JPS62297672A - Absorption refrigerator - Google Patents

Absorption refrigerator

Info

Publication number
JPS62297672A
JPS62297672A JP13962586A JP13962586A JPS62297672A JP S62297672 A JPS62297672 A JP S62297672A JP 13962586 A JP13962586 A JP 13962586A JP 13962586 A JP13962586 A JP 13962586A JP S62297672 A JPS62297672 A JP S62297672A
Authority
JP
Japan
Prior art keywords
refrigerant
liquid
evaporator
condenser
refrigerant liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13962586A
Other languages
Japanese (ja)
Other versions
JPH0743182B2 (en
Inventor
雅裕 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP61139625A priority Critical patent/JPH0743182B2/en
Publication of JPS62297672A publication Critical patent/JPS62297672A/en
Publication of JPH0743182B2 publication Critical patent/JPH0743182B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 3、発明の詳細な説明 げ)産業上の利用分野 本発明は蒸発器の未気化冷媒を冷媒液用ポンプにより蒸
発器へ再循環させる型式の吸収冷凍機の改良に関する。
Detailed Description of the Invention 3. Detailed Description of the Invention Field of Industrial Application The present invention relates to an improvement in an absorption refrigerator of the type in which unvaporized refrigerant in an evaporator is recirculated to the evaporator by a refrigerant liquid pump. .

(嗜 従来の技術 上記型式の吸収冷凍機の従来の技術として、例えば実公
昭50−43416号公報や実公昭51−16051号
公報などにみられるように、凝縮冷媒流下用管路の下端
を蒸発器の冷媒液溜めに接続したもの(以下、第1従来
例とい5)が知られている。また、別の従来の技術とし
て、例えば特開昭59−109753号公報や特開昭5
9−173666号公報などにみられるように、凝縮冷
媒流下用管路の下端を冷媒液用ポンプ吐出側の冷媒液還
流路に接続したもの(以下、第2従来例という)が知ら
れている。
(Conventional Technology) As a conventional technology for the above-mentioned type of absorption refrigerator, as seen in, for example, Japanese Utility Model Publication No. 50-43416 and Japanese Utility Model Publication No. 51-16051, the lower end of the condensed refrigerant flow pipe is evaporated. A device connected to a refrigerant reservoir of a container (hereinafter referred to as the first conventional example 5) is known.As another conventional technique, for example, Japanese Patent Laid-Open No. 59-109753 and Japanese Patent Laid-Open No. 5
As seen in Japanese Patent No. 9-173666, there is a known method in which the lower end of a condensed refrigerant flow pipe is connected to a refrigerant liquid return flow path on the discharge side of a refrigerant liquid pump (hereinafter referred to as a second conventional example). .

P→ 発明が解決しようとする問題点 第1従来例においては、凝縮冷媒が凝縮温度に近い温度
のままで低圧側の蒸発器へ流下して激しくフラッシユし
つつ自己蒸発し、この自己蒸発の分だけ蒸発器の熱交換
器の冷媒との交換熱量が減るのに加えてフラッシュに伴
ない蒸発器の冷媒液溜めの液面が激しく波立ち多量の冷
媒液が吸収器の溶液溜めへ溢流して吸収冷凍作用に活か
されないという問題点がある。
P→ Problem to be Solved by the Invention In the first conventional example, the condensed refrigerant flows down to the low-pressure side evaporator at a temperature close to the condensation temperature and self-evaporates while flashing violently. In addition to this, the amount of heat exchanged with the refrigerant in the heat exchanger of the evaporator decreases, and in addition to this, the liquid level in the refrigerant reservoir of the evaporator violently ripples due to the flash, and a large amount of refrigerant liquid overflows into the solution reservoir of the absorber and is absorbed. There is a problem that it cannot be used for freezing purposes.

