JP2699351B2 - High frequency heating equipment - Google Patents

High frequency heating equipment

Info

Publication number
JP2699351B2
JP2699351B2 JP62106632A JP10663287A JP2699351B2 JP 2699351 B2 JP2699351 B2 JP 2699351B2 JP 62106632 A JP62106632 A JP 62106632A JP 10663287 A JP10663287 A JP 10663287A JP 2699351 B2 JP2699351 B2 JP 2699351B2
Authority
JP
Japan
Prior art keywords
current
power supply
circuit
value
primary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62106632A
Other languages
Japanese (ja)
Other versions
JPS63271888A (en
Inventor
寛 寺▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62106632A priority Critical patent/JP2699351B2/en
Publication of JPS63271888A publication Critical patent/JPS63271888A/en
Application granted granted Critical
Publication of JP2699351B2 publication Critical patent/JP2699351B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of High-Frequency Heating Circuits (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、複数の高周波発生装置を有する高周波加熱
装置の安全装置に関するもので、高周波発生装置の故障
時に生じる異常電流を検出し装置を制御せんとするもの
である。 従来の技術 一般に高周波加熱装置における高周波発生装置に故障
が生じた場合、例えば実開昭58−24996号公報等にも示
されるごとく、高周波発生装置の駆動にかかる電源変圧
器の2次側回路の電流の変化を検出し、制御する方法が
とられる。第5図〜第6図は従来例を示すもので、高周
波の発生装置としてのマグネトロン1等に故障を生じた
場合に生じる高圧トランス2の二次コイル3の異常電流
を磁気回路4中に設けた磁気センサー5により検出し、
入力電流を制御する様にしている。高周波発生装置すな
わちマグネトロン1,高圧整流器6,高圧コンデンサー7の
それぞれ1つでも開放状態となると、高圧トランス2の
1次電流は励磁電流のみの非常に小さな値となる。この
場合は、高周波の発振が停止するのみできわめて不安全
な状態とはならないが、高周波の発生が停止、加熱作業
が中断される。 次に、高圧整流器6及びマグネトロン1のアノード・
カソード間が短絡した場合、高圧トランスの二次コイル
3には通常の1.5〜2倍の電流が流れ放置しておくと高
圧トランスのコイルの焼損を招き、きわめて不安全とな
る。この時の高圧トランス2の1次電流は共振電圧近く
では2次に共振電流が流れるのみであり、無負荷とな
り、前述と同様、高圧トランスの励磁電流のみのきわめ
て小さな値となる。 次に高圧コンデンサー7が短絡した場合、高圧トラン
スの2次コイル3は高圧整流器によって、半波短絡状態
となり、2次コイル3には非常に大きな電流を生じ、き
わめて危険な状態となる。1次電流もきわめて大きく電
源のブレーカを切ってしまう事も多い。 そこで従来にあっては例えば従来例に示すごとく、危
険な状態となるトランスの2次コイル3の電流の増加を
磁気回路中の磁気センサーにより検出し、高圧トランス
の1次入力電流を制御する様にしていた。 発明が解決しようとする問題点 従来例によった場合、高周波発生装置の駆動電圧が通
常3〜5KVと高く、この電圧の印加された回路電流を検
出する事が非常に困難で、例えば必要な絶縁距離を確保
する為に非常に検出手段を大型化する必要があったり、
2次回路の電圧がこの検出手段に仮に印加される様な事
態を生じても決して高電圧による感電事故を生じない様
にする為の手段等も必要で結果的に非常に高価なものと
なってしまっていた。この種の加熱装置は、レストラ
ン,ホテル等の厨房室で、業務用電子レンジとして多用
されているが、これらは被加熱物を短時間に加熱する事
が望まれ、高周波発生装置を複数個並列運転する事で高
い高周波出力を得、この用に供しているが、この場合特
に前記の異常検出装置もこの高周波発生装置の同数設け
る必要があり、装置を非常に大型化かつ高価なものとし
ていた。 本発明は前記問題点を解決するもので簡単な構成で高
周波加熱装置の異常を検出し、その電源回路を制御する
方法および構成を提供するものである。 問題点を解決するための手段 本発明は複数の高周波発生装置を高周波加熱装置にお
いてきわめて簡易な構成電流検出装置をそれぞれの高周
波発生装置の駆動にかかる高圧トランスの1次回路に設
け、この1次回路に流れる電流を検出、電子回路上で相
互間の値を比較し、あらかじめ設定した電流範囲以上ず
れた値を示す高圧トランスの1次回路を直列に入れたリ
レーにより切るようにする。 作用 ある1つの高周波発生装置に故障を生じた場合、正常
な他の高周波発生装置の1次入力電流と異なる値を示
す。 本発明はこの正常な電流との差に着目しこの差により
制御を行なう。高周波発生装置は動作状態により種々異
なる入力電流を示すのが一般的で、例えば動作初期か、
長期間使用後か、又被加熱物の状態、あるいは電源電圧
の変動により高圧トランスの2次コイルの電流値の絶対
値も変化する。1次回路の電流も変化するが、並列運転
する複数の高周波発生装置の高圧トランスの1次回路電
流は動作条件が同じであり、それぞれの電流値の絶対値
は変化するが、互いの電流値の相対的な差はほとんど変
化しない。このためいかなる動作条件下でも、相対的な
電流値に差を生じた場合は故障で生じたと判断する事が
できる。従来に比較し動作条件による電流の変化を無視
できるだけ誤動作の確率がきめて少なくなるという効果
を有する。 実施例 本発明の実施例を第1図〜第4図により説明する。尚
従来例に記す構成と同一の構成部分には同一の番号を付
す。 高周波発生装置としてのマグネトロン1は高周波出力
を高くするため、同一仕様のものが加熱室8の上下に設
けられた2つのマイクロ波給電装置9及び9′にそれぞ
れ設けられる。上のマグネトロンを1、下の給電装置
9′に設けられたマグネトロンを1′とする。マグネト
ロン1,1′は2つの同一仕様の高圧トランス2及び
2′、高圧コンデンサ7,7′、さらに高圧整流器6,6′よ
りなる電源回路によりそれぞれ電源電圧より必要な動作
電圧に変換された電力が供給される構成をなしている。
高圧トランス2及び2′の1次コイル10,10′には直列
にそれぞれ第1図に示す様な電流検出装置11,11′が設
けられている。電流検出装置11,11′は高圧トランス2
及び2′の1次コイル10,10′に直列に接続される鉄芯1
2,12′に巻きつけたコイルA13,13′及び同軸上に設けら
れたコイルA13,13′と絶縁されたコイルB14,14′より成
り、コイルA13とコイルB14が、又コイルA13′とコイルB
14′がそれぞれ磁気結合される様に構成している。電流
検出装置11,11′は本体全体の制御を行なう制御回路15
を構成するプリント基板16上に他の電子回路部品と共に
設けられる。高圧トランス1次コイル10,10′に流れる
電流は、同様コイルA13,13′に流れそれぞれ鉄芯12,1
2′を励磁する。この磁束がコイルB14,14′に1次電流
に対応した電圧を生じる。コイルB14,14′に生じた電圧
は整流平滑回路17,17′に接続し、直流に変換する構成
を有するこの直流に変換された出力電圧は高圧トランス
の1次コイルに流れる電流値に比例する様に、各コイル
の巻数、鉄芯の大きさ、整流回路のコンデンサーや抵抗
の定数を設定している。実施例においては1次コイル1
0,10′に流れる電流が10Aのとき出力電圧は5V、電流が1
Aのとき0.5Vとなる様に構成している。整流、平滑回路1
7,17′の出力はマイクロコンピューター回路18の入力端
19,19′に接続される。マイクロコンピューター回路18
は本体の制御を行なう為の操作キーの入力手段20、動作
状態を示す表示手段21、そして本体の制御にかかるそれ
ぞれの高周波発生装置の駆動を行なう高圧トランス2,
2′の1次コイル10,10′に前述の電流検出装置11,11′
と共に直列に接続された接点を有する制御リレー22及び
22′に接続され、あらかじめプログラムされた手順に従
って本体の動作を制御する構成をなす。マイクロコンピ
ューターの回路はパワートランス23により動作に必要な
電圧に電源電圧を降圧、直流に変換させて動作させる。
又、このマイクロコンピューター回路18にはパワートラ
ンス23の2次コイル24、出力電圧の一部を取り込む電圧
入力端25を設けている。 さらに本体には、被加熱物26の出し入れに係る加熱室
8前面に設けた扉27や、扉27の開閉に対応して開閉し、
高圧トランス2,2′の入力を接続切断する接点を有する
ドアスイッチ28や、1次電源回路に過大な電流を生じた
場合に動作するヒューズ29等が設けられている。 この構成において、通常は操作者が操作キー20を操作
することで、マイクロコンピューター回路18のRAM上に
加熱時間を設定し、加熱スタートの操作により設定時
間、パワーリレー22,22′の接点が閉じ、高圧トランス
2,2′に電圧が印加され、マグネトロン1,1′に電力が供
給され、マグネトロン1,1′の発したマイクロ波電力が
給電装置9,9′を介し加熱室8内の被加熱物29に印加さ
れ加熱が行なわれるようにプログラムがなされている。 さらに、このマイクロコンピューター回路18には第3
図のフローチャートに示すプログラムがなされている。
すなわち、本体が動作中一定の周期で電圧入力端25より
入力電圧を取り込む。この電圧値が、あらかじめ設定さ
れた電圧の範囲かどうかを判断する。実施例では定格電
圧に対し15%以上電圧がズレた場合は、パワーリレー2
2,22′の両方を切り高周波の発生を停止させる。他の実
施例として、本体の動作しない状態も電圧の検出を行な
っておき、電圧が異常であれば当初より動作を行なわな
い様にする事もあり得る。又、他の実施例においては検
出した電圧の定格電圧に対する割合に応じて電流検出装
置11,11′の出力を補正する場合もあり得る。電圧が正
常の範囲であれば動作を継続させ電流検出装置11のコイ
ルB14に生じる電圧を整流平滑した直流電圧を取り込みR
AM上に一時的に記憶させる。これをAとする。同様に電
流検出装置11′により検出された直流出力をとり込む。
これをBとする。次にAよりBの値を減じ、大小を比較
する。この値の正負を判断し、正であればすなわちA>
BであればA/Bの演算を行なう。負であれば、すなわち
A<Bであれば−(B/A)の演算を行なう。その結果が
実施例においては1.2より大か小かの判断を行なう。つ
まりAとBとの差が20%以上あるか否かの判断を行なわ
