JPS63193831A - Composite type vibration-damping laminate - Google Patents

Composite type vibration-damping laminate

Info

Publication number
JPS63193831A
JPS63193831A JP62026008A JP2600887A JPS63193831A JP S63193831 A JPS63193831 A JP S63193831A JP 62026008 A JP62026008 A JP 62026008A JP 2600887 A JP2600887 A JP 2600887A JP S63193831 A JPS63193831 A JP S63193831A
Authority
JP
Japan
Prior art keywords
resin
weight
parts
film
laminate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62026008A
Other languages
Japanese (ja)
Inventor
弘行 長井
俊明 塩田
田所 義雄
戸谷 博雄
安本 登
鍋谷 秀夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurabo Industries Ltd
Kurashiki Spinning Co Ltd
Nippon Steel Corp
Sumitomo Chemical Co Ltd
Original Assignee
Kurabo Industries Ltd
Kurashiki Spinning Co Ltd
Sumitomo Chemical Co Ltd
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurabo Industries Ltd, Kurashiki Spinning Co Ltd, Sumitomo Chemical Co Ltd, Sumitomo Metal Industries Ltd filed Critical Kurabo Industries Ltd
Priority to JP62026008A priority Critical patent/JPS63193831A/en
Publication of JPS63193831A publication Critical patent/JPS63193831A/en
Pending legal-status Critical Current

Links

Landscapes

  • Vibration Prevention Devices (AREA)
  • Laminated Bodies (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、熱可塑性高分子物質層とそれを両側から挟む
金属層とからなる3iJtl造の複合型制振積層体に関
する。特に、熱可塑性高分子物質、Fiを押出法により
フィルム状で供給し、工業的に有利なホントプレス法あ
るいはロールラミネート法で製造することが可能な複合
型制振積層体に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a composite vibration damping laminate made of 3iJtl, which is composed of a thermoplastic polymer material layer and metal layers sandwiching it from both sides. In particular, the present invention relates to a composite damping laminate in which a thermoplastic polymer material, Fi, is supplied in the form of a film by an extrusion method, and can be manufactured by the industrially advantageous real press method or roll lamination method.

(従来の技術) 近年、産業機械や家電用品の発達により、各種機械装置
より発生する騒音、振動が保健衛生あるいは環境保全の
面から問題とされるようになってきた。特に、輸送機関
の発達、自動車の普及率の上昇は著しく、それに伴う騒
音が社会問題として取上げられ、騒音防止対策が要望さ
れている。
(Prior Art) In recent years, with the development of industrial machinery and home appliances, noise and vibration generated by various mechanical devices have become a problem from the viewpoint of health and hygiene and environmental conservation. In particular, the development of transportation systems and the rise in the prevalence of automobiles have been remarkable, and the accompanying noise has been raised as a social problem, and noise prevention measures have been demanded.

かかる対策の1つとして、2枚の金属板の間に高分子物
質層を挾んだ複合型制振積層体の使用があり、その適用
範囲も自動車のエンジン廻り部品(オイルパンやエンジ
ンカバー)、ボディー (ダッシュパネル、ドア、フー
ドなど)、家電機器、金属加工機械、ダクト、建材(屋
根、塀、壁、床など)等に拡大されつつある。今後、こ
の材料の適用をさらに拡大あるいは強化するためには、
これが大量かつ安価にしかも安定した性能で供給される
必要がある。この目的には、高分子物質層を押出し法に
よって、フィルム状で供給し、ホントプレス法あるいは
ロールラミネート法で、上下金属板と加熱圧着する方法
が工業的に有利である。
One such measure is the use of a composite vibration damping laminate, which has a polymer material layer sandwiched between two metal plates, and its scope of application is automobile engine parts (oil pans and engine covers), body parts, etc. (dash panels, doors, hoods, etc.), home appliances, metal processing machines, ducts, building materials (roofs, fences, walls, floors, etc.), etc. In order to further expand or strengthen the application of this material in the future,
This needs to be supplied in large quantities at low cost and with stable performance. For this purpose, it is industrially advantageous to supply the polymer material layer in the form of a film by extrusion, and heat and press the layer to the upper and lower metal plates by real press or roll lamination.

現在、前記複合型割振性積層体の芯材樹脂として、酢酸
ビニル樹脂、塩化ビニル樹脂等の単独重合体型、ならび
にエチレン−酢酸ビニル共重合体、アクリロニトリル−
スチレン共重合体等の共重合体型の熱可塑性樹脂、ある
いは、ウレタン系、エポキシ系、ポリエステル系等の熱
硬化性樹脂の利用が試みられている。
Currently, as the core material resin for the composite splittable laminate, homopolymer types such as vinyl acetate resin and vinyl chloride resin, as well as ethylene-vinyl acetate copolymer, acrylonitrile-
Attempts have been made to use copolymer-type thermoplastic resins such as styrene copolymers, or thermosetting resins such as urethane-based, epoxy-based, and polyester-based resins.

