JPS622982B2 - - Google Patents

Info

Publication number
JPS622982B2
JPS622982B2 JP14718283A JP14718283A JPS622982B2 JP S622982 B2 JPS622982 B2 JP S622982B2 JP 14718283 A JP14718283 A JP 14718283A JP 14718283 A JP14718283 A JP 14718283A JP S622982 B2 JPS622982 B2 JP S622982B2
Authority
JP
Japan
Prior art keywords
weight
resin
laminate
vibration damping
polyvinyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14718283A
Other languages
Japanese (ja)
Other versions
JPS6038149A (en
Inventor
Masayoshi Hasuo
Yoshikuni Aoyanagi
Kazuhisa Kojima
Yukitoshi Suzuki
Yoshihiro Matsumoto
Masatoshi Shinozaki
Minoru Nishida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp, Kawasaki Steel Corp filed Critical Mitsubishi Kasei Corp
Priority to JP14718283A priority Critical patent/JPS6038149A/en
Publication of JPS6038149A publication Critical patent/JPS6038149A/en
Publication of JPS622982B2 publication Critical patent/JPS622982B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Vibration Prevention Devices (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は複合型制振積層体に係り、特に金属に
対して制振性能を具備する高分子物質層と金属層
より成る複合型制振積層体に関する。 近年、産業機械や構造物、更には社会生活に欠
かせない自動車等の騒音が社会的問題としてクロ
ーズアツプされ、その結果種々の騒音防止対策が
要求されるようになつて来た。 従来の具体的な騒音防止対策としては、遮音、
吸音、防振、制振材料の如き異なる機能を有する
材料を組合わせて使用する方法が多くとられて来
た。 一方自動車産業においては、騒音防止対策とは
別に時代の動向からますます厳しくなつてゆく燃
費規制とエネルギー供給問題に対処すべく軽量化
が進められている。例えばパネル用鋼板等の薄肉
化、もしくは鉄鋼材料の代替としてアルミニウム
合金やプラステイツク材料等の導入である。しか
しその反面自動車の軽量化に伴つて自動車自体の
振動が激しくなり、騒音が増大する傾向にある。
従つて如何にして振動を減少させるかが今後の重
要な課題である。 この振動防止対策の一環として、最近では防振
合金を使用する方法、金属に制振材料を貼合せる
方法、あるいは金属と金属の間に高分子物質を挾
み込んだ複合型制振材料を使用する方法が開発さ
れ広範囲の分野で採用され始めている。 一般に制振鋼板等の制振材料における振動減衰
効果の尺度としては、損失係数(η)、対数減衰
率(△)、共振鋭度(Q)等が用いられており、
これらは相互に関連のある物性値である。これら
の物性値のうち損失係数(η)が最も多く使用さ
れており、従来ηが0.05以上あれば制振効果が大
きいと言われていたが、最近における騒音規制の
強化から更にηの大なる制振材料の開発が期待さ
れている。 本発明の目的は上記時代の動向より更に損失係
数(η)の大にして、かつ加工性にすぐれた制振
材料を提供するにある。 本発明の要旨とするところは次の如くである。
すなわち、金属に対して制振性能を具備する高分
子物質層と金属層とを有して成る複合型制振積層
体において、前記高分子物質は(A)ポリビニルアセ
タール樹脂と(B)ポリアルキレンイソフタレート・
テレフタレート及び場合によつては(C)可塑剤より
なる成分を含む物質であることを特徴とする複合
型制振積層体である。 一般に複合型制振材料は鋼板等の金属間に高分
子物質を挾み込んでいるため、使用温度によつて
ηが変わる性質を有し、かつηはある温度でピー
クに達する性質を有している。従つて使用目的温
度に適合した高分子物質を選択する必要がある
が、本発明者らの研究によつて可塑剤や添加剤に
よつて損失係数(η)値を最大とする温度を変化
させることは可能であることが確認された。しか
し制振材料としてはかかる温度依存性が小さくη
が高いものほどよいことは勿論である。 一般に複合型制振積層鋼板の如き積層体の制振
性向上のために使用される高分子物質は損失正接
(tanδ)が高いもの程良いとされている。また複
合型制振積層体の他の一つの態様として非拘束型
制振積層体がある。これは鋼板等の金属に制振性
能のすぐれた高分子物質を貼合わせてフリーレイ
ヤーとして存在せしめた積層体であつて、一般に
高分子物質の複素弾性率(E″)の高いものが良
いとされている。最近では樹脂が少くて制振性に
すぐれている拘束型制振積層体が注目されてい
る。 以下本発明について詳細に説明する。 本発明者は金属との積層体において制振性の高
い高分子物質について鋭意検討した結果特願昭57
−228277号において示したポリビニールアセター
ル樹脂が有効であることを見い出した。該出願発
明における樹脂はすぐれた制振性を有するが損失
係数ηの温度依存性にやや難点があり有効な制振
性を示す温度範囲が狭い。本発明者等はこの欠点
を改良すべく鋭意検討した結果本発明に到達し
た。即ち本発明の要旨は(A)ポリビニールアセター
ル樹脂に(B)ポリアルキレンイソフタレート・テレ
フタレートを加えることでηの低下が少くかつη
の温度に対する依存性が少い即ちブロード化した
ピークを有し工業的に非常に価値のある手法を見
い出し本発明に到達した。またポリアルキレンイ
ソフタレート・テレフタレート共重合樹脂の量を
制御することでηのピークを任意に制御すること
も可能である。またピーク温度(最大の損失係数
を示す温度)を下げる目的で(C)可塑剤を加えるこ
とも可能である。またポリビニールアセタール樹
脂は加熱によつて架橋しやすく溶融状態での取り
扱いが困難であるがポリアルキレンイソフタレー
ト・テレフタレート共重合体を加えることで架橋
性が緩和され、工業上取り扱いが容易になること
は予想もつかないことであり有益性が大きい。 本発明に用いられる高分子の(A)成分であるポリ
ビニルアセタール樹脂は、酢酸ビニル、アルデヒ
ド等から製造され、一般的には酢酸ビニルモノマ
ーを重合し、ポリ酢酸ビニル樹脂を製造し、次に
鹸化により得られたポリビニルアルコールとアル
デヒドとの反応により製造される。すなわち、ポ
リビニルアセタール樹脂成分は、ビニルアセター
ルグループ、ビニルアルコールグループ、酢酸ビ
ニルグループを有する共重合体樹脂であり、この
樹脂のホルムアルデヒドによる反応物はホルマー
ル樹脂と称せられ、ブチルアルデヒドとの反応物