せしめている。若し、その値が1.2より小さければ、す
なわち2つの高周波発生装置には異常がなく、部品の定
数のバラツキ等により生じた誤差と判断し、又当初のル
ーチンへ戻り、再度入力電圧を取り込む。若しAがBよ
り大きく、AとBとの差が20%以上ある場合はAよりあ
らかじめ設定しておいたAの正常時に示す値に対し、20
%高い値を減じ、この値が正か負かの判断を行なわせし
める。正であればAの電流が異常に大きいこと、すなわ
ち、Bの値よりも1.2倍以上大きく、さらにAの定格電
流よりも大きいという事から、高圧トランス2の2次回
路において、高圧コンデンサ7等が短絡したと判断する
回数N1を計測し、続けて5回以上この状態が継続した場
合、リレー22への出力を切り、リレー22の接点が開放
し、高圧トランス2に流れる異常電流のみを切る。表示
手段21には異常を示すFO3を表示せしめる。 逆に負であれば、Bの値が正常時に比較し異常に低い
という事から、高圧トランス2′の2次回路において、
高圧整流器6′やマグネトロン1′等の短絡、もしくは
2次回路の一部が開放状態になったと判断し、回数N2
5回以上つづいた場合にリレー22′を切り、高圧トラン
ス2′に流れる電流を切る。表示手段はFO4を表示す
る。いずれの場合も、一度リレー22又は22′が切れた場
合、そのリレーは電源が断されるまで保持するプログラ
ムがなされている。 逆にBがAよりも大きく、その差が20%以上ある場合
は、Bよりあらかじめ設定しておいたBの正常時に示す
値に対し20%高い値を減じ、この値が正か負かの判断を
行なわしめる。正であればBの電流が異常に大きいと
し、高圧トランス2′の2次回路において高圧コンデン
サー7等の短絡状態と判断し、回数N3を計測、5回以上
続けてこの状態が継続した場合リレー22′を切り、高圧
トランス2′への入力のみを切る。表示手段21はFO2を
表示し、異常を報知する。前記同様、逆に負となった場
合は、Aの値が正常より異常に低いとし、高圧トランス
2の2次回路中の高圧整流器6やマグネトロン1の短絡
や、開放状態になったと判断し、回数N4を計数、5回以
上続けてこの状態が続いた場合、リレー22を切り高圧ト
ランス2への入力のみを切る。表示手段はFO1を表示す
る様なしている。測定は0.1secごとに行なわれる。 以上は高周波発生装置が2台の場合であるが、さらに
多数の場合は前述と同様、それぞれ同数の電流検出装置
を設け、検出された信号A,B,C……Xにつき、A−B,B−
C,C……X−Aの演算にてそれぞれ二者間の差を求め、
その差がそれぞれバラツキによる電流のズレを考慮して
設定した差以上あるか否かを判断し、差があれば前述の
実施例と同様、あらかじめ設定しておいた定格電流時の
値に対する大小の判断より、どの回路が故障を生じたか
を判断し、故障を生じた回路のみの制御リレー接点を開
放する様にしている。 発明の効果 以上の構成と、プログラムを有する本発明において
は、当初の目的どおり、複数個の異常検出装置を1次回
路素子に検出する事で従来に比較し、高電圧に対する保
護が不要な分だけ絶縁距離等を小さくする事が可能とな
り、非常に小型化する事が可能となった。本実施例にお
いては、特に電流検出装置11,11′を本体の制御を行な
うマイクロコンピューター回路18を構成するプリント基
板16上に設けており、生産コストも低減する事ができ
た。そして本発明を実施することで次の様な効果を得る
事が出来た。 装置の動作状態により変動する電流の中で、より正確
に異常を検出,制御する事が可能となった。つまり、従
来の方法であれば、それぞれの電流値,信号の絶対値の
大小を検出,制御していた為、動作条件が変るたびにそ
の値が変化し、どの値までが正常で、どの値が異常かを
判断する事が困難な場合があった。 本発明によれば、常時同様な動作条件で動作する高周
波発生装置の2者間の電流の差の変化を検出する為、動
作条件による電流変化を無視する事が出来る。実施形態
として、1次の入力電圧を併せ検出する事で共振電圧よ
り外れて電圧で本体を動作させ、マグネトロン1,1′や
高圧整流器6,6′が短絡を生じた時に生じる高圧トラン
スの2次,1次電流の増加による誤動作も防止する事が出
来るなどきわめて正確に異常を検出する事が可能とな
り、発火,感電の危険性を有する高圧トランス2次回路
の故障を瞬時に正確に検出し、安全性を確保する事が出
来る様になった。 さらに本発明の実施により、複数の高周波発生装置の
うち1つが故障するとその故障を生じた回路のみが動作
を止め、他の回路は動作をつづける為、加熱出力は低下
するが、加熱動作は継続出来ることで、一部の故障で装
置全体が停止する従来の方法にくらべ、多忙をきめる厨
房室にて加熱作業が中断される事もなくなり使い勝手も
大幅に向上した。 又、故障発生後、修理を行なわんとする場合も、表示
手段の表示する内容を確認することで故障箇所をより詳
細に特定でき修理時間を大幅に削減でき、効率の向上と
装置使用不能状態を短縮する効果をあわせて得ることが
出来る。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a safety device for a high-frequency heating device having a plurality of high-frequency generators, and to control an apparatus by detecting an abnormal current generated when a high-frequency generator fails. Is what you do. 2. Description of the Related Art Generally, when a failure occurs in a high-frequency generator in a high-frequency heater, for example, as shown in Japanese Utility Model Application Laid-Open No. 58-24996, a secondary circuit of a power transformer for driving the high-frequency generator is provided. A method of detecting and controlling a change in current is employed. FIGS. 5 and 6 show a conventional example, in which an abnormal current of the secondary coil 3 of the high-voltage transformer 2 which is generated when a magnetron 1 or the like as a high-frequency generator fails, is provided in the magnetic circuit 4. Detected by the magnetic sensor 5,
The input current is controlled. When at least one of the high-frequency generators, that is, the magnetron 1, the high-voltage rectifier 6, and the high-voltage capacitor 7 is opened, the primary current of the high-voltage transformer 2 becomes a very small value of only the exciting current. In this case, only the stop of the high frequency oscillation does not result in an extremely unsafe state, but the generation of the high frequency is stopped and the heating operation is interrupted. Next, the anode of the high-voltage rectifier 6 and the magnetron 1
When a short circuit occurs between the cathodes, if a current 1.5 to 2 times the normal current flows through the secondary coil 3 of the high-voltage transformer, the coil of the high-voltage transformer is burned, which is extremely unsafe. At this time, the primary current of the high-voltage transformer 2 has only a secondary resonance current near the resonance voltage, and has no load. As described above, only the excitation current of the high-voltage transformer has an extremely small value. Next, when the high-voltage capacitor 7 is short-circuited, the secondary coil 3 of the high-voltage transformer is half-wave short-circuited by the high-voltage rectifier, and a very large current is generated in the secondary coil 3 to be in a very dangerous state. The primary current is also very large and often breaks the power supply breaker. Therefore, in the related art, as shown in the conventional example, an increase in the current of the secondary coil 3 of the transformer that is in a dangerous state is detected by a magnetic sensor in the magnetic circuit, and the primary input current of the high-voltage transformer is controlled. I was Problems to be Solved by the Invention According to the conventional example, the driving voltage of the high-frequency generator is usually as high as 3 to 5 KV, and it is very difficult to detect the circuit current to which this voltage is applied. In order to secure the insulation distance, it is necessary to make the detection means very large,