(発明が解決しようとする問題点) しかし、上記樹脂を芯材樹脂として用いた複合型制振鋼
板には、それぞれ以下に述べる欠点がある。
(Problems to be Solved by the Invention) However, the composite damping steel plates using the above-mentioned resins as core resins each have the following drawbacks.

酢酸ビニル樹脂は、割振性は良好であるが、掻く限られ
た温度範囲だけにそれが見られ、またフィルムコイル化
が難しいという欠点があり、しかも柔軟性が足りない、
その解決策として、酢酸ビニル樹脂の両側をブロッキン
グ性のない樹脂で包んだ3層フィルムとすることが考え
られるが、草原の方がフィルム製造が容易であることか
ら、3層フィルムとすることは好ましくない。
Vinyl acetate resin has good distribution properties, but this is only visible in a limited temperature range, and it also has the disadvantage that it is difficult to form into a film coil, and it lacks flexibility.
One possible solution to this problem is to create a three-layer film in which both sides of the vinyl acetate resin are wrapped with a non-blocking resin, but since it is easier to produce a film in grasslands, it is not possible to create a three-layer film. Undesirable.

次に、塩化ビニル樹脂は、本質的に金属板との接着性が
みられず、接着剤を必要とする。また、エチレン−酢酸
ビニル共重合体は、フィルム化が可能であるが、制振性
にとぼしい、アクリロニトリル−スチレン共重合体は、
塩化ビニル樹脂と同様に接着性力でない、さらに、熱硬
化性樹脂は、本質的にフィルム化が不可能である。
Next, vinyl chloride resin essentially has no adhesion to metal plates and requires an adhesive. Ethylene-vinyl acetate copolymer can be made into a film, but acrylonitrile-styrene copolymer has poor vibration damping properties.
In addition, thermosetting resins, which do not have the same adhesive strength as vinyl chloride resins, are inherently unable to be formed into films.

したがうて、本発明の目的は、前記複合型制振積層体に
用いる芯材樹脂の上記の問題を解決した、熱接着性およ
び制振性に優れ、かつフィルム成形性の良好な熱可塑性
高分子物質層を芯材樹脂とする複合型制振積層体を提供
することである。
Therefore, an object of the present invention is to provide a thermoplastic polymer that solves the above-mentioned problems of the core resin used in the composite vibration-damping laminate, has excellent thermal adhesion and damping properties, and has good film formability. An object of the present invention is to provide a composite vibration damping laminate whose material layer is a core resin.

(問題点を解決するための手段) そこで、本発明者らは、前記目的を達成するために、鋭
意検討を重ねた結果、ポリマ一連鎖の骨格上あるいは側
鎖に比較的大きな原子団(例えば芳香環)を存在させる
と制振性が良好になるのではないかと考え、芯材樹脂に
キシレン樹脂を使用するとの着想を得た。この着想に基
づき、キシレン樹脂に自己接着性、熱可塑性を付与し、
高分子フィルム化を可能とする樹脂組成物を得るべく検
討した結果、本発明に到達した0本発明で使用する樹脂
組成物は、キシレン樹脂に配合する他の樹脂の種類およ
び配合割合を変化させることにより、制振性の温度依存
性を制御できることも知見された。
(Means for Solving the Problems) Therefore, in order to achieve the above object, the present inventors have made extensive studies and found that relatively large atomic groups (e.g. We thought that the presence of an aromatic ring would improve vibration damping properties, and came up with the idea of using xylene resin as the core resin. Based on this idea, we added self-adhesive properties and thermoplasticity to xylene resin,
As a result of studies to obtain a resin composition that can be made into a polymer film, the present invention was arrived at. The resin composition used in the present invention is made by changing the type and blending ratio of other resins blended with the xylene resin. It was also found that the temperature dependence of damping properties could be controlled by this method.