はブチラール樹脂と称されている。 本発明に使用されるポリビニルアセタール樹脂
の平均重合度は、300〜5000の範囲が好適であ
り、特に重合度の高いものほど好適である。また
アセタール化度は50〜85mol%程度が好ましい。 またポリビニルアセタール樹脂としてはポリビ
ニルブチラール、ポリビニルホルマール、ポリビ
ニルアセトアセタール、ポリビニルプロピルアセ
タール等が挙げられ、中でもポリビニルブチラー
ル樹脂又はポリビニルホルマール樹脂が好ましく
使用される。更にポリビニルアセタール樹脂にカ
ルボキシル基を含有したものも好ましく使用され
る。カルボキシル基はポリビニルアセタール樹脂
中に0.1〜5モル%、好ましくは0.2〜3モル%程
度含有されているのが好ましい。 カルボキシル基を含んだポリビニルアセタール
樹脂としては、例えば酢酸ビニルと不飽和カルボ
ン酸とを共重合した共重合体を使用し、常法によ
りポリビニルアセタール樹脂を製造する方法、も
しくはポリビニルアルコールをアセタール化する
際にカルボキシル基を含んだアルデヒドと反応さ
せることによつて得られる。 本発明の目的とする高分子の(B)成分であるポリ
アルキレンイソフタレート・テレフタレート共重
合体は例えばテレフタル酸ジメチルとイソフタル
酸ジメチル及びグリコール成分より例えば三酸化
アンチモンを触媒にして溶融重合によつて種々の
組成の共重合体を製造することが出来る。イソフ
タール酸成分の含量としては全酸成分に対し5〜
40モル%が適当である。極限粘度としては特に限
定はないが0.5〜0.9dl/gの範囲であれば構わな
い。グリコール成分としてはエチレングリコー
ル、ポリエチレングリコール、プロピレングリコ
ール、ポリプロピレングリコール、プロパン−
1・3−ジオール、ブタン−1・4−ジオール、
ポリテトラメチレングリコール、1・4−ヒドロ
キシメチルシクロヘキサンネオペンチルグリコー
ル等が用いられる。特にエチレングリコールを主
体とするものが好ましく、またエチレングリコー
ルとネオペンチルグリコール等の他のグリコール
成分とを組合せても良いことは勿論である。 ポリビニルアセタール樹脂とポリアルキレンイ
ソフタレート・テレフタレート共重合体との混合
組成比は10〜90重量%対90〜10重量%の範囲であ
れば良い。組成比が例えばポリビニルアセタール
樹脂が10重量%未満の場合はポリアルキレンイソ
フタレート・テレフタレート樹脂の制振性に支配
され逆に90%を越える場合はポリビニルアセター
ル樹脂に支配され両者を混合した効果はない。ま
たηの最大値が得られる温度域を調整するために
(C)成分として可塑剤を加える手法が有効である。
添加量は(A)成分と(B)成分の合計100重量部に対し
て40重量部を越えないことが好ましい。40重量部
を越える場合は金属面への接着力の低下を招くと
共にηの絶対値の低下を招き好ましくない。添加
出来る可塑剤としては、例えばジブチルフタレー
ト、ジオクチルフタレート、ブチルベンジルフタ
レート等のフタル酸エステルや、トリクレジルホ
スフエート等の燐酸エステル、ジブチルセバケー
ト、ジ−2−エチルヘキシルアジペート、ジブチ
ルサクシケート等の脂肪酸エステル、トリエチレ
ングリコールジブチレート等のグリコール誘導体
もしくは大豆油、あまに油、ひまし油等の植物油
及びこれらのエポキシ化物等が一般的に用いられ
ており、本発明においても、これらの中より任意
に選択することができる。可塑剤の役割は上記の
とおりであるが、一般的には可塑剤の添加量を増
加すると損失係数(η)の最大値は低温域に移行
する。 また高分子体組成物の弾性率、接着性等を改善
する目的で無機フイラーを添加することも出来
る。例えば鱗状黒鉛、雲母、電導性カーボンブラ
ツク、カーボングラフアイト、タルク、炭酸マグ
ネシウム等があげられる。添加量は(A)成分と(B)成
分の合計100重量部に対して10〜100重量部、好ま
しくは20〜50重量部程度である。 次に本発明による積層体に使用する金属につい
て説明する。本発明に使用する金属板としては相
互介在体として使用する高分子物質との接着性、
強度、価格等より鋼板が最も好適であるが、その
他の金属板、例えば銅板、アルミニウム板等も使
用可能である。 鋼板としては、軟鋼板、高張力鋼板、ステンレ
ス鋼板、亜鉛めつき鋼板等の表面処理鋼板、もし
くはこれらに燐酸塩又はクロム酸塩処理の如き金
属表面の予備処理に一般的に用いられる方法によ
つて表面処理した鋼板も使用目的によつて使用す
ることが可能である。これらの鋼板は粘弾性高分
子物質との最良の接着を得るために表面は清浄に
すべきであり、そのためにサンドブラスト処理等
も場合によつて必要である。 これらの鋼板は平板のまま使用されることもあ
るが、目的とする積層体の形状によつて曲げ加工
や絞り加工を受けることもある。また制振積層体
として使用される鋼板は製造過程で加熱されるた
め、時効が進行し易い鋼板を用いると、加工時に
ストレツチヤストレーンと称されている表面歪模
様が発生し外観を損ねるので、加工後の外観を重
視する場合には時効指数(A.I.)で1.5Kgf/mm2
以下の非時効性鋼板を使用すべきである。 このような制振積層体を製造するには、例えば
金属板と高分子物質層を積層状態で高分子物質層
の融点以上の温度に加熱しつつ加圧する所謂プレ
ス法、金属板を2枚、ロールに送り込みつつ押出
機から溶融状態でシート状に押出された高分子物
質を金属板の間に送り込み積層する押出積層法、
高分子物質を溶媒に溶かし、これを金属板に塗布
した後、加熱して溶媒を飛ばしつつ高分子物質を
溶融状態とし、次いでこの高分子物質層上に更に
金属板を押圧積層する塗布積層法等任意の方法が
用い得る。 なお、金属板の形状、厚み等は目的とする製品
により種々のものが用いられるが、一般的に例え
ば、2枚の金属板の間に高分子物質層を介在させ
た3層構造の場合について述べれば金属板は0.01
mm以上の厚みで、高分子物質層は金属板の1/20以
上の厚さを有していれば良い。金属板の厚さは両
面同じであるのが普通であるが、用途によつては
異ならせても良いし、3層以上の積層体とするこ
とも用途により可能である。 尚制振積層体の損失係数ηの温度依存性は供試
材を恒温槽内にセツトして各種温度に設定し、周
波数を変えて機械インピーダンスの共振点鋭度か
ら損失係数を求めることにより得た。 制振性の判断として第1にηの絶対値が0.1以
上を示す温度領域第2に0.3以上を示す温度領域
で判断した。 実施例 1 0.6mm×250mm×250mmの通常の冷延鋼板をトリ
クレンで脱脂し、これを本発明による積層体用金
属基材とした。 尚該鋼板の時効指数は0Kgf/mm2であつた。 次に重合度1050、ブチラール化度81%のポリブ
チラール樹脂55重量%、ジオクチルフタレート10
重量%、イソフタル酸含量12モル%で極限粘度
0.68のポリエチレンイソフタレート・テレフタレ
ート共重合体35重量%を良く混合し40mmφの単軸
押出機で230℃で溶融混練しペレツト化した。該
ペレツトを使用し100トンの熱プレスによつて300
mm×300mmで厚さ110μのシートを得た。。該シー
トを上記の2枚の鋼板間に挾み、加熱プレス機を
使用して230℃の温度で3分間予熱脱泡し、更に
3分間加熱加圧下で圧着し板厚1.3mmの複合型制
振積層体を得た。かくして得た複合型制振積層体
の損失係数ηの温度依存性を図−1のイに示し
た。 実施例 2 実施例1と同一原料を使用してポリビニルブチ
ラール68重量%、ジオクチルフタレート12重量
%、ポリエチレンイソフタレート・テレフタレー
ト共重合体20重量%を用い実施例1と同一手法に