第2従来例においては、冷媒液用ポンプで送られて来た
低温の未気化冷媒に凝縮冷媒が合流して降温しつつ蒸発
器へ流れるために第1従来例程には冷媒のフラッシュが
激しくないものの、その反面、低負荷時や冷却水温の降
下時あるいは起動時などのように凝縮器と蒸発器との圧
力差が小さくなったときに冷媒液用ポンプで吐出された
未気化冷媒の一部が凝縮器側へ逆流したり、凝縮冷媒が
ほとんど流下しなくなるケースもあり、凝縮器の冷却器
と冷媒蒸気との熱交換面積の減少や冷媒液用ポンプのキ
ャビテーシlンなどの常置を招きやす(、圧力条件によ
っては吸収冷凍機の運転障害を引起こすという問題点が
ある。
In the second conventional example, the condensed refrigerant joins the low-temperature unvaporized refrigerant sent by the refrigerant liquid pump and flows to the evaporator while lowering the temperature, so the refrigerant flashes as violently as in the first conventional example. However, on the other hand, when the pressure difference between the condenser and evaporator becomes small, such as during low load, when the cooling water temperature drops, or at startup, some of the unvaporized refrigerant discharged by the refrigerant liquid pump In some cases, the refrigerant flows back toward the condenser, or the condensed refrigerant hardly flows down, resulting in a reduction in the heat exchange area between the condenser cooler and refrigerant vapor, and the need to permanently install a cavity in the refrigerant liquid pump. However, there is a problem that depending on the pressure conditions, it may cause malfunction of the absorption chiller.

本発明は、これら問題点に秦み、蒸発器に流入する冷媒
のフラッシュ蒸発の軽減と低負荷時や冷却水温降下時な
どでの凝縮冷媒の凝縮器における停滞の緩和とを簡便に
達成することの可能な吸収冷凍機の提供を目的としたも
のである。
The present invention addresses these problems and easily achieves alleviation of flash evaporation of the refrigerant flowing into the evaporator and stagnation of the condensed refrigerant in the condenser at times of low load or when cooling water temperature drops. The purpose is to provide an absorption refrigerator that is capable of

に)問題点を解決するための手段 本発明は、上記の問題点を解決するための手段として、
前記型式の吸収冷凍機における冷媒液還流路の冷媒液用
ポンプ吐出側から凝縮冷媒流下用管路との接続部へ至る
までの途中に流量制御弁を備え、かつ、この弁の開度な
凝縮器の冷媒液溜り部に備えた液面検出器の信号により
制御する構成としたものである。
B.) Means for solving the problems The present invention, as a means for solving the above problems,
In the absorption refrigerator of the above type, a flow rate control valve is provided in the refrigerant liquid return path from the refrigerant liquid pump discharge side to the connection part with the condensed refrigerant flow pipe, and condensation is controlled by the opening degree of this valve. It is configured to be controlled by a signal from a liquid level detector provided in the refrigerant liquid reservoir of the container.

(ホ)作用 本発明によれば、凝縮器の冷媒液溜り部の液面が高(な
り始めたとき、液面検出器からの信号により流量制御弁
の開度を減らして冷媒液用ボンダで送られる未気化冷媒
の流動の抑制作用を吸収冷凍機にもたせ得るので、未気
化冷媒と凝縮冷媒との合流点での未気化冷媒の凝縮冷媒
流に対する抵抗を弱めて凝縮冷媒の流下を促進させるこ
とができる。これにより、冷却水温の降下時や起動時な
どのように凝縮器と蒸発器との間の圧力差が小さくなっ
た場合にも、凝縮冷媒の流れの渋滞すなわち凝縮冷媒の
凝縮器内での停滞を簡便に緩和することができる。
(E) Effect According to the present invention, when the liquid level in the refrigerant liquid reservoir of the condenser begins to rise, the opening degree of the flow rate control valve is reduced by a signal from the liquid level detector, and the refrigerant liquid bonder is activated. Since the absorption refrigerating machine can have the effect of suppressing the flow of the unvaporized refrigerant being sent, the resistance of the unvaporized refrigerant to the condensed refrigerant flow at the confluence point of the unvaporized refrigerant and the condensed refrigerant is weakened, and the flow of the condensed refrigerant is promoted. As a result, even when the pressure difference between the condenser and the evaporator becomes small, such as when the cooling water temperature drops or when starting It is possible to easily alleviate stagnation within the country.