ここに、本発明の要旨とするところは、熱可塑性高分子
物質層とこれを両側からはさむ金属層の3層構造からな
る複合型制振積層体において、前記熱可塑性高分子物質
が、(A)キシレン樹脂5〜25重量部、(B)ポリエ
チレン樹脂5〜45量量部および/もしくはエチレン−
酢酸ビニル共重合体5〜70重量部、さらに必要に応じ
て、(C)熱可塑性エラストマー40重量部以下と、(
D)スチレン系低分子量共重合体15重量部以下の一方
もしくは両方を含有する均質樹脂混合物であることを特
徴とする、複合型制振積層体である。
Here, the gist of the present invention is to provide a composite vibration damping laminate having a three-layer structure of a thermoplastic polymer material layer and a metal layer sandwiching this from both sides, in which the thermoplastic polymer material is (A ) 5 to 25 parts by weight of xylene resin, (B) 5 to 45 parts by weight of polyethylene resin, and/or ethylene-
5 to 70 parts by weight of a vinyl acetate copolymer, and if necessary, 40 parts by weight or less of a thermoplastic elastomer (C);
D) A composite vibration damping laminate characterized in that it is a homogeneous resin mixture containing one or both of 15 parts by weight or less of a styrene-based low molecular weight copolymer.

成分(C)の熱可塑性エラストマーとしては、スチレン
−ブタジェン−スチレンブロック共重合体(SBSブロ
ック共重合体)、スチレン−イソプレン−スチレンブロ
ック共重合体などが好ましい。
As the thermoplastic elastomer of component (C), styrene-butadiene-styrene block copolymer (SBS block copolymer), styrene-isoprene-styrene block copolymer, etc. are preferable.

(作用) 以下、本発明の詳細な説明する。(effect) The present invention will be explained in detail below.

本発明の割振積層体の芯材樹脂となる樹脂組成物におい
て、成分(A)として使用されるキシレン樹脂とは、m
−キシレンとホルムアルデヒドとを強酸触媒存在下に加
熱して得られる樹脂であり、m−キシレン核がエーテル
、アセタール、メチレン結合などで連結され、末端部の
一部にはメチロール基が存在する構造を持った樹脂であ
る0反復構造の一例を次に示す。
In the resin composition serving as the core material resin of the distributed laminate of the present invention, the xylene resin used as component (A) is m
- It is a resin obtained by heating xylene and formaldehyde in the presence of a strong acid catalyst, and has a structure in which m-xylene nuclei are connected by ether, acetal, methylene bonds, etc., and a methylol group is present at a part of the terminal part. An example of a 0-repeat structure that is a resin having the following properties is shown below.

キシレン樹脂は、特に常温域でそれ自体大きな振動吸収
能(すなわち、振動吸収係数tanδが大きい)を有す
るが、本質的に跪く、フィルム化が困難である。本発明
においては、環球法軟化点70℃以上のキシレン樹脂を
使用することが、樹脂組成物の他成分との混練性を確保
する意味で好ましい。キシレン樹脂は芯材樹脂組成物中
に5〜25重量部の相対的割合で存在させる。この量が
25重量部を超えると、得られた樹脂組成物のフィルム
化が困難となり、またキシレン樹脂が5重量部未満にな
ると、所望の良好な割振性が特に常温付近で得られなく
なる。
Although xylene resin itself has a large vibration absorption ability (that is, a large vibration absorption coefficient tan δ) especially in the room temperature range, it is inherently weak and difficult to form into a film. In the present invention, it is preferable to use a xylene resin having a ring and ball softening point of 70° C. or higher in order to ensure kneadability with other components of the resin composition. The xylene resin is present in the core resin composition in a relative proportion of 5 to 25 parts by weight. If this amount exceeds 25 parts by weight, it will be difficult to form the obtained resin composition into a film, and if the amount of xylene resin is less than 5 parts by weight, the desired good splitting properties will not be obtained, especially around room temperature.

本発明の割振積層体における芯材樹脂組成物の成分(B
)は、ポリエチレン樹脂とエチレン−酢酸ビニル共重合
体のいずれか一方もしくは両方であり、これらの樹脂の
両方を使用することが好ましい。
Components (B) of the core resin composition in the distributed laminate of the present invention
) is either or both of a polyethylene resin and an ethylene-vinyl acetate copolymer, and it is preferable to use both of these resins.

成分(B)として使用されるポリエチレン樹脂は、高密
度、中密度、低密度のいずれのものも使用できるが、フ
ィルム化という意味では、高圧法で得られるメルトイン
デックスが2〜70程度の分子量の低密度ポリエチレン
が好ましい。ポリエチレン樹脂は、キシレン樹脂を粘度
t’8整して、その脆さを改善し、フィルム化を容易に
する。この作用を果たすには、キシレン樹脂5〜25重
量部に対して少なくとも5重量部のポリエチレン樹脂を
配合する必要がある。一方、45重量部を超える量でポ
リエチレン樹脂を存在させると、制振性が悪化する恐れ
がある。
The polyethylene resin used as component (B) can be of high density, medium density, or low density, but in the sense of forming a film, polyethylene resin with a molecular weight of about 2 to 70 and a melt index obtained by a high pressure method is preferred. Low density polyethylene is preferred. Polyethylene resin adjusts the viscosity of xylene resin to t'8, improves its brittleness, and facilitates film formation. In order to achieve this effect, it is necessary to mix at least 5 parts by weight of polyethylene resin with 5 to 25 parts by weight of xylene resin. On the other hand, if the polyethylene resin is present in an amount exceeding 45 parts by weight, vibration damping properties may be deteriorated.