てペレツト化後、複合型制振積層体を得た。ηの
温度依存性を図−1のロに示した。 比較例 1 実施例1と同一原料であるポリビニルブチラー
ル85重量%、ジオクチルフタレート15重量%、を
使用し実施例1と同一手法でペレツト化後複合型
制振積層体を得た。ηの温度依存性を図−1のハ
に示した。 比較例 2 実施例1と同一原料であるポリエチレンイソフ
タレート・テレフタレート共重合体を用い実施例
1と同一手法でペレツト化後、複合型制振積層体
を得た。ηの温度依存性を図−1ニに示した。 図−1においてη0.1以上の温度領域及び0.3以
上の温度領域をまとめて表−2に示した。
The present invention relates to a composite vibration damping laminate, and more particularly to a composite vibration damping laminate comprising a polymer layer and a metal layer that have damping performance against metal. In recent years, noise from industrial machinery and structures, as well as automobiles, which are essential to social life, has come to the fore as a social problem, and as a result, various noise prevention measures have been required. Conventional specific noise prevention measures include sound insulation,
Many methods have been used to combine materials with different functions, such as sound-absorbing, vibration-proofing, and damping materials. Meanwhile, in the automobile industry, in addition to noise prevention measures, weight reduction is being promoted in order to cope with fuel efficiency regulations and energy supply issues that are becoming increasingly strict due to the trends of the times. Examples include thinning steel plates for panels, or introducing aluminum alloys and plastic materials as substitutes for steel materials. On the other hand, as automobiles become lighter, the vibrations of the automobile itself tend to become more intense, leading to an increase in noise.
Therefore, how to reduce vibration will be an important issue in the future. Recently, as part of these vibration prevention measures, methods of using vibration-proofing alloys, methods of laminating vibration-damping materials to metals, or composite vibration-damping materials in which polymer substances are sandwiched between metals have been used. Methods have been developed and are beginning to be adopted in a wide range of fields. In general, loss coefficient (η), logarithmic damping ratio (△), resonance sharpness (Q), etc. are used as measures of the vibration damping effect of damping materials such as damping steel plates.
These are mutually related physical property values. Among these physical property values, the loss coefficient (η) is the most commonly used. Conventionally, it was said that if η is 0.05 or more, the vibration damping effect is large, but due to the recent tightening of noise regulations, it has become clear that η is even larger. The development of vibration damping materials is expected. An object of the present invention is to provide a vibration damping material that has a larger loss coefficient (η) than the trends of the times and has excellent workability. The gist of the present invention is as follows.
That is, in a composite vibration damping laminate comprising a polymer material layer and a metal layer that have damping performance against metal, the polymer material is (A) polyvinyl acetal resin and (B) polyalkylene. Isophthalate・