また、凝縮冷媒は未気化冷媒と合流して降温しつつ蒸発
器へ流れるのでこの器内での冷媒のフラッシュ蒸発も軽
減される。
In addition, since the condensed refrigerant joins the unvaporized refrigerant and flows to the evaporator while lowering its temperature, flash evaporation of the refrigerant within the evaporator is also reduced.

(へ)実施例 図面は本発明による吸収冷凍機の一実施例を示した概略
構成説明図で、(1)は高温発生器、(2)は低温発生
器(3)および凝縮器(4)より成る発生凝縮器、(5
)は蒸発器(6)および吸収器(7)より成る蒸発吸収
器、(8)は低温溶液熱交換器、(9)は高温溶液熱交
換器、(P、)は冷媒液用ポンプ、(Pl)は吸収液用
ボンダであり、これら機器を配管接続することにより冷
媒〔水〕と吸収液〔臭化リチウム水溶液〕の循環路を形
成して吸収冷凍機が構成されている。
(v) Embodiment The drawings are schematic configuration explanatory diagrams showing one embodiment of the absorption refrigerator according to the present invention, in which (1) shows a high temperature generator, (2) shows a low temperature generator (3) and a condenser (4). a generating condenser consisting of (5
) is an evaporator-absorber consisting of an evaporator (6) and an absorber (7), (8) is a low-temperature solution heat exchanger, (9) is a high-temperature solution heat exchanger, (P, ) is a refrigerant liquid pump, ( Pl) is a bonder for absorbing liquid, and by connecting these devices with piping, a circulation path for refrigerant [water] and absorbing liquid [lithium bromide aqueous solution] is formed, and an absorption refrigerator is constructed.

Qlは高温発生器(1)の燃焼加熱室、aυは低温発生
器(3)の加熱器、α2は凝縮器(4)の冷却器、03
)は蒸発器(6)の熱交換器、041)ま吸収器(7)
の冷却器であり、al、051・・・は燃焼ガスの通路
、(161は燃焼ガスの排気路、(171,QI&家熱
交換器Q31と接続した冷水用管路、0!1、■、シυ
は冷却器Q41.α2を直列に接続した冷却水用管路で
ある。
Ql is the combustion heating chamber of the high temperature generator (1), aυ is the heater of the low temperature generator (3), α2 is the cooler of the condenser (4), 03
) is the heat exchanger of the evaporator (6), 041) is the absorber (7)
al, 051... are combustion gas passages, (161 are combustion gas exhaust passages, (171, cold water pipes connected to QI & home heat exchanger Q31, 0!1, ■, υ
is cooler Q41. This is a cooling water pipe line in which α2 is connected in series.

(23,C!□□□、(2a、(ハ)、弼、(5)はそ
れぞれ吸収液用管路、(至)は高温発生器(1)の気相
部と加熱器qυとを結んだ冷媒蒸気用管路、翰は加熱器
(11)と凝縮器(3)とを結んだ冷媒ドレン用管路で
ある。また、0υは蒸発器(6)の冷媒液溜め、C32
1は熱交換器03+上方の蒸発器(6)内に配備した冷
媒液散布器、(ハ)は冷媒液溜めc31)と冷媒液用ポ
ンプ(Pl)の吸込み口とを結んだ冷媒液用管路、04
)は冷媒液用ボンダ(PI)吐出口と冷媒液散布器0)
とを結んだ冷媒液用管路で、これら冷媒液用管路および
冷媒液用ポンプ(Pa)によって冷媒液還流路が蒸発器
(6)に形成されている。
(23, C! □□□, (2a, (c), 弼, (5) are the absorption liquid pipes, respectively, and (to) is the connection between the gas phase part of the high temperature generator (1) and the heater qυ. C32 is the refrigerant vapor conduit, and C32 is the refrigerant drain conduit connecting the heater (11) and the condenser (3).
1 is a refrigerant liquid distribution device installed in the heat exchanger 03 + upper evaporator (6), and (c) is a refrigerant liquid pipe connecting the refrigerant liquid reservoir c31) and the suction port of the refrigerant liquid pump (Pl). Road, 04
) is the refrigerant liquid bonder (PI) discharge port and refrigerant liquid sprayer 0)
These refrigerant liquid pipes and the refrigerant liquid pump (Pa) form a refrigerant liquid return path in the evaporator (6).