成分(B)として使用できるもう一方の樹脂であるエチ
レン−酢酸ビニル共重合体も、キシレン樹脂の脆さを改
善してフィルム化を容易にする作用をするとともに、制
振性を発揮する温度を調整し、接着性を改善する作用も
併せて示す、すなわち、本発明で使用する芯材樹脂組成
物にエチレン−酢酸ビニル共重合体を配合すると、割振
性を発揮する温度が低下し、常温付近で最大の制振性が
得られるようになる。これらの作用を得るには、キシレ
ン樹脂5〜25重量部に対して少なくとも5重量部のエ
チレン−酢酸ビニル共重合体を使用する必要があり、一
方これが70重量部を超えると、キシレン樹脂の量が必
然的に少なくなるために、制振性の低下を招く、使用す
るエチレン−酢酸ビニル共重合体は、酢酸ビニル含有量
が18〜28重量%、メルトインデックスが6〜400
のものが、フィルム化という意味では望ましい、あまり
に高分子量のものは、他の樹脂との混練性が悪いので好
ましくない。
The other resin that can be used as component (B), ethylene-vinyl acetate copolymer, also has the effect of improving the brittleness of xylene resin and making it easier to form into a film, and also has the effect of increasing the temperature at which it exhibits vibration damping properties. In other words, when the ethylene-vinyl acetate copolymer is added to the core resin composition used in the present invention, the temperature at which the oscillation property is exhibited is lowered, and the temperature at which vibration is exhibited is lowered to around room temperature. Maximum vibration damping performance can be obtained. To obtain these effects, it is necessary to use at least 5 parts by weight of ethylene-vinyl acetate copolymer per 5 to 25 parts by weight of xylene resin, whereas if this exceeds 70 parts by weight, the amount of xylene resin increases. The ethylene-vinyl acetate copolymer used has a vinyl acetate content of 18 to 28% by weight and a melt index of 6 to 400.
Polymers having a high molecular weight are desirable from the viewpoint of forming a film, but those having too high a molecular weight are not preferred because they have poor kneading properties with other resins.

成分(C)として使用する熱可塑性エラストマーは、樹
脂に耐寒性、耐熱性を付与するために、本発明の制振積
層体の芯材樹脂組成物中に必要に応じて40重量部以下
の量で配合できる。この熱可塑性エラストマーはまた、
制振性を発揮する温度を高温にするという付加価値を有
する。この作用を十分に得るには、少な(とも2重量部
の熱可塑性エラストマーを添加することが好ましい、熱
可塑性エラストマーの量が40重量部を超えると、キシ
レン樹脂を含有する樹脂組成物のフィルム化が困難とな
る。熱可塑性エラストマーとしては、メルトインデック
スが2〜3のものを使用するのが望ましい0本発明の目
的には、任意の熱可塑性エラストマーを使用できるが、
その具体例を挙げると、スチレン−ブタジェン−スチレ
ンブロック共重合体、スチレン−イソプレン−スチレン
ブロック共重合体、エチレン−プロピレンエラストマー
、エチレン−プロピレン−ジエンモノマー共t1体など
がある。
The thermoplastic elastomer used as component (C) may be added to the core resin composition of the vibration damping laminate of the present invention in an amount of 40 parts by weight or less, if necessary, in order to impart cold resistance and heat resistance to the resin. It can be blended with This thermoplastic elastomer also
It has the added value of increasing the temperature at which it exhibits vibration damping properties. In order to fully obtain this effect, it is preferable to add a small amount (at least 2 parts by weight) of the thermoplastic elastomer; if the amount of the thermoplastic elastomer exceeds 40 parts by weight, the xylene resin-containing resin composition will As the thermoplastic elastomer, it is desirable to use one with a melt index of 2 to 3. For the purpose of the present invention, any thermoplastic elastomer can be used, but
Specific examples thereof include styrene-butadiene-styrene block copolymer, styrene-isoprene-styrene block copolymer, ethylene-propylene elastomer, and ethylene-propylene-diene monomer co-t1.

