JPS6117871A - Absorption refrigerator - Google Patents

Absorption refrigerator

Info

Publication number
JPS6117871A
JPS6117871A JP13820184A JP13820184A JPS6117871A JP S6117871 A JPS6117871 A JP S6117871A JP 13820184 A JP13820184 A JP 13820184A JP 13820184 A JP13820184 A JP 13820184A JP S6117871 A JPS6117871 A JP S6117871A
Authority
JP
Japan
Prior art keywords
temperature
absorber
refrigerant
absorption refrigerator
absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13820184A
Other languages
Japanese (ja)
Inventor
若松 伸彦
実 田頭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP13820184A priority Critical patent/JPS6117871A/en
Publication of JPS6117871A publication Critical patent/JPS6117871A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は吸収冷凍機の凍結防止に関するものである。[Detailed description of the invention] Industrial applications The present invention relates to anti-freezing of absorption refrigerators.

従来例の構成とその問題点 第1図に従来例の水冷媒系(この場合は、水−臭化リチ
ウム)の吸収冷凍機を示す。先ず簡単に吸収サイクルに
ついて説明する。
Structure of a conventional example and its problems FIG. 1 shows a conventional absorption refrigerator using a water refrigerant system (in this case, water-lithium bromide). First, the absorption cycle will be briefly explained.

吸収器1を出た稀溶液(吸収剤である臭化リチウムが少
なく、冷媒である水が多い溶液)は、溶液ポンプ2によ
って低温熱交換器3、高温熱交換器4を経て高温再生器
5と一部は低温再生器6に圧送される。高温再生器5で
はバーナ7によって稀溶液が加熱され、冷媒蒸気を発生
する。冷媒蒸気は低温再生器6内で、その凝縮熱によシ
稀溶液を加熱し冷媒蒸気と中間液とに分離する。低温再
生器6で発生した蒸気は凝縮器8で凝縮し、低温再生器
6で液化した冷媒と混合した後、蒸発器9へ流れる。液
冷媒は冷媒ポンプ1oによって循環させられながら散布
管11より熱交換器12表面に散布されて蒸発熱で冷水
を製造する。
The dilute solution (solution containing less lithium bromide as an absorbent and more water as a refrigerant) leaving the absorber 1 is passed through a low temperature heat exchanger 3 and a high temperature heat exchanger 4 by a solution pump 2 to a high temperature regenerator 5. and a portion is sent under pressure to the low-temperature regenerator 6. In the high temperature regenerator 5, the dilute solution is heated by the burner 7 to generate refrigerant vapor. The refrigerant vapor heats the dilute solution in the low-temperature regenerator 6 using its heat of condensation and separates it into refrigerant vapor and intermediate liquid. The steam generated in the low-temperature regenerator 6 is condensed in the condenser 8, mixed with the refrigerant liquefied in the low-temperature regenerator 6, and then flows to the evaporator 9. The liquid refrigerant is circulated by the refrigerant pump 1o and is spread over the surface of the heat exchanger 12 from the dispersion pipe 11 to produce cold water using the heat of evaporation.

一方高温再生器6で濃縮された溶液は高温熱交換器4を
通った後、低温再生器で加熱された中間液と、低温熱交
換器3に流入する前に合流し濃溶液(臭化リチウムの多
い、すなわち水冷媒の少ない溶液)となり、低温熱交換
器3を通っぞ吸収器1に流入する。吸収器1内では、散
布管13より濃溶液を熱交換器14表面に散布して、気
化した蒸気を吸収させるとともに発生する吸収熱を水2
0で冷却し稀溶液を再生してサイクルを完了する。次に
凍結防止の制御を説明する。
On the other hand, the solution concentrated in the high-temperature regenerator 6 passes through the high-temperature heat exchanger 4 and then merges with the intermediate solution heated in the low-temperature regenerator before flowing into the low-temperature heat exchanger 3. (in other words, a solution with less water refrigerant) and flows into the absorber 1 through the low-temperature heat exchanger 3. In the absorber 1, a concentrated solution is sprayed from the spray pipe 13 onto the surface of the heat exchanger 14 to absorb the vaporized steam, and the generated absorption heat is transferred to the water 2.
Cool to 0 to regenerate the dilute solution to complete the cycle. Next, freeze prevention control will be explained.

低温熱交換器3の濃溶液出口と吸収器1の濃溶液入口と
の間の濃溶液管15と、凝縮液管16との間にはバイパ
ス管17と電磁弁18が設けられ、蒸発器9内には温度
検出用としてのセンサー197(通常はサーモスタット
)が配設されている。
A bypass pipe 17 and a solenoid valve 18 are provided between the concentrated solution pipe 15 between the concentrated solution outlet of the low temperature heat exchanger 3 and the concentrated solution inlet of the absorber 1 and the condensate pipe 16. A sensor 197 (usually a thermostat) for detecting temperature is provided inside.