かつまた、(Sl)、(S、)は凝縮器(4)の第11
第2冷媒液溜り都であり、C351はその上流端を第2
冷媒液溜り部(St)底部と接続する一方下流端を冷媒
液用管路(ロ)と接続したU字状の冷媒液流下用管路で
ある。
and (Sl), (S,) are the 11th condenser (4)
It is the second refrigerant liquid reservoir, and C351 has its upstream end as the second refrigerant reservoir.
This is a U-shaped refrigerant liquid flow conduit whose one downstream end is connected to the refrigerant liquid reservoir (St) bottom and connected to the refrigerant liquid conduit (b).

そして、(■は冷媒液用管路C141の冷媒液流下用管
路(ト)との接続部よりも上流側の冷媒液用管路0(1
)に備えた流量制御弁であり、この弁の開度は第2冷媒
液溜り部(S、)に備えた液面検出器(T、S)の感知
液面の上昇に応じてその信号により制御器(C)を介し
て減少制御される一方で感知液面の降下に応じて増大制
御されるようになっている。液面検出器(LS)は電極
式液面センサーや光学式液面センサーなどを用いる。
() is the refrigerant liquid pipe line 0 (1
) is a flow rate control valve provided in the second refrigerant reservoir (S, ), and the opening degree of this valve is determined by a signal according to the rise in the liquid level sensed by the liquid level detector (T, S) provided in the second refrigerant liquid reservoir (S, ). While it is controlled to decrease through the controller (C), it is controlled to increase in accordance with the drop in the sensing liquid level. The liquid level detector (LS) uses an electrode type liquid level sensor, an optical liquid level sensor, etc.

なお、凝縮器(4)が第2冷媒液溜り部(Sりを有しな
い場合、液面検出器(LS)は第1冷媒液溜り部(Sl
)に配備される。
Note that when the condenser (4) does not have the second refrigerant liquid reservoir (S), the liquid level detector (LS) is connected to the first refrigerant liquid reservoir (S).
) will be deployed.

次に、このように構成された吸収冷凍機(以下、本機と
いう)の動作例を説明する。
Next, an example of the operation of the absorption refrigerating machine (hereinafter referred to as the present machine) configured as described above will be explained.

本機の定格運転時〔例えば、盛夏の時の運転であって本
機への冷却水流入温度が32℃程度であり、凝縮器(4
)内圧が56migHP程度に保たれていてこれと蒸発
器(6)内圧との差が50mmH5F程度に維持され、
第2冷媒液溜り部(S2)内の液面がほぼ所定の高さに
ある時〕、流量制御弁(V)は所定の開度で開かれてい
る。
During rated operation of the machine (for example, during mid-summer operation, the temperature of the cooling water flowing into the machine is about 32°C, and the condenser (4
) The internal pressure is maintained at about 56 miHP, and the difference between this and the internal pressure of the evaporator (6) is maintained at about 50 mmH5F,
When the liquid level in the second refrigerant reservoir (S2) is at approximately a predetermined height, the flow control valve (V) is opened at a predetermined opening degree.