Even if a situation where the voltage of the secondary circuit is temporarily applied to the detection means occurs, a means for preventing an electric shock accident due to a high voltage is required, and as a result, it becomes very expensive. Had been lost. This type of heating device is often used as a microwave oven for business use in kitchens such as restaurants and hotels. However, it is desired to heat an object to be heated in a short time. A high frequency output was obtained by operation, and this was used for this purpose. In this case, in particular, it was necessary to provide the same number of the high frequency generators as the abnormality detection device, which made the device extremely large and expensive. . SUMMARY OF THE INVENTION The present invention solves the above-described problems and provides a method and a configuration for detecting an abnormality of a high-frequency heating device and controlling a power supply circuit thereof with a simple configuration. Means for Solving the Problems According to the present invention, a plurality of high frequency generators are provided in a primary circuit of a high voltage transformer for driving each of the high frequency generators. The current flowing in the circuit is detected, the values between the two are compared on the electronic circuit, and the primary circuit of the high-voltage transformer showing a value deviated by a preset current range or more is turned off by a relay connected in series. When a failure occurs in a certain high-frequency generator, a value different from the primary input current of another normal high-frequency generator is shown. The present invention pays attention to the difference from the normal current, and performs control based on the difference. Generally, a high-frequency generator shows various input currents depending on an operation state.
The absolute value of the current value of the secondary coil of the high-voltage transformer also changes after long-term use, the state of the object to be heated, or the fluctuation of the power supply voltage. Although the current of the primary circuit also changes, the primary circuit currents of the high-voltage transformers of a plurality of high-frequency generators operating in parallel have the same operating conditions, and the absolute values of the respective current values change, but the current values of each other change. The relative difference between is hardly changed. Therefore, under any operating conditions, if a difference occurs in the relative current value, it can be determined that the fault has occurred. Compared with the conventional art, the effect of the current malfunction due to the operating conditions can be ignored and the probability of malfunction is reduced as much as possible. Embodiment An embodiment of the present invention will be described with reference to FIGS. The same components as those in the conventional example are denoted by the same reference numerals. In order to increase the high-frequency output, the magnetron 1 as a high-frequency generator is provided with the same specifications in two microwave power supply devices 9 and 9 ′ provided above and below the heating chamber 8, respectively. The upper magnetron is 1 and the magnetron provided in the lower power supply device 9 'is 1'. The magnetrons 1 and 1 'each have a power supply circuit composed of two high-voltage transformers 2 and 2' of the same specification, high-voltage capacitors 7 and 7 ', and high-voltage rectifiers 6 and 6'. Is provided.
The primary coils 10, 10 'of the high-voltage transformers 2 and 2' are provided with current detecting devices 11, 11 'as shown in FIG. 1, respectively, in series. The current detectors 11 and 11 'are high-voltage transformers 2.
And an iron core 1 connected in series to the primary coils 10, 10 'of 2'
Coil A13, 13 'wound on coils 2, 12' and coils A13, 13 'provided coaxially and coils B14, 14' insulated, coil A13 and coil B14, and coil A13 ' B
14 'are configured to be magnetically coupled. The current detectors 11 and 11 'are provided with a control circuit 15 for controlling the entire body.
Are provided together with other electronic circuit components on the printed circuit board 16 that constitutes the component. The current flowing through the high-voltage transformer primary coils 10, 10 'also flows through the coils A13, 13', and the iron cores 12, 1 'respectively.
Excite 2 '. This magnetic flux generates a voltage corresponding to the primary current in the coils B14 and 14 '. The voltage generated in the coils B14, 14 'is connected to the rectifying / smoothing circuits 17, 17', and is converted to DC. The DC-converted output voltage is proportional to the current flowing through the primary coil of the high-voltage transformer. Similarly, the number of turns of each coil, the size of the iron core, and the constants of the capacitors and resistors of the rectifier circuit are set. In the embodiment, the primary coil 1
