JPS62297413A - Method and apparatus for refining molten metal - Google Patents

Method and apparatus for refining molten metal

Info

Publication number
JPS62297413A
JPS62297413A JP61139117A JP13911786A JPS62297413A JP S62297413 A JPS62297413 A JP S62297413A JP 61139117 A JP61139117 A JP 61139117A JP 13911786 A JP13911786 A JP 13911786A JP S62297413 A JPS62297413 A JP S62297413A
Authority
JP
Japan
Prior art keywords
molten metal
magnetic field
molten iron
refining
slag
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61139117A
Other languages
Japanese (ja)
Inventor
Yasuo Kishimoto
康夫 岸本
Hideji Takeuchi
秀次 竹内
Tetsuya Fujii
徹也 藤井
Tsutomu Nozaki
野崎 努
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP61139117A priority Critical patent/JPS62297413A/en
Publication of JPS62297413A publication Critical patent/JPS62297413A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To improve the reaction efficiency by shifting as percolating refining agent and slag toward one direction and reverse direction by flow accompanied with rotating motion caused by a magnetic field of molten metal in a bending reaction vessel. CONSTITUTION:Rotating force is forced as acting the rotating magnetic field by a rotating magnetic field generator 5 in such as molten iron 3 held in the bending reaction vessel 2 (refractories). As a result, the rotating motion generated in the molten iron 3 is transmitted to the opposite side (left side in the attached drawing) of the apparatus 5 through the max. deep part corresponding to the bending part of the vessel 2, and whole molten iron is moved as rotating. Then, flux 4 for desulfurized agent is blown from the left side through an injection lance 6 together with a small quantity of carrier gas. The flux 4 is enclosed into the rotating motion of the molten iron and reacts in contact with the molten iron in the vessel 2, to execute the desulfurized reaction and to float up as slag 7. ?Then, the apparatus 5 is once stopped and at the time of acting the rotating magnetic field to the molten iron by the same apparatus 5' in the other side, the slag 7 is floated up on the molten iron at the apparatus 5' side while reacting in same manque, as described above. Such a process is executed one or more times, to refine.

Description

【発明の詳細な説明】 3、発明の詳細な説明 (産業上の利用分野) 溶解金属、例えば炭素含有溶鉄、溶鋼、ステンレス溶鋼
などを精錬する際に、精錬剤との反応を有利に促進する
新規な手法と仕組みについての開発研究の成果を以下に
提案する。
[Detailed description of the invention] 3. Detailed description of the invention (industrial application field) Advantageously promotes reaction with a refining agent when refining molten metal, such as carbon-containing molten iron, molten steel, stainless molten steel, etc. The results of research on new methods and mechanisms are proposed below.

(従来の技術) 炭素含有溶鉄(以下、溶銑という)などの脱りんや脱硫
処理を行う方法としては、 ■ 混銑車や取鍋においてランスを溶鉄中iこ浸漬させ
、脱硫剤または脱りん剤を吹きこむし)わゆる溶銑予備
処理方法、 ■ 底吹き羽口を有する転炉において精錬用酸素ガスと
共に脱硫剤または脱りん剤を吹きこむ方法、 ■ 転炉にて上吹ランスより脱硫剤・脱わん剤を吹きこ
む方法 などが用いられてきた。これらの脱りん・脱硫処理に関
しては、例えば鉄と鋼71(1985) p394に詳
述されている。
(Prior art) Methods for dephosphorizing and desulfurizing carbon-containing molten iron (hereinafter referred to as molten pig iron) are as follows: ■ A lance is immersed in molten iron in a pig iron mixer or ladle, and a desulfurizing agent or dephosphorizing agent is applied. (blow-in) so-called hot metal pretreatment method; ■ A method in which a desulfurizing agent or dephosphorizing agent is injected together with refining oxygen gas in a converter with bottom-blowing tuyere; Methods such as injecting a pill have been used. These dephosphorization and desulfurization treatments are detailed in, for example, Tetsu to Hagane 71 (1985) p.394.