ところで、本機への冷却水流入温度が例えば19℃程度
で凝縮器(4)内圧が28xmHP程度になってこれと
蒸発器(6)内圧との差が22xmH5’程度となる春
や秋などに本機を運転した場合、凝縮冷媒が冷媒液流下
用管路(至)を流下しようとする力が定格運転時のおよ
そ半分に弱まる一方で冷媒液用ポンプ(Pl)の吐出力
が強まるため、すなわち、凝縮冷媒と未気化冷媒との合
流点においてこの未気化冷媒が凝縮冷媒の流れを阻止し
ようとする力が強くなるため、第2冷媒液溜り部(S、
)内の液面が上昇し始める。この場合、液面の上昇をそ
のまま放置していると、蒸発器(6)への凝縮冷媒の供
給が著しく減少するため、冷媒液溜めGυ内の冷媒液が
やがて無くなり冷媒液用ボンダ(Pa)のキャビテーシ
■ンを引起こしたり、凝縮冷媒が第1、第2冷媒液溜り
m(81)、(Sm)  に充満して低温発生器(3)
側へ溢流したり、この発生器からの冷媒蒸気と冷却器(
12との熱交換面積が極端に減るなどの整置な招き、運
転障害を引起こすことになる。
By the way, in spring or autumn, when the temperature of the cooling water flowing into the machine is about 19°C, the internal pressure of the condenser (4) is about 28 x mHP, and the difference between this and the internal pressure of the evaporator (6) is about 22 x mH5'. When this machine is operated, the force with which the condensed refrigerant tries to flow down the refrigerant liquid flow pipe (toward) is reduced to about half of the rated operation, while the discharge force of the refrigerant liquid pump (Pl) increases. That is, at the confluence point of the condensed refrigerant and the unvaporized refrigerant, the force of the unvaporized refrigerant to block the flow of the condensed refrigerant becomes stronger, so that the second refrigerant liquid reservoir (S,
) begins to rise. In this case, if the liquid level continues to rise, the supply of condensed refrigerant to the evaporator (6) will decrease significantly, and the refrigerant liquid in the refrigerant reservoir Gυ will eventually run out and the refrigerant liquid bonder (Pa) The condensed refrigerant may fill the first and second refrigerant reservoirs m (81) and (Sm), causing cavitation in the low temperature generator (3).
The refrigerant vapor from this generator and the cooler (
The heat exchange area with 12 will be drastically reduced, leading to poor alignment and driving problems.

この場合、本機においては、第2冷媒液溜り部(S、)
内の液面上昇に応じて液面検出器(T、S)の信号によ
り流量制御弁間が絞られ、この弁での未気化冷媒の流通
抵抗が増大し、前述した合流点での未気化冷媒による凝
縮冷媒の流れに対する阻止力が弱められるため、凝縮冷
媒の流下が促進されることになる。そして、凝縮冷媒の
際限のない液面上昇は止まり、液面は成る高さに保たれ
ると共に流量制御弁(V)の開度もある値〔この場合に
は全閉にほぼ近い開度〕で固定される。その結果、凝縮
冷媒の低温発生器(3)側への溢流や冷媒液用ポンプ(
P、)のキャビテーシmノが防止され、良好な運転が継
続される。なお、冷却水流入温度が19℃よりも高くな
って凝縮器(4)内圧が上昇し、第2冷媒液溜り部(S
、)内の液面が降下すると流量制御弁(■の開度は増大
する。
In this case, in this machine, the second refrigerant liquid reservoir (S,)
As the liquid level rises in the refrigerant, the flow rate control valve is narrowed down by the signal from the liquid level detector (T, S), the flow resistance of the unvaporized refrigerant at this valve increases, and the unvaporized refrigerant at the above-mentioned confluence point is reduced. Since the blocking force of the refrigerant against the flow of the condensed refrigerant is weakened, the flow of the condensed refrigerant is promoted. Then, the endless rise in the liquid level of the condensed refrigerant stops, the liquid level is maintained at a certain level, and the opening degree of the flow rate control valve (V) is also at a certain value [in this case, the opening degree is almost close to fully closed]. is fixed. As a result, the condensed refrigerant overflows to the low temperature generator (3) side and the refrigerant liquid pump (
P, ) cavitation is prevented and good operation continues. Note that when the cooling water inflow temperature becomes higher than 19°C, the internal pressure of the condenser (4) increases, and the second refrigerant liquid reservoir (S
, ) decreases, the opening degree of the flow control valve (■) increases.

このように、本機においては、凝縮器(4)と蒸発器(
6)との間の圧力差の変化に応じて未気化冷媒の還流抵
抗を詞整すること釦より、簡便に凝縮冷媒の液位な所定
の範囲に保つと共に凝縮冷媒の蒸発器(6)への流下量
をほぼ所定範囲内に保つことができ、冷却水温の低い時
の運転や起動時での運転などを良好に行うことができる
。このことは、本機をヒートポンプとして使用する場合
においても、同様である。
In this way, in this machine, the condenser (4) and the evaporator (
6) Adjust the reflux resistance of the unvaporized refrigerant according to changes in the pressure difference between the refrigerant and the evaporator (6). The flow rate of the cooling water can be maintained approximately within a predetermined range, and operation when the cooling water temperature is low or at startup can be performed satisfactorily. This also applies when this device is used as a heat pump.