This is a composite damping laminate characterized in that it is a substance containing a component consisting of terephthalate and (C) a plasticizer in some cases. Composite vibration damping materials generally have a polymer substance sandwiched between metals such as steel plates, so η changes depending on the operating temperature, and η has the property of reaching a peak at a certain temperature. ing. Therefore, it is necessary to select a polymer material that is compatible with the intended use temperature, but the inventors' research has shown that the temperature at which the loss coefficient (η) is maximized can be changed by changing plasticizers and additives. It was confirmed that this is possible. However, as a damping material, such temperature dependence is small η
Of course, the higher the value, the better. It is generally believed that the higher the loss tangent (tan δ) of the polymeric substance used to improve the vibration damping properties of a laminate such as a composite damping laminated steel plate, the better. Another aspect of the composite vibration damping laminate is a non-constrained vibration damping laminate. This is a laminate in which a polymer material with excellent vibration damping performance is bonded to a metal such as a steel plate, and exists as a free layer. Generally, polymer materials with a high complex modulus of elasticity (E'') are preferred. Recently, restrained type vibration damping laminates that contain less resin and have excellent vibration damping properties have been attracting attention.The present invention will be explained in detail below. As a result of intensive research into high molecular weight substances, a patent application was filed in 1982.
It has been found that the polyvinyl acetal resin shown in No.-228277 is effective. Although the resin according to the invention has excellent vibration damping properties, it has some difficulties in the temperature dependence of the loss coefficient η, and the temperature range in which it exhibits effective vibration damping properties is narrow. The inventors of the present invention have made extensive studies to improve this drawback, and as a result have arrived at the present invention. That is, the gist of the present invention is that by adding (B) polyalkylene isophthalate/terephthalate to (A) polyvinyl acetal resin, η decreases little and η
The present invention has been accomplished by discovering a method that has little dependence on temperature, that is, has a broad peak, and is industrially very valuable. It is also possible to arbitrarily control the peak of η by controlling the amount of the polyalkylene isophthalate/terephthalate copolymer resin. It is also possible to add (C) a plasticizer for the purpose of lowering the peak temperature (temperature showing the maximum loss coefficient). Additionally, polyvinyl acetal resin easily crosslinks when heated and is difficult to handle in a molten state, but by adding polyalkylene isophthalate/terephthalate copolymer, the crosslinkability is alleviated, making it easier to handle industrially. is unpredictable and highly beneficial. Polyvinyl acetal resin, which is component (A) of the polymer used in the present invention, is produced from vinyl acetate, aldehyde, etc. Generally, vinyl acetate monomer is polymerized to produce polyvinyl acetate resin, and then saponified. It is produced by the reaction of the polyvinyl alcohol obtained by the above method with an aldehyde. That is, the polyvinyl acetal resin component is a copolymer resin having vinyl acetal groups, vinyl alcohol groups, and