When the current flowing through 0 and 10 'is 10A, the output voltage is 5V and the current is 1
It is configured to be 0.5V at A. Rectification, smoothing circuit 1
Outputs of 7, 17 'are input terminals of microcomputer circuit 18.
19,19 '. Microcomputer circuit 18
Is an operation key input means 20 for controlling the main body, a display means 21 for indicating an operation state, and a high-voltage transformer 2 for driving the respective high-frequency generators for controlling the main body.
The current detecting devices 11 and 11 'described above are connected to the primary coils 10 and 10' of 2 '.
A control relay 22 having contacts connected in series with
22 ', which is configured to control the operation of the main body according to a pre-programmed procedure. The microcomputer circuit is operated by converting the power supply voltage into a voltage necessary for the operation by the power transformer 23 and converting the voltage into a direct current.
Further, the microcomputer circuit 18 is provided with a secondary coil 24 of a power transformer 23 and a voltage input terminal 25 for taking in a part of the output voltage. Further, the main body has a door 27 provided on the front surface of the heating chamber 8 for taking in and out the object to be heated 26, and opens and closes in response to opening and closing of the door 27,
A door switch 28 having a contact for connecting and disconnecting the inputs of the high voltage transformers 2 and 2 ', a fuse 29 which operates when an excessive current is generated in the primary power supply circuit, and the like are provided. In this configuration, the operator normally sets the heating time on the RAM of the microcomputer circuit 18 by operating the operation key 20, and the contact of the power relays 22 and 22 'is closed by operating the heating start for the set time. , High voltage transformer
A voltage is applied to the magnetrons 2 and 2 ', and power is supplied to the magnetrons 1 and 1'. Is programmed so that heating is performed by applying pressure to Further, the microcomputer circuit 18 has a third
The program shown in the flowchart of FIG.
That is, the main body takes in the input voltage from the voltage input terminal 25 at a constant period during operation. It is determined whether this voltage value is within a preset voltage range. In the embodiment, when the voltage is shifted by 15% or more with respect to the rated voltage, the power relay 2
Turn off both 22 and 22 'to stop high frequency generation. As another embodiment, the voltage may be detected even in a state where the main body does not operate, and if the voltage is abnormal, the operation may not be performed from the beginning. In another embodiment, the outputs of the current detectors 11 and 11 'may be corrected according to the ratio of the detected voltage to the rated voltage. If the voltage is within the normal range, the operation is continued and the DC voltage obtained by rectifying and smoothing the voltage generated in the coil B14 of the current detection device 11 is taken in.
Store it temporarily on AM. This is A. Similarly, the DC output detected by the current detector 11 'is taken.
This is B. Next, the value of B is subtracted from A, and the magnitudes are compared. The sign of this value is determined, and if it is positive, that is, A>
If B, A / B operation is performed. If negative, that is, if A <B, the operation of-(B / A) is performed. It is determined whether the result is larger or smaller than 1.2 in the embodiment. That is, it is determined whether or not the difference between A and B is 20% or more. If the value is smaller than 1.2, that is, there is no abnormality in the two high-frequency generators, it is determined that there is an error caused by a variation in the constants of the components, and the process returns to the original routine to take in the input voltage again. If A is larger than B and the difference between A and B is 20% or more, the value of A which has been set beforehand and which is normal when A is 20%
A value that is higher by% is subtracted, and it is determined whether the value is positive or negative. If it is positive, the current of A is abnormally large, that is, 1.2 times or more larger than the value of B, and is larger than the rated current of A. Therefore, in the secondary circuit of the high-voltage transformer 2, the high-voltage capacitor 7 There were measured the number of times N 1 for determining a short-circuited, if more than 5 times the state has continued continued, turn output to the relay 22, the contact is opened the relay 22, the only abnormal current flowing through the high-voltage transformer 2 Cut. The display means 21 displays FO3 indicating an abnormality. Conversely, if the value is negative, the value of B is abnormally low compared to the normal state.