スチレン系低分子量共重合体は、スチレンとスチレン誘
導体(例、α−メチルスチレン)および/または無水マ
レイン酸との分子量1000〜1500程度の共重合体
であり、フィルムと金属板との濡れ性を改善するために
15重量部以下の量で芯材樹脂組成物中に必要に応じて
添加される。このスチレン系低分子量共重合体の量が1
5重量部を超えると、脆いキシレン樹脂を含有する樹脂
組成物のフィルム化が困難となる。濡れ性改善を十分に
果たすには、少なくとも2重量部の上記低分子量共重合
体を存在させることが好ましい。
The styrenic low molecular weight copolymer is a copolymer of styrene and a styrene derivative (e.g. α-methylstyrene) and/or maleic anhydride with a molecular weight of about 1000 to 1500, and has a molecular weight of about 1000 to 1500. If necessary, it is added to the core resin composition in an amount of 15 parts by weight or less for improvement. The amount of this styrenic low molecular weight copolymer is 1
When the amount exceeds 5 parts by weight, it becomes difficult to form a resin composition containing a brittle xylene resin into a film. In order to sufficiently improve wettability, it is preferable that at least 2 parts by weight of the above-mentioned low molecular weight copolymer be present.

このように、本発明により、複合型制振積層体の芯材樹
脂層として用いる熱可塑性高分子物質にキシレン樹脂を
配合することにより、常温付近での割振性が得られる。
As described above, according to the present invention, by blending xylene resin into the thermoplastic polymer material used as the core resin layer of the composite damping laminate, it is possible to obtain vibration distribution properties at around room temperature.

さらに成分(B)のポリエチレン樹脂および/またはエ
チレン−酢酸ビニル共重合体樹脂を上記相対的重量割合
で配合することにより、キシレン樹脂の粘度が調整され
て、その脆さが改善され、キシレン樹脂含有樹脂組成物
をフィルム化することが容易となり、ホットプレス法あ
るいはロールラミネート法で前記フィルムを加熱圧着す
るといった工業的に有利な方法で、特に常温付近で良好
な制振性能を示す複合型制振性積層体を製造することが
可能となる。
Furthermore, by blending component (B) polyethylene resin and/or ethylene-vinyl acetate copolymer resin in the above relative weight ratio, the viscosity of the xylene resin is adjusted, its brittleness is improved, and xylene resin-containing A composite vibration damping method that makes it easy to form a resin composition into a film and exhibits good vibration damping performance especially at room temperature using an industrially advantageous method such as hot press or roll lamination to heat and press the film. It becomes possible to produce a flexible laminate.

第1図は、本発明の複合型割振性積層体の3層構造を例
示した説明図である0本発明の積層体は図示のように上
下層の金属材料の間に熱可塑性高分子樹脂層を有する、
いわゆる拘束型の複合型制振積層体である。上下の金属
板は特に制限されないが、通常は、冷延鋼板、炭素鋼板
、低合金鋼板、ステンレス鋼板、高張力鋼板などの鋼板
である。
FIG. 1 is an explanatory diagram illustrating the three-layer structure of the composite type distributable laminate of the present invention. As shown in the figure, the laminate of the present invention has a thermoplastic polymer resin layer between the upper and lower metal layers. has,
This is a so-called restraint type composite vibration damping laminate. The upper and lower metal plates are not particularly limited, but are usually steel plates such as cold-rolled steel plates, carbon steel plates, low alloy steel plates, stainless steel plates, and high-strength steel plates.

しかし、鋼板以外の金属板、たとえばアルミニウム板な
ども使用できる。各金属板の厚さは0.1〜3.2龍、
中間の芯材樹脂層の厚みは20〜150−の範囲内が好
適である。
However, metal plates other than steel plates, such as aluminum plates, can also be used. The thickness of each metal plate is 0.1 to 3.2 mm,
The thickness of the intermediate core resin layer is preferably within the range of 20 to 150 mm.

本発明の制振積層体を製造するには、所定割合の各原料
樹脂成分をスクリュー押出機型の混練機に一緒に供給し
て、適当な加熱下に混練し、均質な樹脂混合物を得る。
To produce the vibration damping laminate of the present invention, a predetermined proportion of each raw resin component is fed together into a screw extruder type kneader and kneaded under appropriate heating to obtain a homogeneous resin mixture.

この樹脂混合物は、ペレット化しておく方が、次のフィ
ルム成形に利用しやすい6次いで、この樹脂混合物を、
Tダイ法、インフレーシラン法などの適当なフィルム成
形法により所定の厚さにフィルム化する。混練、フィル
ム化は周知の任意の慣用手段で実施でき、温度などの作
業条件も当業者であれば適宜設定できる。
It is easier to use this resin mixture for the next film forming process if it is pelletized.6 Next, this resin mixture is
A film is formed to a predetermined thickness by a suitable film forming method such as a T-die method or an inflation silane method. Kneading and film formation can be carried out by any known conventional means, and working conditions such as temperature can be appropriately set by those skilled in the art.

