JPS6230125B2 - - Google Patents

Info

Publication number
JPS6230125B2
JPS6230125B2 JP699283A JP699283A JPS6230125B2 JP S6230125 B2 JPS6230125 B2 JP S6230125B2 JP 699283 A JP699283 A JP 699283A JP 699283 A JP699283 A JP 699283A JP S6230125 B2 JPS6230125 B2 JP S6230125B2
Authority
JP
Japan
Prior art keywords
type
powder
particle size
silicon nitride
average particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP699283A
Other languages
Japanese (ja)
Other versions
JPS59137310A (en
Inventor
Akira Senda
Mitsuo Umemura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP699283A priority Critical patent/JPS59137310A/en
Publication of JPS59137310A publication Critical patent/JPS59137310A/en
Publication of JPS6230125B2 publication Critical patent/JPS6230125B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/068Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with silicon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)
  • Silicon Compounds (AREA)

Description

【発明の詳細な説明】 本発明は窒化けい素粉末の製造方法、特にはα
型窒化けい素含有率の高い窒化けい素粉末の製造
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a method for producing silicon nitride powder, particularly α
The present invention relates to a method for producing silicon nitride powder having a high silicon nitride content.

窒化けい素(以下Si3N4と略記する)について
はその焼結体が耐熱性、耐蝕性、耐摩耗性にすぐ
れたものであり、かつは高硬度、軽量であるとい
う特性をもつものであることから、ニユーセラミ
ツクス材として注目されており、ガスタービン、
切削工具、高温ベアリング、メカニカルシール材
としての用途が期待されている。
Silicon nitride (hereinafter abbreviated as Si 3 N 4 ) has a sintered body that has excellent heat resistance, corrosion resistance, and wear resistance, as well as high hardness and light weight. Because of this, it is attracting attention as a new ceramic material, and is used in gas turbines,
It is expected to be used as cutting tools, high-temperature bearings, and mechanical sealing materials.

他方、このSi3N4についてはその結晶形からα
型Si3N4とβ型Si3N4の両者が存在するが、上記し
た各種の用途にはα型Si3N4を主成分とする原料
粉末の焼結体が常温、1000℃を超える高温のいず
れにおいてもβ型Si3N4を主体とする粉末材から
得られる焼結体よりもすぐれた物性を示し、特に
耐摩耗性が要求される切削工具チツプについては
α型Si3N4の粉末から得られる焼結体がすぐれた
物性を示すものであることが知られている。
On the other hand, regarding this Si 3 N 4 , α
Both type Si 3 N 4 and β-type Si 3 N 4 exist, but for the various uses mentioned above, sintered bodies of raw material powder mainly composed of α-type Si 3 N 4 are required at room temperature or above 1000°C. Even at high temperatures, it exhibits better physical properties than sintered bodies obtained from powder materials mainly composed of β-type Si 3 N 4 , and α-type Si 3 N 4 is particularly suitable for cutting tool chips that require wear resistance. It is known that sintered bodies obtained from powders of

そのため、α型Si3N4の含有率の高いSi3N4粉末
の生産供給が望まれているが、金属けい素と窒素
ガスとからSi3N4を製造する方法によつてα型
Si3N4を生産するためには、これをできるだけ低
温で実施する必要があるにも拘わらず、この反応
が発熱反応であることから、これにはその反応系
を冷却する必要があるほか、低温反応であること
から反応時間が長くなるという不利があり、した
がつてこのα型Si3N4を90%以上含有するSi3N4
生産は非常に困難なものとされている。
Therefore, it is desired to produce and supply Si 3 N 4 powder with a high content of α-type Si 3 N 4 .
In order to produce Si 3 N 4 , this reaction must be carried out at as low a temperature as possible; however, since this reaction is exothermic, it is necessary to cool the reaction system; Since it is a low-temperature reaction, it has the disadvantage that the reaction time is long, and therefore it is considered to be extremely difficult to produce Si 3 N 4 containing 90% or more of α-type Si 3 N 4 .