vinyl acetate groups, and the reaction product of this resin with formaldehyde is called formal resin, and the reaction product with butyraldehyde is called butyral. It is called resin. The average degree of polymerization of the polyvinyl acetal resin used in the present invention is preferably in the range of 300 to 5000, and the higher the degree of polymerization, the more preferable it is. Further, the degree of acetalization is preferably about 50 to 85 mol%. Examples of the polyvinyl acetal resin include polyvinyl butyral, polyvinyl formal, polyvinyl acetoacetal, and polyvinyl propyl acetal, among which polyvinyl butyral resin or polyvinyl formal resin is preferably used. Furthermore, polyvinyl acetal resins containing carboxyl groups are also preferably used. It is preferable that the carboxyl group is contained in the polyvinyl acetal resin in an amount of about 0.1 to 5 mol%, preferably about 0.2 to 3 mol%. As polyvinyl acetal resin containing a carboxyl group, for example, a method of producing polyvinyl acetal resin by a conventional method using a copolymer of vinyl acetate and an unsaturated carboxylic acid, or a method of acetalizing polyvinyl alcohol. It is obtained by reacting with an aldehyde containing a carboxyl group. The polyalkylene isophthalate/terephthalate copolymer, which is the component (B) of the polymer targeted by the present invention, is produced by melt polymerization of dimethyl terephthalate, dimethyl isophthalate, and a glycol component using, for example, antimony trioxide as a catalyst. Copolymers of various compositions can be produced. The content of isophthalic acid component is 5 to 5% of the total acid component.
40 mol% is suitable. There is no particular limitation on the intrinsic viscosity, but it may be within the range of 0.5 to 0.9 dl/g. Glycol components include ethylene glycol, polyethylene glycol, propylene glycol, polypropylene glycol, and propane.
1,3-diol, butane-1,4-diol,
Polytetramethylene glycol, 1,4-hydroxymethylcyclohexane neopentyl glycol, etc. are used. Particularly preferred are those containing ethylene glycol as a main component, and it goes without saying that ethylene glycol and other glycol components such as neopentyl glycol may be combined. The mixing composition ratio of the polyvinyl acetal resin and the polyalkylene isophthalate/terephthalate copolymer may be in the range of 10 to 90% by weight to 90 to 10% by weight. For example, if the composition ratio is less than 10% by weight of polyvinyl acetal resin, the damping properties of the polyalkylene isophthalate/terephthalate resin will dominate, and if it exceeds 90%, the damping properties will be dominated by the polyvinyl acetal resin, and there will be no effect of mixing the two. . Also, in order to adjust the temperature range where the maximum value of η is obtained,
An effective method is to add a plasticizer as component (C).