均質な樹脂混合物を上記のように予め混a8gで調製す
る代りに、各樹脂成分をフィルム押出機に直接供給し、
押出機の混練部において均質な樹脂混合物を調製するこ
ともできる。一方、金属板は脱脂などで表面を清浄化し
た後、樹脂フィルムを2枚の金属板の間に挟んで積層構
造体とし、熱プレス、ロール圧着などの適宜手段により
樹脂層と金属板とを加熱圧着させる、必要によりさらに
冷プレスすると、本発明の制振積層体が得られる。
Instead of preparing a homogeneous resin mixture with 8 g of pre-mixed a as described above, each resin component was fed directly to the film extruder,
It is also possible to prepare a homogeneous resin mixture in the kneading section of the extruder. On the other hand, after cleaning the surface of the metal plate by degreasing, etc., a resin film is sandwiched between two metal plates to form a laminated structure, and the resin layer and the metal plate are heat-pressed by appropriate means such as heat press or roll pressure bonding. The damping laminate of the present invention is obtained by further cold pressing if necessary.

本発明を次に示す比較例および実施例によりさらに説明
する。
The present invention will be further explained by the following comparative examples and examples.

止較■土 酢酸ビニル樹脂(八1reo Cheap、社製B−2
5YG−17)の県さ100μmのフィルムをホ・ノド
プレス法により用意した0次に、2枚のアルカリ脱脂し
た0、8鶴厚の冷延鋼板の間に上記フィルムを挟み、1
70’Cxlomin 、面圧30kg/−の条件でホ
ットプレスし、さらに冷却プレスにて冷却し、一体化し
た積層体を製造した。これを20 X 22抛曙の大き
さに切断した試験片を使って、機械インピーダンス法に
より1000 Hzで損失係数を測定した。この制振積
層体の1000 Hzでの損失係数の温度依存性を第2
図に曲線■として示す0図かられかるように、80℃付
近で非常に高い損失係数を示すが、良好な損失係数の範
囲(η>0.1)が70〜100℃の間の30℃の幅し
かなく狭い。
Comparison ■ Soil vinyl acetate resin (Reo Cheap, B-2 manufactured by Co., Ltd.)
A film of 5YG-17) with a thickness of 100 μm was prepared by the hot-node press method, and then the film was sandwiched between two cold-rolled steel plates of 0.8 mm thickness that had been degreased with alkali.
Hot pressing was carried out under the conditions of 70'Cxlomin and a surface pressure of 30 kg/-, and the product was further cooled in a cooling press to produce an integrated laminate. Using a test piece cut into a size of 20 x 22 pieces, the loss factor was measured at 1000 Hz by the mechanical impedance method. The temperature dependence of the loss coefficient at 1000 Hz of this damping laminate is
As can be seen from the figure 0 shown as curve ■ in the figure, the loss coefficient is very high near 80℃, but the range of good loss coefficient (η>0.1) is 30℃ between 70 and 100℃. It is narrow with only a width of .

止較■1 エチレン−酢酸ビニル樹脂(住友化学工業製に2010
F 、酢酸ビニル含有量25重量%)を、Tダイ法によ
り厚さ50μ箱のフィルムにした0次いで比較例1と同
様の方法で積層体とし、同様に1員失係数を測定した。
Comparison ■1 Ethylene-vinyl acetate resin (manufactured by Sumitomo Chemical Co., Ltd. 2010)
F, vinyl acetate content: 25% by weight) was made into a film with a thickness of 50μ by the T-die method.Then, a laminate was made in the same manner as in Comparative Example 1, and the one-member lapse coefficient was measured in the same manner.

この積層体の1000Hzでの損失係数の温度依存性も
第2図に曲線■として示す0図かられかるように、損失
係数の最大値は小さく制振性が十分でない、ただし、良
好な損失係数の範囲(η>0.1)が20〜90℃の7
0℃と広い。
The temperature dependence of the loss coefficient of this laminate at 1000 Hz is also shown in Figure 2 as a curve ■. 7 with a range of (η > 0.1) from 20 to 90°C
0℃ and wide.