従って冷却水20の温度が低下してくると吸収器1の能
力は増大することになるから吸収器圧は低下し、必然的
に蒸発温度が低下してくるので、センサー19の信号で
電磁弁18を開き液冷媒の一部を濃溶液管15へ混入す
るか、あるいは散布管13へ流入させていた。これによ
って吸収器1に流入する単位濃溶液量当りの冷媒量を増
加させて吸収能力の低下を図り、その結果として吸収器
圧の低下、す力わち蒸発温度の低下を押えていた。
Therefore, as the temperature of the cooling water 20 decreases, the capacity of the absorber 1 increases, the absorber pressure decreases, and the evaporation temperature inevitably decreases. 18 was opened and a portion of the liquid refrigerant was mixed into the concentrated solution tube 15 or flowed into the dispersion tube 13. As a result, the amount of refrigerant per unit amount of concentrated solution flowing into the absorber 1 is increased to reduce the absorption capacity, and as a result, the decrease in absorber pressure, that is, the decrease in evaporation temperature, is suppressed.

しかし、このような従来の凍結防止制御においてはセン
サーや電磁弁を使用するよめ、部品および回路上のコス
ト面で高くなる欠点があり、さらに電力消費が生じると
じう問題があった。
However, such conventional anti-freeze control requires the use of sensors and solenoid valves, which has the disadvantage of increasing costs for parts and circuits, and also has the problem of high power consumption.

発明の目的 本発明は上記問題点に鑑み、構造が簡単で電力消費のな
い制御手段を提供して吸収冷凍機の凍結防止を行うこと
を目的とする。
OBJECTS OF THE INVENTION In view of the above-mentioned problems, an object of the present invention is to provide a control means that has a simple structure and consumes no power to prevent freezing of an absorption refrigerator.

発明の構成 本発明は蒸発温度に相当する温度を感知する手段が、温
度変化によシ形状変化が生じる材料で形成され、かつ前
記材料と直結もL<は前記材料でを吸収器に流入させる
制御手段を備えた吸収冷凍機であり、この構成により凍
結防止を行うものである。
Structure of the Invention The present invention provides a means for sensing a temperature corresponding to the evaporation temperature, which is formed of a material whose shape changes due to temperature changes, and which is directly connected to the material, and where L< is the material that flows into the absorber. This is an absorption refrigerator equipped with a control means, and this configuration prevents freezing.

実施例の説明 第2図に本発明の一実施例を示す。第1図と同一部品は
同一番号で示している。
DESCRIPTION OF EMBODIMENTS FIG. 2 shows an embodiment of the present invention. Parts that are the same as in FIG. 1 are designated by the same numbers.

21は制御弁でその詳細を第3図と第4図に示す。制御
弁21の入口22はバイパス管24で凝縮器8出口、も
しくは凝縮液管16と接続されている。又、出口23は
出口管25によシ濃溶液管15、あるいは散布管13に
接続し、液冷媒を吸収器1に流入させるようにしている
21 is a control valve whose details are shown in FIGS. 3 and 4. The inlet 22 of the control valve 21 is connected to the outlet of the condenser 8 or the condensate pipe 16 via a bypass pipe 24 . Further, the outlet 23 is connected to the concentrated solution tube 15 or the dispersion tube 13 through an outlet pipe 25, so that the liquid refrigerant flows into the absorber 1.

第3図に制御弁21の定常時の状態を示す。本体26内
には弁27、ダイアフラム28、エレメント29が設置
され、側面に穴30を設けている。
FIG. 3 shows the steady state of the control valve 21. A valve 27, a diaphragm 28, and an element 29 are installed in the main body 26, and a hole 30 is provided in the side surface.