The amount added preferably does not exceed 40 parts by weight based on the total of 100 parts by weight of components (A) and (B). If it exceeds 40 parts by weight, it is not preferable because it leads to a decrease in adhesive strength to metal surfaces and a decrease in the absolute value of η. Examples of plasticizers that can be added include phthalic acid esters such as dibutyl phthalate, dioctyl phthalate, and butylbenzyl phthalate, phosphoric acid esters such as tricresyl phosphate, dibutyl sebacate, di-2-ethylhexyl adipate, and dibutyl succinate. Fatty acid esters, glycol derivatives such as triethylene glycol dibutyrate, vegetable oils such as soybean oil, linseed oil, and castor oil, and epoxidized products thereof are generally used, and in the present invention, any one of these may be used. You can choose. The role of the plasticizer is as described above, but generally, as the amount of plasticizer added increases, the maximum value of the loss coefficient (η) shifts to a lower temperature range. Furthermore, an inorganic filler can be added for the purpose of improving the elastic modulus, adhesiveness, etc. of the polymer composition. Examples include scaly graphite, mica, conductive carbon black, carbon graphite, talc, and magnesium carbonate. The amount added is about 10 to 100 parts by weight, preferably about 20 to 50 parts by weight, based on a total of 100 parts by weight of components (A) and (B). Next, metals used in the laminate according to the present invention will be explained. The metal plate used in the present invention has adhesive properties with the polymeric substance used as an intervening body,
Although a steel plate is most suitable in terms of strength, cost, etc., other metal plates such as copper plates and aluminum plates can also be used. The steel plates include surface-treated steel plates such as mild steel plates, high-strength steel plates, stainless steel plates, and galvanized steel plates, or those coated with surface-treated steel plates such as phosphate or chromate treatment, which are commonly used for preliminary treatment of metal surfaces. Steel plates with surface treatment can also be used depending on the purpose of use. The surface of these steel plates should be clean in order to obtain the best adhesion with the viscoelastic polymeric material, and for this purpose sandblasting or the like may be necessary in some cases. These steel plates may be used as flat plates, but they may also be subjected to bending or drawing depending on the shape of the desired laminate. In addition, the steel plates used as vibration-damping laminates are heated during the manufacturing process, so if a steel plate that ages easily is used, a surface distortion pattern called stretch strain will occur during processing, which will impair the appearance. If the appearance after processing is important, the aging index (AI) is 1.5Kgf/mm 2
The following non-aging steel plates should be used: In order to manufacture such a damping laminate, for example, a so-called pressing method is used in which a metal plate and a polymer material layer are laminated and heated and pressed to a temperature higher than the melting point of the polymer material layer, or two metal plates are An extrusion lamination method in which a polymer material extruded in a sheet form in a molten state from an extruder is fed between metal plates and laminated while being fed into a roll.
A coating and lamination method in which a polymer substance is dissolved in a solvent, this is applied to a metal plate, the polymer substance is melted while the solvent is evaporated by heating, and then a metal plate is laminated by pressing on the polymer substance layer. Any method can be used. Various shapes and thicknesses of metal plates are used depending on the intended product, but generally speaking, for example, a three-layer structure in which a polymer material layer is interposed between two metal plates is used. Metal plate is 0.01
