilayer ceramics
JP3202670B2 (en) Manufacturing method of multilayer ceramics
JP3221180B2 (en) Ceramic-metal bonded body and method of manufacturing the same
JPH01153575A (en) Sialon-based sintered ceramic
JP2568521B2 (en) Composite sintered body
JP3026486B2 (en) Manufacturing method of ceramic laminate
JPH0264066A (en) Ceramics-ceramics composite
JP2997645B2 (en) Manufacturing method of ceramic laminate
JPH0867574A (en) Part prepared from fiber-reinforced ceramic-based composite material and its production
JPH0585506B2 (en)
JP3355732B2 (en) Low thermal conductive ceramics with high toughness and method for producing the same
JP2664760B2 (en) Ceramic composite material and method for producing the same
JPH09268079A (en) Ceramic-based fiber composite material and its production
JPH0648849A (en) Ceramic composite material
JPH0867583A (en) Oxide-nonoxide laminate ceramic
JPH05170522A (en) Alumina-based composite ceramic sintered body