本発明はこのような不利を解決したα型Si3N4
の高い含有率で含むSi3N4粉末の製造方法に関す
るものであり、これは金属けい素と窒素ガスとの
反応で得られたα型窒化けい素を50%以上、β型
窒化けい素を50%以下含有する窒化けい素を平均
粒子径5μm以下に粉砕したのち、これを分級し
粒度の小さい部分を回収することを特徴とするも
のである。
The present invention solves these disadvantages by using α-type Si 3 N 4
This relates to a method for producing Si 3 N 4 powder containing a high content of 50% or more of α-type silicon nitride and 50% or more of β-type silicon nitride obtained by the reaction between metallic silicon and nitrogen gas. This method is characterized by pulverizing silicon nitride containing 50% or less to an average particle size of 5 μm or less, and then classifying it and recovering the portion with a small particle size.

これを説明すると、本発明者らはα型Si3N4
含有率の高いSi3N4粉末の取得方法について種々
検討し、これについては金属けい素と窒素ガスと
の反応系を検討してもα型Si3N4を90%以上含有
するSi3N4を得ることは困難であるということか
ら、物理的手段でこれを取得することとし、α型
Si3N4とβ型Si3N4の分離方法について研究を行な
つたところ、金属けい素と窒素ガスとの化学反応
で作られたSi3N4を5μm程度にまで粉砕する
と、α型Si3N4がこの反応では針状結晶として発
達し易いものでこれが粉砕操作で容易に破断され
るものであることから、このように粉砕したもの
をついで分級すると、意外にもこの粒度の小さい
部分がα型Si3N4の含有率の高いものになること
を見出し、これについてさらに検討を加え本発明
を完成させた。
To explain this, the present inventors have investigated various methods of obtaining Si 3 N 4 powder with a high content of α-type Si 3 N 4 , and have investigated the reaction system between metallic silicon and nitrogen gas. However, it is difficult to obtain Si 3 N 4 containing 90% or more of α-type Si 3 N 4 , so we decided to obtain it by physical means, and
Research on the separation method of Si 3 N 4 and β-type Si 3 N 4 revealed that when Si 3 N 4 produced by a chemical reaction between metallic silicon and nitrogen gas is crushed to about 5 μm, α-type Si 3 N 4 can be separated. In this reaction, Si 3 N 4 tends to develop as needle-like crystals, which are easily broken during the crushing operation. Therefore, when the thus-pulverized product is then classified, it is surprisingly possible to find small particles with a small particle size. It was discovered that the portion had a high content of α-type Si 3 N 4 , and the present invention was completed by further study on this.

本発明方法で始発材とされるSi3N4は従来公知
の方法とされる金属けい素と窒素ガスとの直接反
応によつて作られたものとされるが、しかしこれ
については、それがα型Si3N4の含有量50%以下
のものであると、爾後の分級処理によつてもα型
Si3N4の含有量の高いものを得るのが難しくなる
ので、これは少なくともα型Si3N4を50%含むも
のとすることが必要とされるが、この残余は50%
以下のβ型Si3N4とFe、Al、Caなど金属不純物
0.5%以下、Si0.3%以下、SiO21.5%以下からなる
ものとすればよい。
Si 3 N 4 , which is used as the starting material in the method of the present invention, is said to be produced by the direct reaction of metallic silicon and nitrogen gas, which is a conventionally known method. If the content of α-type Si 3 N 4 is 50% or less, α-type Si 3 N 4 will remain even after the subsequent classification process.
This is required to contain at least 50% α-type Si 3 N 4 , as it becomes difficult to obtain a high content of Si 3 N 4 ;
The following β-type Si 3 N 4 and metal impurities such as Fe, Al, Ca etc.
The content may be 0.5% or less, Si 0.3% or less, and SiO 2 1.5% or less.