液冷媒は冷媒管16を通って散布管11の小孔31よシ
滴下され熱交換器12表面で蒸発するがこの飽和蒸気は
常にエレメント29と接触しているので、エレメント2
9は蒸発温度の変化を直ちに感知することができる。実
施例において、エレメント29は形状記憶合金で出来て
おシ、温度が高い時は伸び−た状態、温度が低下した時
は縮むような形状変化を持たせている。エレメント29
の一部は本体に固定され、他端はダイアフラム28を介
して弁27と結合されている。今、冷却水温の低下に伴
って蒸発温度が低重すると、第4図に示すようにエレメ
ント29は縮むので弁27が下がジオリフイス32が開
口−される。そうすると凝縮液冷媒は濃溶液に混入し吸
収器1内の熱交換器14表面上では溶液が部分的稀溶液
となっていることと、通常よシ冷媒量が増加するため吸
収能力が低下するので吸収圧力の低下が妨げられる。こ
の場合、冷却水に対し散布以前に冷媒が濃溶液に吸収さ
れた分だけ吸収熱量を利用することができるので、冷水
の他に温水も利用する時には、効率の低下はわずかです
む。冷水のみの利用時においては冷媒を濃溶液に混入せ
ず直接吸収器1内に流入させても良い。この場合は吸収
圧の低下を早く防止することができる。
The liquid refrigerant passes through the refrigerant pipe 16 and drips into the small hole 31 of the dispersion pipe 11, and evaporates on the surface of the heat exchanger 12, but since this saturated vapor is always in contact with the element 29, the element 2
9 can immediately sense changes in evaporation temperature. In the embodiment, the element 29 is made of a shape memory alloy and has a shape change such that it expands when the temperature is high and contracts when the temperature drops. element 29
A part of the valve 27 is fixed to the main body, and the other end is connected to the valve 27 via a diaphragm 28. Now, when the evaporation temperature decreases as the cooling water temperature decreases, the element 29 contracts as shown in FIG. 4, so that the valve 27 is lowered and the georifice 32 is opened. In this case, the condensate refrigerant mixes with the concentrated solution, and the solution becomes a partially dilute solution on the surface of the heat exchanger 14 in the absorber 1, and the absorption capacity decreases because the amount of refrigerant increases. This prevents the absorption pressure from decreasing. In this case, the amount of heat absorbed by the refrigerant absorbed into the concentrated solution before being sprayed on the cooling water can be utilized, so when hot water is used in addition to cold water, there is only a slight decrease in efficiency. When only cold water is used, the refrigerant may be allowed to flow directly into the absorber 1 without being mixed with the concentrated solution. In this case, a decrease in absorption pressure can be quickly prevented.

実施例では弁30はエレメント29と直結しているがエ
レメント29と同一材料で一体形成してもよい。制御弁
21の設置位置は散布管11の上でなくても飽和蒸気、
あるいは飽和液といった蒸発温度に相当する流体温度を
検出できるならばこの位置でも良い。又、図示していな
いが吸収器1の下部の吸収液溜り32以降の、いわゆる
過冷却された稀溶液の温度も冷却水温の変動を受ける状
態量であるから、蒸発温度に相当する温度として用いて
も差支えないので制御弁21のエレメント29゛を稀溶
液源を検出しうる位置に配しても同等の性能を得ること
ができる。
Although the valve 30 is directly connected to the element 29 in the embodiment, it may be formed integrally with the element 29 from the same material. The installation position of the control valve 21 does not have to be above the spray pipe 11 to provide saturated steam,
Alternatively, this position may be used as long as the temperature of a fluid such as a saturated liquid that corresponds to the evaporation temperature can be detected. Although not shown, the temperature of the so-called supercooled dilute solution after the absorption liquid reservoir 32 at the bottom of the absorber 1 is also a state quantity that is subject to fluctuations in the cooling water temperature, so it is used as a temperature corresponding to the evaporation temperature. Even if the element 29' of the control valve 21 is placed at a position where the dilute solution source can be detected, the same performance can be obtained.

なお、本実施例ではエレメント29に形状記憶合金を用
いているが、同等の性質を有するバイメタルを用いても
よい。
In this embodiment, a shape memory alloy is used for the element 29, but a bimetal having similar properties may also be used.