It is sufficient that the polymer material layer has a thickness of 1/20 or more of the metal plate with a thickness of mm or more. Although the thickness of the metal plate is usually the same on both sides, it may be different depending on the use, and it is also possible to form a laminate of three or more layers depending on the use. The temperature dependence of the loss coefficient η of the vibration-damping laminate can be obtained by setting the test material in a thermostatic chamber, setting it at various temperatures, changing the frequency, and calculating the loss coefficient from the sharpness of the resonance point of the mechanical impedance. Ta. The damping properties were judged firstly in the temperature range where the absolute value of η was 0.1 or more, and secondly in the temperature range where the absolute value of η was 0.3 or more. Example 1 A normal cold-rolled steel plate of 0.6 mm x 250 mm x 250 mm was degreased with trichlorene and used as a metal base material for a laminate according to the present invention. The aging index of the steel plate was 0 kgf/mm 2 . Next, 55% by weight polybutyral resin with a degree of polymerization of 1050 and a degree of butyralization of 81%, and 10 dioctyl phthalate.
Intrinsic viscosity at wt%, isophthalic acid content 12 mol%
35% by weight of a 0.68% polyethylene isophthalate/terephthalate copolymer was thoroughly mixed and melt-kneaded at 230°C in a 40 mm diameter single screw extruder to form pellets. 300% by using a 100 ton heat press using the pellets.
A sheet measuring mm×300 mm and 110μ thick was obtained. . The sheet was sandwiched between the two steel plates mentioned above, preheated and defoamed at 230°C for 3 minutes using a hot press, and then crimped under heat and pressure for another 3 minutes to form a composite mold with a thickness of 1.3 mm. A shake laminate was obtained. The temperature dependence of the loss coefficient η of the composite damping laminate thus obtained is shown in Figure 1A. Example 2 Using the same raw materials as in Example 1, 68% by weight of polyvinyl butyral, 12% by weight of dioctyl phthalate, and 20% by weight of polyethylene isophthalate/terephthalate copolymer were pelletized in the same manner as in Example 1. A composite damping laminate was obtained. The temperature dependence of η is shown in Figure 1B. Comparative Example 1 Using the same raw materials as in Example 1, 85% by weight of polyvinyl butyral and 15% by weight of dioctyl phthalate, a composite damping laminate was obtained after pelletizing in the same manner as in Example 1. The temperature dependence of η is shown in Figure 1C. Comparative Example 2 A composite damping laminate was obtained by pelletizing the polyethylene isophthalate/terephthalate copolymer, which was the same raw material as in Example 1, in the same manner as in Example 1. The temperature dependence of η is shown in Figure 1D. In Figure 1, the temperature range of η0.1 or higher and the temperature range of 0.3 or higher are summarized in Table 2.