この始発材としてのSi3N4の粉砕は任意の公知
の手段、例えばジエツトミル、ボールミル、アト
ライター、振動ミル、擂潰機などを用いて行なえ
ばよいが、これはこの粉砕が不充分であるとα型
Si3N4が粉砕し易いものであるという効果が十分
でなくなるので、これらを約5μm程度にまで粉
砕することが必要とされる。また、この粉砕は
Si3N4粉末を5μm以下のサブミクロン程度にま
で粉砕してもよいが、これをあまり細かくすると
爾後の分級によるα型とβ型の分離効率が却つて
わるくなるので、これは1μm〜5μmの範囲と
することがよい。
The Si 3 N 4 as the starting material may be pulverized using any known means, such as a jet mill, a ball mill, an attritor, a vibration mill, a crusher, etc., but this pulverization is insufficient. and alpha type
Since the effect of Si 3 N 4 being easily pulverized is no longer sufficient, it is necessary to pulverize it to about 5 μm. Also, this crushing
Si 3 N 4 powder may be pulverized to a submicron size of 5 μm or less, but if it is too fine, the separation efficiency of α-type and β-type by subsequent classification will be rather deteriorated, so this should be done in the range of 1 μm to 5 μm. It is recommended that the range be within the range of .

このように粉砕処理されたSi3N4粉末はついで
分級処理を行なうのであるが、これは風篩、水簸
のいずれでもよく、風篩による場合はサイクロ
ン、バツクフイルターで分離すればよく、水簸に
よる場合も公知の水力分級機を用いて行なえばよ
い。この分級処理は上記によりSi3N4粉末が5μ
m以下にまで粉砕されているので、これは例えば
1μm以上のものとそれ以下のものとに分離すれ
ばよく、α型のSi3N4がβ型Si3N4よりも粉砕され
易いということから、1μm以下の部分にα型
Si3N4が多くなり、結果において分級処理によつ
て得られる粒度の小さい部分のものがα型Si3N4
を高い含有量で含むものとして取得され、これに
よれば始発材として比較的高い含有率のもの、例
えば80%のものを使用すれば90%までの高い含有
率でα型Si3N4を含むSi3N4粉末を容易に得ること
ができるという工業的な有利性が与えられる。
The Si 3 N 4 powder thus pulverized is then subjected to a classification process, which can be done by either air sieving or water elutriation. In the case of elutriation, a known hydraulic classifier may be used. In this classification process, the Si 3 N 4 powder is
Since the Si 3 N 4 is crushed to a size of less than 1 μm, it is sufficient to separate it into, for example, those of 1 μm or more and those smaller than 1 μm, which means that α-type Si 3 N 4 is easier to crush than β-type Si 3 N 4 . α-type in the part less than 1 μm from
The amount of Si 3 N 4 increases, and the particles with small particle size obtained by classification are α-type Si 3 N 4.
According to this, if a relatively high content, for example 80%, is used as a starting material, it will contain α-type Si 3 N 4 at a high content of up to 90%. The industrial advantage is that Si 3 N 4 containing Si 3 N 4 powder can be easily obtained.

つぎに本発明の実施例をあげる。 Next, examples of the present invention will be given.

実施例 1 平均粒子径が325メツシユである、金属けい素
と窒素ガスとの反応で作つたα型Si3N4を70%、
β型Si3N4を30%含有する市販のSi3N4粉末10Kgを
ジエツトミル粉砕機を用いて、原料供給量3Kg/
時、風量2.0m3/分、プツシヤーノズル7Kg/
cm2、グラインデイングノズル5〜6Kg/cm2の条件
で、平均粒子径が5μmになるように粉砕し、こ
の粉砕物を水力分級機で水簸して平均粒子径が1
μmであるものを集めたところ、これは5Kgであ
り、そのSi3N4の含有量をX線回析法でしらべた
ところ、これは85%のα型Si3N4を含有するSi3N4
粉末であつた。
Example 1 70% α-type Si 3 N 4 made by the reaction of metallic silicon and nitrogen gas with an average particle size of 325 mesh,
Using a jet mill, 10 kg of commercially available Si 3 N 4 powder containing 30% of β-type Si 3 N 4 was milled at a raw material supply rate of 3 kg/
hour, air volume 2.0m3 /min, pusher nozzle 7kg/
cm 2 , grinding nozzle at 5 to 6 kg/cm 2 to give an average particle size of 5 μm, and elutriate this pulverized product with a hydraulic classifier to reduce the average particle size to 1 μm.
When I collected 5 kg of Si 3 N 4 , I found that it was Si 3 N 4 containing 85% α-type Si 3 N 4 by X-ray diffraction . N4
It was powdery.