発明の効果 以上のように本発明は蒸発温度に相当する流体温度を感
知し、感知するエレメントの形状変化によって直接に弁
の開閉を行わせ、蒸発器をバイパスさせて冷媒を吸収器
に流入させているため、通常の吸収冷凍機の凍結防止制
御に比べ、構造が簡単であシ、安価にその上電力消費の
ない優れた効果を有するものである。
Effects of the Invention As described above, the present invention senses the fluid temperature corresponding to the evaporation temperature, opens and closes the valve directly by changing the shape of the sensing element, bypasses the evaporator, and allows the refrigerant to flow into the absorber. Therefore, compared to the antifreeze control of a normal absorption refrigerator, the structure is simple, inexpensive, and has excellent effects with no power consumption.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来例のシステム図、第2図は本発明の一実施
例の吸収冷凍機のシステム図、第3図は本発明の一部で
ある制御弁の定常時の断面図、第4図は制御弁の作動時
の断面図である。 1・・・・・・吸収器、9・・・・・・蒸発器、11.
13・・・・・・散布管、15・・・・・・濃溶液管、
21・・・・・・制御弁、22・・・・・・入口、23
・・・・・・出口、24・・・・・バイパス管、25・
・・・・・出口管、27・・・・・・弁、28・・・・
・・ダイアフラム、29・・・・・・エレメント、3o
・・・・穴。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図
Fig. 1 is a system diagram of a conventional example, Fig. 2 is a system diagram of an absorption refrigerator according to an embodiment of the present invention, Fig. 3 is a sectional view of a control valve that is a part of the present invention in a steady state, and Fig. The figure is a sectional view of the control valve when it is in operation. 1...absorber, 9...evaporator, 11.
13...Scatter tube, 15...Concentrated solution tube,
21...Control valve, 22...Inlet, 23
...Outlet, 24...Bypass pipe, 25.
...Outlet pipe, 27...Valve, 28...
...Diaphragm, 29...Element, 3o
····hole. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2

Claims (3)

【特許請求の範囲】[Claims] (1)少なくとも再生器、凝縮器、蒸発器、吸収器、ポ
ンプを有する吸収冷凍機の温度の状態量を感知する手段
が、温度変化により形状変化が生じる材料で形成され、
かつ前記材料と直結、もしくは前記材料で形成されてい
る弁により、蒸発器をバイパスして冷媒を吸収器に流入
させる制御手段を備えた吸収冷凍機。
(1) A means for sensing the temperature state quantity of an absorption refrigerator having at least a regenerator, a condenser, an evaporator, an absorber, and a pump is formed of a material whose shape changes with temperature changes,
and an absorption refrigerating machine comprising a control means for bypassing the evaporator and causing refrigerant to flow into the absorber through a valve directly connected to the material or formed from the material.
(2)材料が形状記憶合金である特許請求の範囲第1項
記載の吸収冷凍機。
(2) The absorption refrigerator according to claim 1, wherein the material is a shape memory alloy.
(3)材料がバイメタルである特許請求の範囲第1項記
載の吸収冷凍機。
(3) The absorption refrigerator according to claim 1, wherein the material is a bimetal.
JP13820184A 1984-07-03 1984-07-03 Absorption refrigerator Pending JPS6117871A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13820184A JPS6117871A (en) 1984-07-03 1984-07-03 Absorption refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13820184A JPS6117871A (en) 1984-07-03 1984-07-03 Absorption refrigerator

Publications (1)

Publication Number Publication Date
JPS6117871A true JPS6117871A (en) 1986-01-25

Family

ID=15216442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13820184A Pending JPS6117871A (en) 1984-07-03 1984-07-03 Absorption refrigerator

Country Status (1)

Country Link
JP (1) JPS6117871A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6388845B1 (en) * 1998-04-02 2002-05-14 Tdk Corporation Thin film magnetic head and method of manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6388845B1 (en) * 1998-04-02 2002-05-14 Tdk Corporation Thin film magnetic head and method of manufacturing the same

Similar Documents

Publication Publication Date Title
JP3887204B2 (en) Two-stage absorption chiller / heater
JPS6117871A (en) Absorption refrigerator
US20120085111A1 (en) Adsorption refrigerator with thermostatic control
JP2751337B2 (en) Internal combustion engine cooling system
JPS6129662A (en) Antifreezing device for absorption refrigerator
JP3832191B2 (en) Absorption refrigerator
JP3715157B2 (en) 2-stage double-effect absorption refrigerator
JP3813348B2 (en) Absorption refrigerator
JPS60243461A (en) Absorption refrigerator
JP4104269B2 (en) Single double effect absorption refrigerator
JPS6238148Y2 (en)
KR0130652Y1 (en) Small absorption type cooling/heating device by heat pipe
JP3283178B2 (en) Absorption refrigerator
KR20020050928A (en) Control Method and Structure of Condensate of an Absorption Chiller with Hot Water Supply Function
JPS6017640Y2 (en) Absorption chiller refrigerant freeze prevention device
JPS602543Y2 (en) absorption refrigerator
JP4282225B2 (en) Absorption refrigerator
JPS6129644A (en) Water heater utilizing solar heat
JPH0417335B2 (en)
JPS5835971Y2 (en) Refrigeration equipment
JPH0354375Y2 (en)
JPS6138787B2 (en)
JPS61153352A (en) Regulator for quantity of refrigerant for absorption type water chiller and heater
JPS59231366A (en) Absorption type heat pump device
JPH03105171A (en) Absorption type water cooling and heating machine