しかるにこれらの脱硫・脱りん処理においては一般に脱
りん剤・脱硫剤の反応効率は低く、とくに極低硫・低り
ん鋼などを溶製しようとする際には、上記の処理では不
充分で転炉より出鋼した取鍋内の溶鋼に対しさらに脱硫
剤・脱りん剤を投入したり、この際ときには加熱装置付
きの取鍋精錬装置を用いる多段階操作を必要としている
However, in these desulfurization and dephosphorization treatments, the reaction efficiency of the dephosphorization agent and desulfurization agent is generally low, and especially when attempting to melt ultra-low sulfur and low phosphorus steel, the above treatments are insufficient and transfer is difficult. Desulfurizing and dephosphorizing agents are added to the molten steel in the ladle tapped from the furnace, and in this case, a multi-step operation using a ladle refining device with a heating device is required.

(発明が解決しようとする問題点) 溶融金属の化学反応、例えば溶銑の脱りん・脱硫反応に
おいて、反応効率を有利に向上させ、精錬用フラックス
や、処理時間の削減などを図ることがこの発明の目的で
ある。
(Problems to be Solved by the Invention) It is an object of this invention to advantageously improve the reaction efficiency in chemical reactions of molten metals, such as dephosphorization and desulfurization reactions of hot metal, and to reduce the amount of refining flux and processing time. This is the purpose of

上記発明目的は次に述べる事項を骨子とする手順並びに
仕組によって有効に達成される。
The above objects of the invention can be effectively achieved by the procedures and mechanisms that are based on the matters described below.

主反応部分として両側上向きの流路からなる曲管状の耐
火物製反応器内に溶融金属を収容し、該開口の一方より
溶融金属の浴面に精錬剤を供給しつつ開口の他方側で溶
融金属浴に回転力を強制して、精錬剤ないしはスラグを
、溶融金属浴中を通し他方の開口側へ貫流移動させ、次
に開口の一方側にて溶融金属浴に回転力を強制して精錬
剤ないしはスラグを逆に貫流移動させる工程を交互に少
なくとも1回行い、この間に溶融金属との直接接触によ
って精錬を促進させることを特徴とする溶融金属の精錬
方法(第1発明)。
As the main reaction part, molten metal is housed in a curved tube-shaped refractory reactor with upward flow channels on both sides, and while a refining agent is supplied to the bath surface of the molten metal from one of the openings, it is melted on the other side of the opening. A rotational force is forced on the metal bath to move the refining agent or slag through the molten metal bath to the other side of the opening, and then a rotational force is forced on the molten metal bath on one side of the opening for refining. A method for refining molten metal (first invention), characterized in that the step of moving the agent or slag through the flow in a reverse direction is carried out alternately at least once, during which refining is promoted by direct contact with the molten metal.

主反応部分として両側上向きの流路からなる曲管状の耐
火物製反応容器から主としてなり、この反応容器の外周
に少なくとも1対として配設した回転磁場発生装置をそ
なえる溶融金属の精錬装置(第2発明)。
A molten metal refining device (second invention).

第1図(a)にて模式に示した新規な溶融金属の精錬装
置による処理操業では、両端に上向き開口部1.1′を
有する曲管状の耐火物製容器2内に溶融金属3を収納し
、一方の開口B1から溶融金属3の浴中に精錬剤のフラ
ックス4を供給しつつ他方の開口部1′側にて溶融金属
3の浴に、回転力を強制する。
In the processing operation using the new molten metal refining apparatus schematically shown in FIG. While supplying flux 4 as a refining agent into the bath of molten metal 3 from one opening B1, a rotational force is forced to the bath of molten metal 3 at the other opening 1' side.

この回転力は、開口部1′側で容器2の外周に配設した
回転磁場発生装置5によって生起させる。
This rotational force is generated by a rotating magnetic field generator 5 disposed around the outer periphery of the container 2 on the opening 1' side.

この回転磁場に帯同して溶融金属3の浴の全体にうず巻
き旋回流動を生じて精錬剤のフラックス4又はその変成
になるスラグは該流動に巻き込まれて溶融金属3の浴中
を通して他方の開口部1′側の浴面に向け、貫流移動し
、その間に溶融金属との間で十分に接触反応することと
なる。
Accompanied by this rotating magnetic field, a swirling flow is generated throughout the bath of molten metal 3, and the flux 4 of the refining agent or the slag that becomes a metamorphosis thereof is caught up in the flow and passes through the bath of molten metal 3 to the other opening. The metal flows through the water toward the bath surface on the 1' side, during which time it undergoes a sufficient contact reaction with the molten metal.