High pressure rectifier 6 'and the magnetron 1' short circuit, etc., or determines that a part has become an open state of the secondary circuit, 'cut, high-voltage transformer 2' relay 22 when the number N 2 was followed over five times Turn off the flowing current. The display means displays FO4. In either case, once the relay 22 or 22 'is turned off, the relay is programmed to hold until the power is turned off. Conversely, if B is larger than A and the difference is 20% or more, a value that is 20% higher than the preset value of B that has been set before B is subtracted from B, and whether this value is positive or negative Make a decision. If it is positive then the current of B is abnormally large, it is determined that the short circuit condition, such as a high voltage condenser 7 in the second order path of the high-voltage transformer 2 ', counts the number of times N 3, if this state continues continuously five or more times The relay 22 'is turned off, and only the input to the high voltage transformer 2' is turned off. The display means 21 displays FO2 and notifies an abnormality. Similarly to the above, if the value becomes negative, the value of A is abnormally lower than normal, and it is determined that the high-voltage rectifier 6 and the magnetron 1 in the secondary circuit of the high-voltage transformer 2 are short-circuited or open. counting the number of times N 4, if this state continues continued five times or more, cutting only the input to the high voltage transformer 2 off the relay 22. The display means displays FO1. The measurement is performed every 0.1 sec. The above is the case of two high-frequency generators, but in the case of a larger number, the same number of current detectors are provided as described above, and AB, B, C are detected for detected signals A, B, C,. B−
C, C... Calculate the difference between the two by calculating XA,
It is determined whether or not the difference is equal to or larger than the difference set in consideration of the current deviation due to the variation, and if there is a difference, as in the above-described embodiment, the difference is larger or smaller than the value at the preset rated current. Based on the determination, it is determined which circuit has failed, and the control relay contact of only the failed circuit is opened. Effects of the Invention In the present invention having the above configuration and the program, as described at the outset, by detecting a plurality of abnormality detection devices in the primary circuit element, there is no need for protection against high voltage as compared with the related art. Only the insulation distance and the like can be reduced, and the size can be extremely reduced. In the present embodiment, in particular, the current detection devices 11 and 11 'are provided on the printed circuit board 16 constituting the microcomputer circuit 18 for controlling the main body, so that the production cost can be reduced. By implementing the present invention, the following effects were obtained. Abnormality can be more accurately detected and controlled in the current that fluctuates depending on the operation state of the device. In other words, according to the conventional method, the magnitude of each current value and the absolute value of the signal are detected and controlled. Therefore, each time the operating condition changes, the value changes, which value is normal and which value is normal. Sometimes it was difficult to judge whether something was abnormal. According to the present invention, the change in the current difference between the two high-frequency generators that always operates under the same operating conditions is detected, so that the current change due to the operating conditions can be ignored. As an embodiment, by detecting the primary input voltage together, the main body is operated at a voltage deviating from the resonance voltage, and the high voltage transformer 2 which is generated when the magnetrons 1, 1 'and the high voltage rectifiers 6, 6' are short-circuited. Abnormality can be detected very accurately, such as preventing malfunction due to an increase in the primary and primary currents, and instantaneous and accurate detection of failures in the high-voltage transformer secondary circuit, which may cause ignition or electric shock. , Safety can be ensured. Further, according to the embodiment of the present invention, when one of the plurality of high-frequency generators fails, only the failed circuit stops operating, and the other circuits continue operating, so that the heating output decreases, but the heating operation continues. By doing so, the heating work is not interrupted in the busy kitchen room and the usability is greatly improved, compared to the conventional method in which the entire apparatus stops due to a partial failure. Also, when repairs are to be performed after a failure occurs, by checking the contents displayed on the display means, the failure location can be specified in more detail, the repair time can be greatly reduced, the efficiency is improved and the equipment can not be used Can also be obtained.

