JPS6230386B2 - - Google Patents

Info

Publication number
JPS6230386B2
JPS6230386B2 JP54095626A JP9562679A JPS6230386B2 JP S6230386 B2 JPS6230386 B2 JP S6230386B2 JP 54095626 A JP54095626 A JP 54095626A JP 9562679 A JP9562679 A JP 9562679A JP S6230386 B2 JPS6230386 B2 JP S6230386B2
Authority
JP
Japan
Prior art keywords
power supply
voltage
phase
inverter
drop
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54095626A
Other languages
Japanese (ja)
Other versions
JPS5619463A (en
Inventor
Masahiro Tazawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP9562679A priority Critical patent/JPS5619463A/en
Publication of JPS5619463A publication Critical patent/JPS5619463A/en
Publication of JPS6230386B2 publication Critical patent/JPS6230386B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は電源電圧の瞬時降下時における電気機
器の安定動作維持の可能性を試験する場合に使用
される電気負荷装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electrical load device used for testing the possibility of maintaining stable operation of electrical equipment during instantaneous drops in power supply voltage.

最近になり、定電圧定周波電源装置やサイリス
タレオナードそしてセルビウス装置等の電源装置
が各産業界で盛んに使用されるに及んでいる。一
方、同一電源系統に接続されている他機器の事故
によつて、電源系統に瞬時電圧降下を生じる場合
があり、この電源系統に接続された上記定電圧定
周波電源装置等の動作が不安定になつたり停止し
たりする。かかる状態は落電事故時に於ける電源
電圧の瞬時降下によつても生じる。一般に、電気
機器の安定動作を実現するためにはその入力電源
電圧を安定させることが極めて重要である一方に
於いて、電源電圧の変動は必ずしかも不意に起こ
り得るものであり、その変動の程度が常に設計仕
様の許容範囲内にあるとは限らない。このため電
気機器の運転が継続できなくなる。そこでかかる
電気機器が実際にどの程度の上記変動まで安定動
作が継続できるか、動作のメンテナンスの一手段
として試験を行うことが重要となる。すなわち、
電源系統に接続される電気機器がどの程度の電圧
降下率まで、そしてどの位の降下時間まで安定動
作を行うかを確認する必要がある。かかる確認に
よつて、電気機器の信頼性の確保並びに対策の指
針が図れることとなる。
Recently, power supply devices such as constant voltage constant frequency power supply devices, thyristor Leonard devices, and Servius devices have come into widespread use in various industries. On the other hand, an accident in other equipment connected to the same power supply system may cause an instantaneous voltage drop in the power supply system, making the operation of the constant voltage constant frequency power supply equipment etc. connected to this power supply system unstable. Become or stop. Such a situation also occurs due to an instantaneous drop in the power supply voltage during a power failure. In general, in order to achieve stable operation of electrical equipment, it is extremely important to stabilize the input power supply voltage. However, fluctuations in power supply voltage can always occur unexpectedly, and the extent of the fluctuation is important. may not always be within the allowable range of design specifications. As a result, the electrical equipment cannot continue to operate. Therefore, it is important to conduct tests as a means of maintenance of operation to determine to what extent such electrical equipment can actually continue stable operation up to the above-mentioned fluctuations. That is,
It is necessary to confirm the voltage drop rate and voltage drop time for which electrical equipment connected to the power supply system will operate stably. Such confirmation will ensure the reliability of electrical equipment and provide guidelines for countermeasures.

このため従来から上記電気機器の電圧降下率等
を計測するメンテナンス用試験機器が諸々提案さ
れ、この試験を行う場合に必要とされる第1図に
示す電気負荷装置が広く提供されるに及んでい
る。
For this reason, various maintenance test equipment for measuring the voltage drop rate, etc. of the above-mentioned electrical equipment has been proposed, and the electrical load device shown in Fig. 1, which is required when performing this test, has come to be widely provided. There is.

これは電源入力側から、しや断器1、電磁接触
器2と直列インピーダンス3との並列回路、これ
に接続されたサイリスタレオーナード装置などの
電源装置4および負荷5を直列に接続したもの
に、図示の如く、電磁接触器6を介して電圧降下
用抵抗器7を接続したものからなる。この電気負
荷装置は上記電源電圧の降下を模擬するものであ
り、電磁接触器2,6を第2図b,cに示す如く
同等にそれぞれ開閉して、電源入力電圧を第2図
aに示す如く瞬時的に降下させる如く動作する。
This is a parallel circuit consisting of a shield breaker 1, an electromagnetic contactor 2, and a series impedance 3, a power supply device 4 such as a thyristor Leonard device, and a load 5 connected in series from the power input side. As shown in the figure, a voltage drop resistor 7 is connected via an electromagnetic contactor 6. This electric load device simulates the drop in the power supply voltage mentioned above, and the electromagnetic contactors 2 and 6 are opened and closed equally as shown in Fig. 2b and c, respectively, and the power supply input voltage is changed as shown in Fig. 2a. It operates as if it were to be lowered instantaneously.

しかし、電磁接触器2,6を用いた上記回路で
は、3相同時の瞬時停電テストは容易であるが、
任意相のテストを行う場合には、単相の電磁接触
器を各相別に一個ずつ設ける必要があり、設備が
大規模かつ高価となる。また、電圧降下率を決定
する直列インピーダンス3を大きくした場合に、
抵抗7で消費する電力が少くて済む一方に於いて
電源電圧波形の歪みが大きくなり、テストの等価
性がなくなつてしまう。さらに、電圧降下率の決
定には降下用抵抗に消費する電力を調整する必要
があり、その操作に迅速性を欠く。
However, with the above circuit using the electromagnetic contactors 2 and 6, a simultaneous three-phase instantaneous power outage test is easy;
When testing arbitrary phases, it is necessary to install one single-phase magnetic contactor for each phase, which makes the equipment large-scale and expensive. Also, when the series impedance 3 that determines the voltage drop rate is increased,
Although the power consumed by the resistor 7 can be reduced, the distortion of the power supply voltage waveform becomes large, and the equivalence of the test is lost. Furthermore, in determining the voltage drop rate, it is necessary to adjust the power consumed by the drop resistor, and this operation lacks speed.

本発明はかかる従来の諸問題点に鑑みて成した
もので、特に、電源装置の入力側に直列インピー
ダンスおよびこれに並列接続された電磁開閉器を
接続し、さらにこれらに並列に大きいインピーダ
ンス降下を生ぜしめる負荷回路を接続することに
よつて、電源電圧の瞬時降下作用を迅速かつ効果
的に行わしめうるとともに、負荷回路を逆変換回
路のサイリスタ制御によつて、電圧降下率の設定
を3相同時にまたは任意相ごとに実行できる、新
規な電気負荷装置を提供する。
The present invention was made in view of these conventional problems, and in particular, connects a series impedance and an electromagnetic switch connected in parallel to the input side of a power supply device, and furthermore connects a large impedance drop in parallel to these. By connecting the load circuit that generates the voltage, it is possible to perform an instantaneous drop of the power supply voltage quickly and effectively, and by controlling the load circuit with a thyristor of the inversion circuit, the voltage drop rate can be set in three phases. To provide a novel electrical load device that can run simultaneously or on any phase by phase basis.

以下に、本発明にかかる電気負荷装置の一実施
例を図面について述べる。
An embodiment of the electric load device according to the present invention will be described below with reference to the drawings.

第3図において、上記同様の電源装置4の入力
側にある電磁接触器2および直列インピーダンス
3には、トランス8、サイリスタからなるインバ
ータ9、直流リアクトル10およびダイオードか
らなる順変換器11が図示の如く並列接続されて
いる。ここで上記の直列インピーダンス3は0.1
〜1Ω程度のインピーダンスで、平常時は電磁接
触器2がこれを短絡し、テスト時にその短絡を開
放する如くなる。
In FIG. 3, a transformer 8, an inverter 9 consisting of a thyristor, a DC reactor 10, and a forward converter 11 consisting of a diode are connected to a magnetic contactor 2 and a series impedance 3 on the input side of a power supply device 4 similar to the above. They are connected in parallel. Here, the series impedance 3 above is 0.1
With an impedance of about ~1Ω, the electromagnetic contactor 2 short-circuits this during normal times, and opens the short-circuit during testing.

かかる回路に於いて、瞬時停電を模擬するに
は、先ず電磁接触器2を開くとともに、インバー
タ9を構成するサイリスタのゲートを制御する。
これによりインバータ電流を増加させて直列イン
ピーダンス3に依る電圧降下を増加させ、電源装
置4に対する電源電圧の降下率を決定する。この
場合に於いて、電磁接触器2が閉じているとき
も、少くともインバータ9を他励インバータとし
て動作させておくことにより、電磁接触器2の開
放と同時にゲート制御を行つて、任意の上記降下
率を得ることができる。かくして、サイリスタの
ゲート制御角を任意にしかも各相毎に設定するこ
とにより、3相同時に同率の降下率の制御を行つ
たり、任意相だけの降下率の制御を容易に行え
る。この場合に於いて、順変換器11をダイオー
ドでなくサイリスタに置き換えれば、そのゲート
制御により、ゲート制御角にアンバランスを付け
て、降下率の任意相毎の変化を付与せしめうる。
In such a circuit, in order to simulate a momentary power outage, first the electromagnetic contactor 2 is opened and the gates of the thyristors forming the inverter 9 are controlled.
This increases the inverter current, increases the voltage drop due to the series impedance 3, and determines the drop rate of the power supply voltage for the power supply device 4. In this case, by operating at least the inverter 9 as a separately excited inverter even when the electromagnetic contactor 2 is closed, gate control is performed at the same time as the electromagnetic contactor 2 is opened, and any of the above You can get the rate of descent. Thus, by setting the gate control angle of the thyristor arbitrarily and for each phase, it is easy to control the same rate of descent for three phases at the same time, or to control the rate of descent for only an arbitrary phase. In this case, if the forward converter 11 is replaced with a thyristor instead of a diode, the gate control angle can be unbalanced and the drop rate can be varied for each arbitrary phase.

以上述べた様に、本発明に依れば、電源に接続
された電源装置の入力側に開閉器と直列インピー
ダンスとからなる並列回路を直列接続するととも
に、これらの並列回路にインバータおよび順変換
器を直流リアクトルを介して接続した負荷回路を
並列接続したことにより、上記開閉器開放と同時
にインバータの各相ゲートを制御して大きいイン
ピーダンス降下による電源装置に対する電源電圧
の瞬時降下を模擬し、以つて各相毎の電圧降下に
よる電気機器の安定動作試験を簡単な構成でしか
も確実に実行でき、電気機器の運転信頼性を診断
する実負荷テスト手段として実用上極めて有益で
ある。
As described above, according to the present invention, a parallel circuit consisting of a switch and a series impedance is connected in series to the input side of a power supply device connected to a power source, and an inverter and a forward converter are connected to these parallel circuits. By connecting load circuits connected in parallel through DC reactors, each phase gate of the inverter is controlled at the same time as the switch is opened to simulate an instantaneous drop in the power supply voltage to the power supply device due to a large impedance drop. The stable operation test of electrical equipment based on the voltage drop of each phase can be performed reliably with a simple configuration, and is extremely useful in practice as an actual load test means for diagnosing the operational reliability of electrical equipment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の電気負荷装置の回路図、第2図
はその回路各部の信号波形図、第3図は本発明に
かかる電気負荷装置の回路図である。 2…開閉器、3…直列インピーダンス、4…電
源装置、9…インバータ、10…直流リアクト
ル、11…順変換器。
FIG. 1 is a circuit diagram of a conventional electrical load device, FIG. 2 is a signal waveform diagram of each part of the circuit, and FIG. 3 is a circuit diagram of an electrical load device according to the present invention. 2...Switch, 3...Series impedance, 4...Power supply device, 9...Inverter, 10...DC reactor, 11...Forward converter.

Claims (1)

【特許請求の範囲】[Claims] 1 電源系統に接続された電源装置の入力側に開
閉器と直列インピーダンスとからなる並列回路を
直列接続するとともに、各相毎に制御ゲートを有
するインバータと順変換器とを直流リアクトルを
介して上記並列回路に並列接続したことを特徴と
する電気負荷装置。
1 A parallel circuit consisting of a switch and a series impedance is connected in series to the input side of a power supply device connected to a power supply system, and an inverter and a forward converter having a control gate for each phase are connected to the above-mentioned circuit via a DC reactor. An electrical load device characterized by being connected in parallel to a parallel circuit.
JP9562679A 1979-07-26 1979-07-26 Electric load unit Granted JPS5619463A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9562679A JPS5619463A (en) 1979-07-26 1979-07-26 Electric load unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9562679A JPS5619463A (en) 1979-07-26 1979-07-26 Electric load unit

Publications (2)

Publication Number Publication Date
JPS5619463A JPS5619463A (en) 1981-02-24
JPS6230386B2 true JPS6230386B2 (en) 1987-07-02

Family

ID=14142726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9562679A Granted JPS5619463A (en) 1979-07-26 1979-07-26 Electric load unit

Country Status (1)

Country Link
JP (1) JPS5619463A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5876160U (en) * 1981-11-18 1983-05-23 株式会社明電舎 test equipment
JPS5954858U (en) * 1982-10-04 1984-04-10 株式会社明電舎 Conversion device diagnostic device
JPS6162263U (en) * 1984-09-28 1986-04-26

Also Published As

Publication number Publication date
JPS5619463A (en) 1981-02-24

Similar Documents

Publication Publication Date Title
Lee et al. A voltage sag supporter utilizing a PWM-switched autotransformer
US4292545A (en) Method and means for damping subsynchronous oscillations and DC offset in an AC power system
JP2006501794A (en) A system that supplies reliable power to important loads
JPS6253180A (en) Controller for parallel operation of ac output converter and commercial power supply
CN107478348A (en) Winding temperature rise detection means, device and method
JPS6230386B2 (en)
US3986103A (en) Monitoring circuit for a plurality of valves
CN204330904U (en) A kind of frequency converter test device
US3984751A (en) High D.C. voltage generating apparatus
SU1663581A1 (en) Device for testing transformers in short-circuit mode
JP3518532B2 (en) Rectifier type current limiting device test equipment
KR102298168B1 (en) Micro Protective Device and Method thereof and Artificial Fault Generator for the Micro Smart Grid Simulator and, Micro Performance Evaluation System of the Micro Protective Device
Mazur et al. Converter control and protection of the Nelson river HVDC bipole 2 commissioning and first year of commercial operation
JPS6318935Y2 (en)
SU849375A1 (en) Electric equipment
SU1689895A1 (en) Device for transformer testing under short circuit
US3401307A (en) Electrical protective relay arrangement
SU680079A1 (en) Indicator showing presence or absence of current in a line phase
KR850000463B1 (en) Power-factor regulating apparatus
US2834940A (en) Apparatus for testing wire coatings
JPH11155235A (en) Molder case circuit breaker
Makarevich et al. Biasing unit for a controllable shunting reactor
JPH07336897A (en) Inverter device for distributed power supply and control method thereof
JP2699351B2 (en) High frequency heating equipment
JPH0116356Y2 (en)