【表】 実施例 3 実施例1においてポリビニルブチラールの代り
に重合度930、ホルマール化度86%のポリビニル
ホルマールを使用し、可塑剤ジオクチルフタレー
トの代りにブチルベンジルフタレートを用いたほ
かは実施例−1と同様にして複合型制振積層体を
得た。損失係数の最大値(ηnax)は0.49であ
り、このときの温度は98℃であつた。
[Table] Example 3 Example-1 except that polyvinyl formal with a degree of polymerization of 930 and a degree of formalization of 86% was used instead of polyvinyl butyral in Example 1, and butylbenzyl phthalate was used instead of the plasticizer dioctyl phthalate. A composite damping laminate was obtained in the same manner as above. The maximum value of loss coefficient (η nax ) was 0.49, and the temperature at this time was 98°C.

【図面の簡単な説明】[Brief explanation of the drawing]

図−1は複合型制振積層体の損失係数ηの温度
依存性を示すグラフである。 図中イ〜ニは夫々実施例1、2比較例1、2の
積層体の場合を示す。
Figure 1 is a graph showing the temperature dependence of the loss coefficient η of a composite damping laminate. In the figure, A to D indicate the case of the laminates of Examples 1 and 2 and Comparative Examples 1 and 2, respectively.

Claims (1)

【特許請求の範囲】 1 金属に対し制振性能を具備する高分子物質層
と金属層を有して成る複合型制振積層体におい
て、 前記高分子物質が、 (A) ポリビニルアセタール樹脂10〜90重量% (B) ポリアルキレンイソフタレート・テレフタレ
ート共重合体樹脂90〜10重量% よりなり場合によつてはさらに(C)、(A)成分と(B)成
分の合計100重量部に対して40重量部以下の可塑
剤よりなることを特徴とする制振積層体。 2 ポリビニルアセタール樹脂がポリビニルブチ
ラール樹脂又はポリビニルホルマール樹脂である
特許請求の範囲第1項に記載の積層体。 3 ポリアルキレンイソフタレート・テレフタレ
ート共重合体樹脂が極限粘度0.5〜0.9dl/gであ
りイソフタール酸成分含量が5〜40モル%である
特許請求の範囲第1項又は第2項に記載の積層
体。 4 金属が鋼板である特許請求の範囲第1項乃至
第3項のいずれかに記載の積層体。
[Scope of Claims] 1. A composite vibration damping laminate comprising a polymer material layer and a metal layer that provide vibration damping performance for metal, wherein the polymer material is (A) polyvinyl acetal resin 10~ 90% by weight (B) 90 to 10% by weight of polyalkylene isophthalate/terephthalate copolymer resin, and optionally (C), based on the total of 100 parts by weight of components (A) and (B) A vibration damping laminate comprising 40 parts by weight or less of a plasticizer. 2. The laminate according to claim 1, wherein the polyvinyl acetal resin is a polyvinyl butyral resin or a polyvinyl formal resin. 3. The laminate according to claim 1 or 2, wherein the polyalkylene isophthalate/terephthalate copolymer resin has an intrinsic viscosity of 0.5 to 0.9 dl/g and an isophthalic acid component content of 5 to 40 mol%. . 4. The laminate according to any one of claims 1 to 3, wherein the metal is a steel plate.
JP14718283A 1983-08-11 1983-08-11 Vibration-damping laminate Granted JPS6038149A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14718283A JPS6038149A (en) 1983-08-11 1983-08-11 Vibration-damping laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14718283A JPS6038149A (en) 1983-08-11 1983-08-11 Vibration-damping laminate

Publications (2)

Publication Number Publication Date
JPS6038149A JPS6038149A (en) 1985-02-27
JPS622982B2 true JPS622982B2 (en) 1987-01-22

Family

ID=15424427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14718283A Granted JPS6038149A (en) 1983-08-11 1983-08-11 Vibration-damping laminate

Country Status (1)

Country Link
JP (1) JPS6038149A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH078903B2 (en) * 1986-08-27 1995-02-01 三井石油化学工業株式会社 Damping material
JP5610392B2 (en) * 2010-12-16 2014-10-22 東レ・デュポン株式会社 Thermoplastic elastomer resin composition and composite molded body

Also Published As

Publication number Publication date
JPS6038149A (en) 1985-02-27

Similar Documents

Publication Publication Date Title
KR870001247B1 (en) Composite type laminate for preventing vibration
JPS622982B2 (en)
US5232785A (en) Vibration damping sheet
JPH07122056B2 (en) Composition for composite type damping material
JPH0613621B2 (en) Resin composition for vibration damping laminate
JPS622983B2 (en)
JPH0441705B2 (en)
JPS6038151A (en) Composite type vibration-damping laminate
JPH01263147A (en) Composition for composite type vibration-damping material
JP2547802B2 (en) Composition for composite type damping material
JPS5853438A (en) Metallic laminate
JPS63193831A (en) Composite type vibration-damping laminate
JPH02273231A (en) Composite damping material for room temperature
JPS62141019A (en) Crosslinkable composition
KR102693405B1 (en) Adhesive Resin Composition Containing Ethylene Vinyl Acetate Resin And Styrene Block Copolymer Resin And The Vibration Damping Steel Sheet Manufactured Using The Same
JP2600828B2 (en) Manufacturing method of laminate
JPS62152751A (en) Viscoelastic multilayer body for manufacturing composite type vibration-damping material
JP2965678B2 (en) Composite metal plate and its manufacturing method
JPS63278845A (en) Viscoelastic multilayer body for preparing composite type damping material
JPS6128551A (en) Resin composition for vibration damping
JPS6345415B2 (en)
JPH0445924A (en) Vibration damping composite metallic sheet
JPS59124847A (en) Composite type vibration-damping laminate
JPH05237970A (en) Composite metal panel and production thereof
JPS61268440A (en) Vibration-damping composite steel plate