【図面の簡単な説明】 第1図は本発明の一実施例における高周波加熱装置の要
部断面図、第2図は同実施例の回路図、第3図は同マイ
クロコンピューター回路の流れ図、第4図は同側方断面
図、第5図は従来例を示す回路図、第6図は同要部斜視
図である。 1,1′……マグネトロン、2,2′……高圧トランス、6,
6′……高圧コンデンサ、7,7′……高圧コンデンサ、8
……加熱室、10,10′……高圧トランス1次コイル、11,
11′……電流検出装置、15……制御回路、16……プリン
ト基板、18……マイクロコンピューター回路、21……表
示手段、22,22′……制御リレー、23……パワートラン
ス、25……電圧入力端。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a sectional view of a main part of a high-frequency heating apparatus according to an embodiment of the present invention, FIG. 2 is a circuit diagram of the embodiment, FIG. FIG. 4 is a side sectional view of the same, FIG. 5 is a circuit diagram showing a conventional example, and FIG. 6 is a perspective view of the main part. 1,1 '… magnetron, 2,2'… high voltage transformer, 6,
6 '… High voltage condenser, 7,7'… High voltage condenser, 8
…… Heating room, 10,10 ′ …… High voltage transformer primary coil, 11,
11 '... current detection device, 15 ... control circuit, 16 ... printed circuit board, 18 ... microcomputer circuit, 21 ... display means, 22, 22' ... control relay, 23 ... power transformer, 25 ... ... Voltage input terminal.