かつまた、本機においては、凝縮冷媒が、低温〔例えば
6℃程度〕の未気化冷媒と合流して降温した後、蒸発器
(6)に流入するので、そのフラッシュ蒸発も著しく軽
減される。
Furthermore, in this machine, the condensed refrigerant joins the unvaporized refrigerant at a low temperature (for example, about 6° C.) to lower its temperature, and then flows into the evaporator (6), so that flash evaporation is also significantly reduced.

なお、本機において、蒸発器(6)の冷媒液溜め61)
に液面検出器(LS)を配備して未気化冷媒の液位の高
低により流量制御弁(V)の開度を増減調節する手段〔
図示せず〕が考えられるものの、凝縮冷媒の液面変化と
未気化冷媒のそれとは必ずしも一足の相関関係をもたな
いので、前記手段では凝縮冷媒の過度の液面高を生じる
ケースもあり、好ましい手段ではない。
In addition, in this machine, the refrigerant liquid reservoir 61) of the evaporator (6)
A means for increasing or decreasing the opening degree of the flow control valve (V) by installing a liquid level detector (LS) at the
(not shown), but since there is not necessarily a correlation between the change in the liquid level of the condensed refrigerant and that of the unvaporized refrigerant, the above method may cause an excessive liquid level of the condensed refrigerant. Not the preferred method.

(ト)  発明の効果 本発明は、以上のとおり、凝縮器と蒸発器との圧力差の
小さいときにおける凝縮器内での冷媒液の停滞すなわち
凝縮冷媒の流れの渋滞を緩和して起動時などの運転を良
好にする効果と、凝縮冷媒のフラッシュ蒸発を軽減して
運転効率を高く保つ効果とを吸収冷凍機にもたらすもの
であり、立上り性能に優れかつ安定した運転を簡便に達
成できるものとして実用的価値の高いものである。
(G) Effects of the Invention As described above, the present invention alleviates the stagnation of refrigerant liquid in the condenser when the pressure difference between the condenser and the evaporator is small, that is, the congestion of the flow of condensed refrigerant, and reduces the problem such as during startup. It provides an absorption chiller with the effect of improving the operation of the refrigerant and the effect of reducing flash evaporation of the condensed refrigerant to maintain high operating efficiency. It has high practical value.

なお、本発明を一重効用吸収冷凍機にも適用できること
は勿論である。
It goes without saying that the present invention can also be applied to a single-effect absorption refrigerator.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明による吸収冷凍機の一実施例を示した概略
構成説明図である。 (1)・・・高温発生器、 (3)・・・低温発生器、
 (4)・・・凝縮器、 (6)・・・蒸発器、 (7
)・・・吸収器、 (8)、(9)・・・低温、高温溶
液熱交換器、  (P、)・・・冷媒液用ポンプ、 0
υ・・・冷媒液溜め、 0)・・・冷媒液散布器、儲、
01・・・冷媒液用管路、 c39・・・冷媒液流下用
管路、(SI)、(S、)・・・冷媒液溜り部、  (
LS )・・・液面検出器、 (C′5・・・制御器、
 関・・・流量制御弁。
The drawing is a schematic structural explanatory diagram showing one embodiment of an absorption refrigerator according to the present invention. (1)...High temperature generator, (3)...Low temperature generator,
(4)... Condenser, (6)... Evaporator, (7
)...Absorber, (8), (9)...Low temperature, high temperature solution heat exchanger, (P,)...Refrigerant liquid pump, 0
υ...Refrigerant liquid reservoir, 0)...Refrigerant liquid spreader, profit,
01... Refrigerant liquid pipe line, c39... Refrigerant liquid flow pipe line, (SI), (S,)... Refrigerant liquid reservoir part, (
LS)...liquid level detector, (C'5...controller,
Seki...Flow control valve.