また、こゝに得られたα型Si3N4を85%含有す
るSi3N4粉末5Kgをその平均粒子径が0.8μm以上
のものと0.8μm以下のものに分級し、この各々
に含まれているα型Si3N4の含有量をしらべたと
ころ、10回のくり返し試験の平均値として0.8μ
m以上のものはそれが84%、0.8μm以下のもの
は87%のα型Si3N4を含有するものであつた。
In addition, 5 kg of the Si 3 N 4 powder containing 85% α-type Si 3 N 4 obtained here was classified into those with an average particle size of 0.8 μm or more and those with an average particle size of 0.8 μm or less, and the When we investigated the content of α-type Si 3 N 4 in the
Those with a diameter of m or more contained 84%, and those with a diameter of 0.8 μm or less contained 87% of α-type Si 3 N 4 .

実施例 2 平均粒子径が7μmである、金属けい素と窒素
ガスとの反応で作つたα型Si3N4を92%、β型
Si3N4を8%含有するSi3N4粉末を直径3/8インチ
のメデイアを80%充填した振動ミルに装入し、振
動数1000cpm、震巾10mm、n−ヘキサン湿式、供
給粉末量1Kg/時、粉砕時間1時間という処理条
件で粉砕し、平均粒子径4.5μmのSi3N4粉末を得
た。
Example 2 92% α-type Si 3 N 4 and β-type Si 3 N 4 made by reaction of metal silicon and nitrogen gas with an average particle diameter of 7 μm
Si 3 N 4 powder containing 8% Si 3 N 4 was charged into a vibratory mill filled with 80% media of 3/8 inch diameter, vibration frequency 1000 cpm, vibration width 10 mm, n-hexane wet method, amount of powder supplied. It was pulverized under the processing conditions of 1 kg/hour and 1 hour of pulverization to obtain Si 3 N 4 powder with an average particle size of 4.5 μm.

つぎにこの粉末を風篩分級機を用いて平均粒子
径が1μm以上のものと1μm以下のものとに分
けたところ、この1μm以下のものは40重量%で
あり、このもののα型Si3N4の含有量をX線回析
法でしらべたところ、これは98%のα型Si3N4
含むものであつた。
Next, this powder was divided into those with an average particle size of 1 μm or more and those with an average particle size of 1 μm or less using a wind sieve classifier, and the particles with an average particle size of 1 μm or less accounted for 40 % by weight. When the content of 4 was examined by X-ray diffraction, it was found to contain 98% α-type Si 3 N 4 .

比較例 実施例1と同じ試料を使用し、ジエツトミル粉
砕機への供給量を5Kg/時としたほかは実施例1
と同様の条件でこれを粉砕したところ、平均粒子
径が13μmのSi3N4粉末が得られた。
Comparative Example The same sample as in Example 1 was used, except that the feed rate to the jet mill was changed to 5 kg/hour.
When this was pulverized under the same conditions as above, Si 3 N 4 powder with an average particle size of 13 μm was obtained.

ついで、これを風篩装置に送り、サイクロンと
バツクフイルターで回収したところ、その80%
が、サイクロンで回収され、これらの回収粉の平
均粒子径はサイクロン回収粉が15μm、バツクフ
イルター回収粉が3μmであつたが、夫々のα型
Si3N4の含有量はサイクロン回収粉が70%と変ら
ず、バツクフイルター回収粉も72%と若干増加し
たに止まつた。
Then, when this was sent to a wind sieve device and recovered using a cyclone and back filter, 80% of it was
was collected using a cyclone, and the average particle size of these collected powders was 15 μm for the cyclone collected powder and 3 μm for the back filter collected powder.
The content of Si 3 N 4 remained unchanged at 70% in the cyclone-recovered powder, and only slightly increased to 72% in the back-filter recovered powder.