Claims (1)

(57)【特許請求の範囲】 1.本体内に被加熱物の加熱に係る複数の高周波発生装
置及びそれぞれの高周波発生装置の駆動に係る電源回
路、及び前記電源回路の1次入力電流をそれぞれ個別に
検出する同数の電流検出手段と、電流検出手段の検出し
た1次入力電流の値とを相互に比較し、比較したデータ
に基づき前記それぞれの高周波発生装置の駆動に係る電
源回路の1次電流を制御する制御回路を有し、更に前記
電流検出手段の検出した電源回路1次電流の差の出力が
正で、且つ減じられた側の電流値が正常時の値に対し設
定された比率の電流値よりも多い場合、少なくとも減じ
られた側の電源回路の1次回路を遮断し、且つ減じられ
た側の電流の過大を表示する構成と、減じられた側の電
流値が正常時の値に対し設定された比率の電流値よりも
少ない場合、少なくとも減じた側の電源回路の1次回路
を遮断し、且つ、減じた側の電流の過少を表示する構成
の何れか一方或いは双方を設け、又、電流検出手段の検
出した電源回路1次電流の差の出力が負で、且つ減じら
れた側の電流値が正常時の値に対し設定された比率の電
流値よりも多い場合、少なくとも減じた側の電源回路の
1次回路を遮断し、且つ減じた側の電流の過大を表示す
る構成と、減じた側の電流値が正常時の値に対し設定さ
れた比率の電流値よりも少ない場合、少なくとも減じら
れた側の電源回路の1次回路を遮断し、且つ減じられた
側の電流の過少を表示する構成の何れか一方或いは双方
を設け、更に本体内に電源電圧の検出手段を設け、あら
かじめ設定した電圧の範囲以外では本体の加熱動作を不
能にする手段を設けたことを特徴とする高周波加熱装
置。 2.電流検出手段として電源回路の1次回路に直列にカ
レントトランスを接続し、更に、前記カレントトランス
の出力を整流、平滑化する手段を設け、電源回路の1次
回路に流れる電流に比例した直流電圧により比較する構
成を有することを特徴とする特許請求の範囲第1項に記
載の高周波加熱装置。
(57) [Claims] A plurality of high-frequency generators for heating the object to be heated in the body and a power supply circuit for driving each of the high-frequency generators; and the same number of current detection means for individually detecting the primary input current of the power supply circuit, A control circuit for comparing the value of the primary input current detected by the current detection means with each other, and controlling a primary current of a power supply circuit for driving each of the high-frequency generators based on the compared data; If the output of the difference between the primary currents of the power supply circuit detected by the current detection means is positive and the current value on the reduced side is larger than the current value of the ratio set to the normal value, at least the value is reduced. The primary circuit of the power supply circuit on the other side is cut off and the excess current on the reduced side is displayed, and the current value on the reduced side is set at a ratio of a current value set to a normal value. Also at least if at least One or both of a configuration for interrupting the primary circuit of the power supply circuit on the other side and displaying an undercurrent of the reduced side is provided, and the primary circuit of the power supply circuit detected by the current detection means is provided. When the output of the difference is negative and the current value on the reduced side is larger than the current value of the set ratio with respect to the normal value, at least the primary circuit of the power supply circuit on the reduced side is shut off, and A configuration for displaying an excessive current on the reduced side, and a primary circuit of the power supply circuit on the reduced side at least when the current value on the reduced side is smaller than a current value of a set ratio with respect to a normal value. One or both of the configurations for shutting off the current and displaying an undercurrent on the reduced side is provided. Further, a power supply voltage detecting means is provided in the main body, and the heating operation of the main body is performed outside of a predetermined voltage range. Characterized by the provision of means for disabling Wave heating device. 2. A current transformer is connected in series to the primary circuit of the power supply circuit as current detection means, and means for rectifying and smoothing the output of the current transformer is provided. The DC voltage is proportional to the current flowing through the primary circuit of the power supply circuit. The high-frequency heating device according to claim 1, wherein the high-frequency heating device has a configuration for performing comparison by:
JP62106632A 1987-04-30 1987-04-30 High frequency heating equipment Expired - Fee Related JP2699351B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62106632A JP2699351B2 (en) 1987-04-30 1987-04-30 High frequency heating equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62106632A JP2699351B2 (en) 1987-04-30 1987-04-30 High frequency heating equipment