Claims (1)

【特許請求の範囲】[Claims] (1)発生器、凝縮器、蒸発器、吸収器などの機器を配
管接続して冷媒と吸収液の循環路を形成すると共に蒸発
器の未気化冷媒を冷媒液用ポンプにより蒸発器へ戻す冷
媒液還流路を形成し、かつ、この還流路の冷媒液用ポン
プ吐出側と凝縮冷媒流通用管路の下流端とを接続して成
る吸収冷凍機において、凝縮器の冷媒液溜り部に液面検
出器が備えられ、かつ、その検出液位の高低により開度
の減増調節される流量制御弁が前記冷媒液還流路の冷媒
液用ポンプ吐出側から凝縮冷媒流通用管路との接続部へ
至るまでの途中に配備されていることを特徴とした吸収
冷凍機。
(1) A refrigerant that connects equipment such as a generator, condenser, evaporator, and absorber with piping to form a circulation path for refrigerant and absorption liquid, and returns unvaporized refrigerant from the evaporator to the evaporator using a refrigerant liquid pump. In an absorption refrigerator that forms a liquid return path and connects the refrigerant liquid pump discharge side of this return path to the downstream end of a condensed refrigerant distribution pipe, a liquid level is formed in the refrigerant liquid reservoir of the condenser. A flow control valve, which is equipped with a detector and whose opening degree is adjusted to decrease or increase depending on the height of the detected liquid level, is connected from the refrigerant liquid pump discharge side of the refrigerant liquid return path to the condensed refrigerant distribution pipe. Absorption refrigerators are characterized by being deployed on the way to.
JP61139625A 1986-06-16 1986-06-16 Absorption refrigerator Expired - Lifetime JPH0743182B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61139625A JPH0743182B2 (en) 1986-06-16 1986-06-16 Absorption refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61139625A JPH0743182B2 (en) 1986-06-16 1986-06-16 Absorption refrigerator

Publications (2)

Publication Number Publication Date
JPS62297672A true JPS62297672A (en) 1987-12-24
JPH0743182B2 JPH0743182B2 (en) 1995-05-15

Family

ID=15249640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61139625A Expired - Lifetime JPH0743182B2 (en) 1986-06-16 1986-06-16 Absorption refrigerator

Country Status (1)

Country Link
JP (1) JPH0743182B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110398087A (en) * 2018-04-24 2019-11-01 松下知识产权经营株式会社 Absorption Refrigerator

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5472549A (en) * 1977-11-18 1979-06-11 Sanyo Electric Co Ltd Liquid level controlling apparatus of absorption refrigerator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5472549A (en) * 1977-11-18 1979-06-11 Sanyo Electric Co Ltd Liquid level controlling apparatus of absorption refrigerator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110398087A (en) * 2018-04-24 2019-11-01 松下知识产权经营株式会社 Absorption Refrigerator

Also Published As

Publication number Publication date
JPH0743182B2 (en) 1995-05-15

Similar Documents

Publication Publication Date Title
JPS62297672A (en) Absorption refrigerator
JPH08114360A (en) Double effective absorption type water cooler/heater
JPS62186178A (en) Absorption refrigerator
JPS62294867A (en) Absorption refrigerator
JP5092677B2 (en) Absorption refrigeration system
JPH07104065B2 (en) Absorption heat pump device
JP3811632B2 (en) Waste heat input type absorption refrigerator
KR20020050928A (en) Control Method and Structure of Condensate of an Absorption Chiller with Hot Water Supply Function
JPS6144260A (en) Controller for absorption heat pump
JPH0692856B2 (en) Absorption refrigerator
JPS63223465A (en) Absorption refrigerator
JPS63116065A (en) Absorption refrigerator
JPS62138662A (en) Cold and hot changeover type double-effect absorption refrigerator
JPH03271663A (en) Absorption cold and hot water tank
JPH01114677A (en) Absorption refrigerator
JPS6383557A (en) Cold and warm changeover type absorption water heater and chiller
JPH0577948B2 (en)
JPS63223462A (en) Absorption refrigerator
JPS6325464A (en) Double effect absorption refrigerator
JPS62169974A (en) Absorption refrigerator
JPS61143664A (en) Antifreezing device for refrigerant of absorption refrigerator
JPH03160279A (en) Absorbing refrigerator
JPS6117871A (en) Absorption refrigerator
JPS61168757A (en) Absorption heat pump device
JPS59200165A (en) Controller for absorption heat pump