大隻五上二l 第1表に示す組成の配合ペレットをTダイを備えた押出
機の供給ホッパに入れ、その混練部で加熱混練した後、
150〜200℃の樹脂温度でTダイから押出して厚さ
50−のフィルムにした。樹脂材料として、キシレン樹
脂は環球法軟化点70〜140℃のものを用いた。ポリ
エチレン樹脂は高圧法ポリエチレン(メルトインデック
ス2〜7)、エチレン−酢酸ビニル樹脂は比較例2で用
いた樹脂、熱可塑性エラストマーとしてのSBSブロッ
ク共重合体はメルトインデックス2.6のもの、スチレ
ン系低分子量共重合体はエッソ製のニスコレフッAアト
プレス法あるいはロールラミネート法で、上下金属板と
加熱圧着できるため、大量かつ安価に安定した性能で3
層構造の複合型制振性積層体の製造を行うことができる
。また、複合型制振積層体の芯材樹脂層として用いる熱
可塑性高分子物質にキシレン樹脂を配合することにより
、常温付近で優れた制振性が得られる。さらに成分(B
)のポリエチレン樹脂および/またはエチレン−酢酸ビ
ニル共重合体樹脂を上記割合で配合することにより、キ
シレン樹脂の粘度が調整されて、その脆さが改善され、
キシレン樹脂含有樹脂組成物をフィルム化することが容
易となり、上記の工業的に有利な方法で、特に常温付近
で良好な制振性能を示す複合型制振性積層体を製造する
ことが可能となる。さらに、成分(B)、および任意に
配合できる成分(C)、(D)の種類や配合量を変化さ
せることにより、制振性能を調整することも可能であり
、製造する制振積層体の使用温度で最大の割振性能を発
揮するように制御することができる。
After putting the blended pellets with the composition shown in Table 1 into the supply hopper of an extruder equipped with a T-die and heating and kneading them in the kneading section,
It was extruded through a T-die at a resin temperature of 150-200°C to form a 50-thick film. As the resin material, a xylene resin having a ring and ball softening point of 70 to 140°C was used. The polyethylene resin is high-pressure polyethylene (melt index 2 to 7), the ethylene-vinyl acetate resin is the resin used in Comparative Example 2, the SBS block copolymer as a thermoplastic elastomer has a melt index of 2.6, and the styrene-based low The molecular weight copolymer can be heat-pressed to the upper and lower metal plates using Esso's Niscoref A Atopress method or roll lamination method, so it can be produced in large quantities at low cost with stable performance.
A composite damping laminate having a layered structure can be manufactured. Further, by blending xylene resin into the thermoplastic polymer material used as the core resin layer of the composite vibration damping laminate, excellent vibration damping properties can be obtained at around room temperature. Furthermore, the component (B
) By blending the polyethylene resin and/or ethylene-vinyl acetate copolymer resin in the above ratio, the viscosity of the xylene resin is adjusted and its brittleness is improved,
It has become easy to form a xylene resin-containing resin composition into a film, and it has become possible to produce a composite vibration-damping laminate that exhibits good vibration-damping performance, especially near room temperature, using the above-mentioned industrially advantageous method. Become. Furthermore, it is possible to adjust the damping performance by changing the types and amounts of component (B) and components (C) and (D) that can be optionally blended. It can be controlled to achieve maximum allocation performance at the operating temperature.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の複合型制振性積層体の3M構造を示
す説明図;および 第2図は、1000Hzでの本発明例1〜5、比較例1
.2の損失係数ηの温度依存性を示すグラフである。
FIG. 1 is an explanatory diagram showing the 3M structure of the composite vibration damping laminate of the present invention; and FIG. 2 is an explanatory diagram showing the 3M structure of the composite vibration damping laminate of the present invention; and FIG.
.. 2 is a graph showing the temperature dependence of the loss coefficient η of No. 2.

Claims (2)

【特許請求の範囲】[Claims] (1)熱可塑性高分子物質層とこれを両側からはさむ金
属層の3層構造からなる複合型制振積層体において、 前記熱可塑性高分子物質が、(A)キシレン樹脂5〜2
5重量部と、(B)ポリエチレン樹脂5〜45重量部お
よび/もしくはエチレン−酢酸ビニル共重合体5〜70
重量部とを含有する均質樹脂混合物であることを特徴と
する、複合型制振積層体。
(1) In a composite vibration damping laminate having a three-layer structure of a thermoplastic polymer material layer and a metal layer sandwiching this from both sides, the thermoplastic polymer material is (A) xylene resin 5 to 2
and (B) 5 to 45 parts by weight of polyethylene resin and/or 5 to 70 parts by weight of ethylene-vinyl acetate copolymer.
A composite vibration damping laminate, characterized in that it is a homogeneous resin mixture containing parts by weight.
(2)前記熱可塑性高分子物質が前記樹脂成分(A)お
よび(B)のほかに、さらに(C)熱可塑性エラストマ
ー40重量部以下、および(D)スチレン系低分子量共
重合体15重量部以下の一方もしくは両方を含有する均
質樹脂混合物である、特許請求の範囲第1項記載の複合
型制振積層体。
(2) In addition to the resin components (A) and (B), the thermoplastic polymer substance further includes (C) 40 parts by weight or less of a thermoplastic elastomer, and (D) 15 parts by weight of a styrene-based low molecular weight copolymer. The composite damping laminate according to claim 1, which is a homogeneous resin mixture containing one or both of the following:
JP62026008A 1987-02-06 1987-02-06 Composite type vibration-damping laminate Pending JPS63193831A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62026008A JPS63193831A (en) 1987-02-06 1987-02-06 Composite type vibration-damping laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62026008A JPS63193831A (en) 1987-02-06 1987-02-06 Composite type vibration-damping laminate

Publications (1)

Publication Number Publication Date
JPS63193831A true JPS63193831A (en) 1988-08-11

Family

ID=12181668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62026008A Pending JPS63193831A (en) 1987-02-06 1987-02-06 Composite type vibration-damping laminate

Country Status (1)

Country Link
JP (1) JPS63193831A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012500142A (en) * 2008-08-18 2012-01-05 プロダクティブ リサーチ エルエルシー. Formable lightweight composite
US9115264B2 (en) 2010-02-15 2015-08-25 Productive Research Llc Delamination resistant, weldable and formable light weight composites
US9233526B2 (en) 2012-08-03 2016-01-12 Productive Research Llc Composites having improved interlayer adhesion and methods thereof
US9239068B2 (en) 2009-12-28 2016-01-19 Productive Research Llc Processes for welding composite materials and articles therefrom
US11338552B2 (en) 2019-02-15 2022-05-24 Productive Research Llc Composite materials, vehicle applications and methods thereof

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9434134B2 (en) 2008-08-18 2016-09-06 Productive Research Llc Formable light weight composites
KR20180026553A (en) * 2008-08-18 2018-03-12 프로덕티브 리서치 엘엘씨 Formable light weight composites
US9889634B2 (en) 2008-08-18 2018-02-13 Productive Research Llc Formable light weight composites
JP2012500142A (en) * 2008-08-18 2012-01-05 プロダクティブ リサーチ エルエルシー. Formable lightweight composite
US9239068B2 (en) 2009-12-28 2016-01-19 Productive Research Llc Processes for welding composite materials and articles therefrom
US9849651B2 (en) 2010-02-15 2017-12-26 Productive Research Llc Formable light weight composite material systems and methods
US9115264B2 (en) 2010-02-15 2015-08-25 Productive Research Llc Delamination resistant, weldable and formable light weight composites
US9981451B2 (en) 2010-02-15 2018-05-29 Productive Research Llc Delamination resistant, weldable and formable light weight composites
US10457019B2 (en) 2010-02-15 2019-10-29 Productive Research Llc Light weight composite material systems, polymeric materials, and methods
US10710338B2 (en) 2010-02-15 2020-07-14 Productive Research Llc Delamination resistant, weldable and formable light weight composites
US11084253B2 (en) 2010-02-15 2021-08-10 Productive Research Llc Light weight composite material systems, polymeric materials, and methods
US11331880B2 (en) 2010-02-15 2022-05-17 Productive Research Llc Delamination resistant, weldable and formable light weight composites
US9233526B2 (en) 2012-08-03 2016-01-12 Productive Research Llc Composites having improved interlayer adhesion and methods thereof
US11338552B2 (en) 2019-02-15 2022-05-24 Productive Research Llc Composite materials, vehicle applications and methods thereof

Similar Documents

Publication Publication Date Title
US4761451A (en) Acoustic vibration sheet and polypropylene composition for the same
JPS6112334A (en) Composite type vibration-damping laminate
EP1491328A1 (en) A metal-cured polyethylene-metal laminate
JPS63193831A (en) Composite type vibration-damping laminate
JPS5980454A (en) Vibration-damping composite
JP2846451B2 (en) Adhesive resin composition
JPH053832B2 (en)
CN114316862A (en) Adhesive resin for multilayer barrier sheet, preparation method of adhesive resin and barrier structure
JPH0613621B2 (en) Resin composition for vibration damping laminate
JPH0246613B2 (en)
JP2547802B2 (en) Composition for composite type damping material
JPS6375056A (en) Visco-elastic composition for composite-type vibration-damping material
JPS585384A (en) Adherent resin composition
JP3121906B2 (en) Composite metal plate and its manufacturing method
JPH0246612B2 (en)
JPS61268440A (en) Vibration-damping composite steel plate
JPH049137B2 (en)
JPS6031350B2 (en) adhesive composition
JPS6367509B2 (en)
JPH03258843A (en) Adhesive composition for laminate
JPS61293247A (en) Modified resin composite material
JPH0347298B2 (en)
JPH01115630A (en) Vibration damping composite structural body
JPH01170678A (en) Hot-melt adhesive
JPS6257440A (en) Adhesive resin composition