Claims (1)

【特許請求の範囲】[Claims] 1 金属けい素と窒素ガスとの反応で得られたα
型窒化けい素を50%以上、β型窒化けい素を50%
以下含有する窒化けい素を平均粒子径が5μm以
下に粉砕したのち、これを分級し、粒度の小さい
部分を回収することを特徴とするα型窒化けい素
の含有率を高めた窒化けい素粉末の製造方法。
1 α obtained from the reaction of metallic silicon and nitrogen gas
50% or more type silicon nitride, 50% β type silicon nitride
Silicon nitride powder with increased content of α-type silicon nitride, characterized by pulverizing the silicon nitride containing the following to an average particle size of 5 μm or less, classifying it, and recovering the small particle size part. manufacturing method.
JP699283A 1983-01-19 1983-01-19 Manufacture of silicon nitride powder Granted JPS59137310A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP699283A JPS59137310A (en) 1983-01-19 1983-01-19 Manufacture of silicon nitride powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP699283A JPS59137310A (en) 1983-01-19 1983-01-19 Manufacture of silicon nitride powder

Publications (2)

Publication Number Publication Date
JPS59137310A JPS59137310A (en) 1984-08-07
JPS6230125B2 true JPS6230125B2 (en) 1987-06-30

Family

ID=11653631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP699283A Granted JPS59137310A (en) 1983-01-19 1983-01-19 Manufacture of silicon nitride powder

Country Status (1)

Country Link
JP (1) JPS59137310A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2597165B2 (en) * 1988-10-07 1997-04-02 株式会社竹中工務店 Advertising sign lighting equipment
JP2009013830A (en) 2007-07-03 2009-01-22 Otics Corp Lash adjuster
JP4865740B2 (en) * 2008-01-30 2012-02-01 株式会社オティックス Rush adjuster

Also Published As

Publication number Publication date
JPS59137310A (en) 1984-08-07

Similar Documents

Publication Publication Date Title
JP5325387B2 (en) Monocrystalline diamond fine powder and method for producing the same
JP2763741B2 (en) Method of controlling particle size distribution in the production of polycrystalline cubic boron nitride
KR101484339B1 (en) method for collecting the minute diamond powder
JP4684599B2 (en) Method for producing cubic boron nitride
CN102295285A (en) Recovery method of silicon slice cutting waste mortar
JP2014047105A (en) Method for producing silicon carbide powder
KR100642840B1 (en) Superfine particulate diamond sintered product of high purity and high hardness and method for production thereof
JP2782665B2 (en) Method for producing titanium or titanium alloy powder
JPS6230125B2 (en)
JP2008272688A (en) Crushing method of ceramic raw material
JP2005029410A (en) Method for manufacturing finely powdered silicon or silicon compound
JP4984159B2 (en) Method for producing fine grain titanium silicon carbide ceramics
JP2000247751A (en) Production of alumina powder for sintered compact
JPH0510282B2 (en)
CN102114544A (en) Method for preparing tungsten powder having uniform size distribution as well as excellent degree of sphericity and dispersity
JPS61124508A (en) Production of high-purity ultra-fine tungsten powder
JP2002219560A (en) Reprocessing method for side dam for casting thin steel strip material, reprocessed product obtained, and the side dam produced under using the same
JP2018502984A (en) Method of preparing cubic boron nitride multimodal powder
JPH1179730A (en) Production of beta-spodumene superfine particle
JPS61295221A (en) Production of fine sepiolite powder
JPS618145A (en) Method of pulverizing material to be pulverized
JPH02164433A (en) Manufacture of polycrystalline cubic boron nitride particles
JP2949827B2 (en) Wurtzite-type boron carbonitride powder and method for producing the same
JP3434047B2 (en) Method for producing fused silica powder
JPH06121923A (en) Production of diamond