Publications (2)

Publication Number Publication Date
JPS63271888A JPS63271888A (en) 1988-11-09
JP2699351B2 true JP2699351B2 (en) 1998-01-19

Family

ID=14438489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62106632A Expired - Fee Related JP2699351B2 (en) 1987-04-30 1987-04-30 High frequency heating equipment

Country Status (1)

Country Link
JP (1) JP2699351B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5275138U (en) * 1975-12-03 1977-06-04
JPS52154137A (en) * 1976-06-17 1977-12-21 Tabuchi Denki Kk Method of detecting electronic range failure

Also Published As

Publication number Publication date
JPS63271888A (en) 1988-11-09

Similar Documents

Publication Publication Date Title
US6157097A (en) Protecting method for inrush current preventing resistor
US4788619A (en) Protective relays and methods
US4888461A (en) High-frequency heating apparatus
EP0424365B1 (en) Controlling device for electric apparatus
CN109188278B (en) Three-phase unbalance detection circuit and system
US4556773A (en) High frequency heating appliance having protection against rush currents
JP2699351B2 (en) High frequency heating equipment
JPS61231877A (en) Dc power source
JPH07312823A (en) Dc leak detection and protective device
US2290101A (en) Protective arrangement
JP2656316B2 (en) High frequency heating equipment
KR20170122005A (en) Short-circuit testing device
JP4497626B2 (en) Transformer induction test equipment and mobile trolley
CA1329828C (en) Method of determining whether power supply or magnetron has failed
JPH04198627A (en) Safety device of microwave oven
JPH099487A (en) Controller for air conditioner
JPH0833193A (en) Protective relay system for transformer of reception and transformation facility and transformer protection method reception and transformation facility
CN215452502U (en) On-line monitoring and protecting system for preventing open circuit of current transformer
JPH036870B2 (en)
JPH10206510A (en) Testing device and method of generator
US2834940A (en) Apparatus for testing wire coatings
JPH0195492A (en) High frequency heater
JP2723519B2 (en) Heating equipment
KR20230055043A (en) Detection method and apparatus for current transformer secondary open with arcing current
JPH04286894A (en) High voltage drive circuit

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees