JPS62299085A - Vertical field-effect transistor - Google Patents

Vertical field-effect transistor

Info

Publication number
JPS62299085A
JPS62299085A JP61143397A JP14339786A JPS62299085A JP S62299085 A JPS62299085 A JP S62299085A JP 61143397 A JP61143397 A JP 61143397A JP 14339786 A JP14339786 A JP 14339786A JP S62299085 A JPS62299085 A JP S62299085A
Authority
JP
Japan
Prior art keywords
layer
drain
resistance
concentration
spreading
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61143397A
Other languages
Japanese (ja)
Inventor
Hajime Sawajima
澤島 一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP61143397A priority Critical patent/JPS62299085A/en
Publication of JPS62299085A publication Critical patent/JPS62299085A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To inhibit the spreading of a depletion layer into the interior of a drain layer at the time of conduction, to take spaciously the effective sectional area of a of conduction part and to suppress small the resistance of a junction FET part by a method wherein a diffused layer which has the same conductivity type as that of the drain layer and has an impurity concentration higher than that of the drain layer is formed in such a way as to encircle a base layer. CONSTITUTION:So as to suppress small the resistance of a junction FET part, a drain medium-concentration layer 4 having a concentration several-fold higher than a drain low-concentration layer 2 is provided around a base layer 5 by a self-matching using a gate electrode layer 8 as a shielding film. Therefore, with the resistance of the part lowered, the spreading of a depletion layer to the conduction part of the junction FET is inhibited and the resistance can be suppressed small. Moreover, this layer is very thin because being sectioned by a diffusion depth difference only from the base layer 5 by a self-matching and gives little effect to the spreading of a depletion layer at the time of inverse bias and because the concentration does not exceed several times.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〔産業上の利用分野〕 本発明は、縦形電界効果トランジスタに関し、特に1 
自己整合形2重拡散型縦形電界効果トランジスタ(以後
DMO8FET  と略記する)の構造に関する。
Detailed Description of the Invention 3. Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a vertical field effect transistor, particularly 1.
This invention relates to the structure of a self-aligned double diffused vertical field effect transistor (hereinafter abbreviated as DMO8FET).

〔従来の技術〕[Conventional technology]

従来、この種のDMO8FETは、ゲート電極をマスク
として、ベース層とソース層とを形成し、その拡散横方
内拡がシ差分をチャネルとして利用する構造となってお
り、電極とのずれが生じにくく、無効ゲート面積を抑え
しかも高耐圧化が容易であると云った利点がある。
Conventionally, this type of DMO8FET has a structure in which a base layer and a source layer are formed using the gate electrode as a mask, and the diffusion lateral inward expansion uses the difference as a channel, resulting in misalignment with the electrode. It has the advantages of being difficult to use, suppressing the ineffective gate area, and easily increasing the breakdown voltage.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来のD M OS F E T  に電流を
流す場合、DMO3FET  での消費電力は、その抵
抗分(順方向ドレイン−ソース間抵抗二以下RDS(o
n)と呼ぶ)で決定される。このため、 )(+DS(
on)が低い程優秀なFET  と云える。この几DS
(on)  の構成要素を第4図に示す。図中の抵抗は
それぞれチャネル抵抗11、ジャンクションFET 部
抵抗12、ドレイン低濃度層抵抗13、ドレイン高濃度
層抵抗14である。この中で、ドレイン高濃度層抵抗1
4は他の要素と比べて格段に小さく、主に14Ds(o
n)を決定するのは他の3者である。
When current flows through the conventional DMO3FET mentioned above, the power consumption in the DMO3FET is calculated by its resistance (forward drain-source resistance less than 2 RDS(o
n)). For this reason, )(+DS(
It can be said that the lower the on), the better the FET. This box DS
(on) components are shown in FIG. The resistances in the figure are a channel resistance 11, a junction FET part resistance 12, a low concentration drain layer resistance 13, and a high concentration drain layer resistance 14, respectively. Among these, drain high concentration layer resistance 1
4 is much smaller than other elements, mainly 14Ds (o
The other three parties decide n).

DMOSFET の特徴は高耐圧化が容易な事だが、高
耐圧化のためにはドレイン低濃度層の濃度を下げて、厚
くする必要がある。このため上述の構成要素中、ジャン
クションFET 部抵抗12とドレイン低濃度層抵抗1
3とが主になって来る。このうちドレイン低濃度層抵抗
13については前述の通bi圧とのトレードオフで決定
してしまう。またジャンクションPET 部抵抗12に
ついてもコレクタ低濃度層の濃度によって00時の空乏
層波がりが決まるため、耐圧とトレードオフの関係にあ
った。このため、高耐圧化すると、Ros(on)の増
大が避けられないという欠点がある。
A feature of DMOSFET is that it is easy to increase the breakdown voltage, but in order to increase the breakdown voltage, it is necessary to lower the concentration of the drain low concentration layer and make it thicker. Therefore, among the above-mentioned components, the junction FET part resistance 12 and the drain low concentration layer resistance 1
3 will be the main one. Among these, the drain low-concentration layer resistance 13 is determined by the trade-off with the above-mentioned conduction pressure. Further, regarding the junction PET resistor 12, the depletion layer wave length at 00 is determined by the concentration of the collector low concentration layer, so there is a trade-off relationship with the breakdown voltage. For this reason, when the breakdown voltage is increased, there is a drawback that an increase in Ros(on) is unavoidable.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

本発明によるDMOSFET は、ベース、ソース形成
前に同一拡散窓から自己整合法によって、ベース層をと
りかこむ形で、ドレイン層と同一導電形で不純物濃度が
、ドレイン低濃度層の数倍である層が形成されている。
The DMOSFET according to the present invention is manufactured by forming a layer surrounding the base layer using the self-alignment method from the same diffusion window before forming the base and source, and having the same conductivity type as the drain layer and an impurity concentration several times that of the drain lightly doped layer. is formed.

この層の存在によって、導電部の抵抗が下がるとともに
、導電時の、ドレイン層内部への空乏層波がりを抑制し
て、導通部の有効断面積が大きくとれ、前述の、ジャン
クションFET 部抵抗を小さく抑えることができる。
The presence of this layer lowers the resistance of the conductive part, suppresses depletion layer waves inside the drain layer during conduction, and increases the effective cross-sectional area of the conductive part. It can be kept small.

本発明の縦形電界効果トランジスタは、第1導電型半導
体基板の一主面上に絶縁膜を介して選択的に設けられた
ゲート電極を遮蔽膜としてベース層とソース層とを形成
した自己整合形2重拡散型縦形電界効果トランジスタに
おいて、ベース層を囲む様にドレイン層と同一導電型で
、かつ、ドレイン層より不純物濃度の高い拡散層が形成
されていることを特徴とする。
The vertical field effect transistor of the present invention is a self-aligned type in which a base layer and a source layer are formed using a gate electrode selectively provided on one principal surface of a first conductivity type semiconductor substrate via an insulating film as a shielding film. A double diffused vertical field effect transistor is characterized in that a diffusion layer having the same conductivity type as the drain layer and having a higher impurity concentration than the drain layer is formed surrounding the base layer.

〔実施例〕〔Example〕

次に、本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図は本発明の第1の実施例の縦断面図である。第1
図DMO8FET はドレイン高濃度層1と、ドレイン
低濃度層2に形成されたウェル部3、本発明の特徴であ
るドレイン中濃度拡散層4、ベース層5およびソース層
6と、絶縁膜層7を介して設けられた多結晶シリコンゲ
ート電極層8とリース層6に接続するリース電極層9と
からなる。この構造により第4図(b)に示すRDS(
On)  の構成要素のうちジャンクションFET m
の抵抗12を小さく抑える様に、ベース層の周りにゲー
ト電極層を遮蔽膜として自己整合によってドレイン低濃
度層の数倍の濃度のドレイン中濃度層4を設けているた
め、その部の抵抗を下げるとともに、ジャンクシ、ンF
ET の導通部への空乏層波がりを抑えて、抵抗を小さ
く抑えることができる。また、この層は自己整合によっ
てベース層とは拡散深さ差だけで区分されているためご
く薄く、また濃度的にも数倍に抑えているため逆バイア
ス時の空乏層伸ひにはほとんど影響を与えず、耐圧的に
は従来通りの設計となっている。
FIG. 1 is a longitudinal sectional view of a first embodiment of the invention. 1st
The DMO8FET in the figure shows a high concentration drain layer 1, a well part 3 formed in the low concentration drain layer 2, a medium concentration diffusion layer 4 for the drain, which is a feature of the present invention, a base layer 5, a source layer 6, and an insulating film layer 7. It consists of a polycrystalline silicon gate electrode layer 8 provided therebetween and a lease electrode layer 9 connected to the lease layer 6. With this structure, the RDS (
Junction FET m among the components of
In order to keep the resistance 12 of the region low, a medium concentration drain layer 4 with a concentration several times that of the low concentration drain layer is provided around the base layer using the gate electrode layer as a shielding film by self-alignment. At the same time as lowering the
It is possible to suppress the depletion layer wave to the conductive part of ET and to keep the resistance low. In addition, this layer is separated from the base layer only by the difference in diffusion depth due to self-alignment, so it is extremely thin, and the concentration is also suppressed several times, so it has little effect on depletion layer expansion during reverse bias. The design is the same as before in terms of pressure resistance.

第2図は本発明の第2の実施例の縦断面図である。図中
の番号はすべて第1図と共通でありこの実施例では高融
点金属ゲート電極の構成である。
FIG. 2 is a longitudinal sectional view of a second embodiment of the invention. All the numbers in the figure are the same as in FIG. 1, and this embodiment has a structure of a high melting point metal gate electrode.

即ち本実施例は、ゲート電極としてポリシリコンと高融
点金属とを用いているため、ゲート抵抗が低くなり、高
速化がはかれる。
That is, in this embodiment, since polysilicon and a high melting point metal are used as the gate electrode, the gate resistance is lowered and the speed is increased.

〔発明の効果〕〔Effect of the invention〕

以上説明した様に本発明は、ベース層の外側に中濃度ド
レイン層をベース層と自己整合的に設ける事により、耐
圧特性に全く影響を与える事なく、DMOSFETのR
os(on)特性が改善できろ効果がある。
As explained above, the present invention provides the R
It is effective if the OS (on) characteristics can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例によるD M O5FE
Tの縦断面図、第2図は本発明の第2の実施例の縦断面
図、第3図は従来のDMOSFET  の縦断面図、第
4図ialは従来のDMOSFETのRDS(on)を
その構成要素に分けた模式図、第4図(b)は本発明に
よるDMOSFETのRDs(on)をその構成要素に
分けた模式図である。 1・・・・・・ドレイン高濃度層、2・・・・・・ドレ
イン低濃度層、3・・・・・・ウェル部、4・・・・・
・ドレイン中濃度層、5・・・・・ベース/&、6・・
・・・・ソース層、7・・・・・・絶縁膜層、8・・・
・・・多結晶シリコンゲート電極層、9・・・・・・ソ
ース電極層、10・・・・・・高融点金属ゲート電極層
、11・・・・・・チャネル抵抗、12・・・・・・ジ
ャンクションFET抵抗、13・・・・・・ドレイン低
濃度層抵抗、14・・・・・・ドレイン高濃度層抵抗。 代理人 弁理士  内 原   晋 躬3図
FIG. 1 shows a D M O5FE according to a first embodiment of the present invention.
2 is a vertical sectional view of the second embodiment of the present invention, FIG. 3 is a vertical sectional view of a conventional DMOSFET, and FIG. 4 ial is a vertical sectional view of the conventional DMOSFET. FIG. 4(b) is a schematic diagram dividing the RDs(on) of the DMOSFET according to the present invention into its components. 1... Drain high concentration layer, 2... Drain low concentration layer, 3... Well part, 4...
・Drain medium concentration layer, 5...Base/&, 6...
...Source layer, 7...Insulating film layer, 8...
... Polycrystalline silicon gate electrode layer, 9 ... Source electrode layer, 10 ... High melting point metal gate electrode layer, 11 ... Channel resistance, 12 ... ... Junction FET resistance, 13 ... Drain low concentration layer resistance, 14 ... Drain high concentration layer resistance. Agent Patent Attorney Shinman Uchihara 3rd figure

Claims (1)

【特許請求の範囲】[Claims] 第1導電型半導体基板の一主面上に絶縁膜を介して選択
的に設けられたゲート電極を遮蔽膜としてベース層とソ
ース層とを形成した自己整合形2重拡散型縦形電界効果
トランジスタにおいて、ベース層を囲む様にドレイン層
と同一導電型で、かつ、ドレイン層より不純物濃度の高
い拡散層が形成されている事を特徴とした縦形電界効果
トランジスタ。
In a self-aligned double diffused vertical field effect transistor in which a base layer and a source layer are formed using a gate electrode selectively provided on one principal surface of a first conductivity type semiconductor substrate via an insulating film as a shielding film. A vertical field effect transistor characterized in that a diffusion layer having the same conductivity type as the drain layer and having a higher impurity concentration than the drain layer is formed surrounding the base layer.
JP61143397A 1986-06-18 1986-06-18 Vertical field-effect transistor Pending JPS62299085A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61143397A JPS62299085A (en) 1986-06-18 1986-06-18 Vertical field-effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61143397A JPS62299085A (en) 1986-06-18 1986-06-18 Vertical field-effect transistor

Publications (1)

Publication Number Publication Date
JPS62299085A true JPS62299085A (en) 1987-12-26

Family

ID=15337814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61143397A Pending JPS62299085A (en) 1986-06-18 1986-06-18 Vertical field-effect transistor

Country Status (1)

Country Link
JP (1) JPS62299085A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02273972A (en) * 1989-04-15 1990-11-08 Matsushita Electron Corp Vertical type mos field effect transistor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57109376A (en) * 1980-08-18 1982-07-07 Int Rectifier Corp High power mosfet
JPS62115873A (en) * 1985-11-15 1987-05-27 Matsushita Electronics Corp Vertical mos field effect transistor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57109376A (en) * 1980-08-18 1982-07-07 Int Rectifier Corp High power mosfet
JPS62115873A (en) * 1985-11-15 1987-05-27 Matsushita Electronics Corp Vertical mos field effect transistor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02273972A (en) * 1989-04-15 1990-11-08 Matsushita Electron Corp Vertical type mos field effect transistor

Similar Documents

Publication Publication Date Title
US5057884A (en) Semiconductor device having a structure which makes parasitic transistor hard to operate
JPH0330310B2 (en)
JPH0621468A (en) Insulated gate semiconductor device
KR20000051294A (en) DMOS field effect transistor with improved electrical characteristics and fabricating method thereof
JPH0513387B2 (en)
JP3257358B2 (en) Field effect type semiconductor device
JPH0456473B2 (en)
JPS6159666B2 (en)
JPS62299085A (en) Vertical field-effect transistor
JPH07135307A (en) Semiconductor device
JP2730088B2 (en) High voltage semiconductor device
JP3137840B2 (en) Semiconductor device
JPS626352B2 (en)
JPH0349266A (en) Mos-type semiconductor device
JPH051083Y2 (en)
JPH0428149B2 (en)
JPS63254769A (en) Vertical insulated-gate type field effect transistor
JPH09205201A (en) Horizontal type mosfet
JPS61172371A (en) Semiconductor device
JPS60107866A (en) Semiconductor device
JPS6258683A (en) Field effect transistor
JPH03171774A (en) High withstand voltage planar element
JP3074065B2 (en) Lateral MOS field effect transistor
JPS62159468A (en) Semiconductor device
JPS5931224B2 (en) semiconductor equipment