しかしながら反応した後浮上したスラグ7は未だ精錬殿
能を有しており、さらに溶銑と攪拌接触させればさらに
反応効率が上昇する。そこで、一定量の7ラツクスを吹
きこんだ後、回転磁場発生装置5を上記のように作動さ
せた後で停止し、こんどは開口部1側の回転磁場発生装
置5′を作用させると第1図(b)のように開口部1側
の浴面上のスラグ7は溶融金属3の浴の全体に生じたう
ず巻き旋回流動に巻きこまれて開口部1側の浴面に向は
再び貫流移動する。
However, the slag 7 that floats after the reaction still has refining ability, and if it is brought into contact with the hot metal while stirring, the reaction efficiency will further increase. Therefore, after blowing in a certain amount of 7 lacs, the rotating magnetic field generator 5 is operated as described above and stopped, and then the rotating magnetic field generator 5' on the opening 1 side is activated. As shown in Figure (b), the slag 7 on the bath surface on the opening 1 side is drawn into the swirling swirling flow that occurs throughout the bath of molten metal 3, and moves through the bath surface on the opening 1 side again. .

上記の往復の手順を少なくとも1回くり返すことによっ
てフラックスの精錬機能をより完全に利用し高反応効率
の精錬が行える。
By repeating the above-mentioned back and forth procedure at least once, the refining function of the flux can be utilized more completely and refining can be performed with high reaction efficiency.

この貫流移動について発明者らはさきに水ぶ艮を用いた
予備実験において以下の知見を得た。
Regarding this flow-through movement, the inventors previously obtained the following findings in a preliminary experiment using waterflies.

すなわち第2図(a)に示すような、■字形に屈曲した
曲管容器すに水銀mを入れ、曲管容器すの片側のまわり
を取囲む回転磁場発生装置fを取りつけ、これにより水
銀mに回転磁界を作用させて旋回流動を生起するように
し、曲管容器すの油側からは水Wを供給した。
That is, as shown in Fig. 2(a), mercury m is placed in a curved pipe container bent in the shape of a ■ character, and a rotating magnetic field generator f surrounding one side of the curved pipe container is attached, whereby the mercury m A rotating magnetic field was applied to generate swirling flow, and water W was supplied from the oil side of the curved pipe container.

このとき水銀mに充分な回転力を作用させると、水IJ
mは回転しながら全体として第2図の矢印αのような流
れを生じ、その結果図の左側に供給した水Wが水銀mの
流れに巻きこまれて、回転磁場発生装置fを取付けた側
における水銀mの浴表面に向けWoのように移行するこ
とが見出された。
At this time, if sufficient rotational force is applied to mercury m, water IJ
As m rotates, a flow as shown by the arrow α in Fig. 2 is generated as a whole, and as a result, the water W supplied to the left side of the figure is engulfed by the flow of mercury m, and on the side where the rotating magnetic field generator f is attached. It was found that mercury m migrates like Wo towards the bath surface.

水銀mに充分な回転流を生じさせれば曲管容器すの1端
から供給した水Wの全てが曲管容器す中で生じる水銀m
の旋回流に帯同して接触混合し乍ら曲管容器すの他端側
へWoのように移行することが確言忍された。
If a sufficient rotational flow is generated in the mercury m, all of the water W supplied from one end of the bent tube container will be absorbed by the mercury m generated in the bent tube container.
It was confirmed that the liquid was mixed in contact with the swirling flow of the pipe and transferred to the other end of the curved pipe container like a wo.

続いて容器すの他方の周囲に取りつけた回転磁場発生装
置gにより回転磁界を作用させて旋回流動を生起させた
ところ、第2図ら)に示されるように水銀mの浴表面に
ある水W′は再び曲管容器す中で生じる水銀mの旋回流
に帯同して接触混合し乍ら曲管容器すの他端側へ全て移
行することを確認した。
Next, a rotating magnetic field generator g attached to the other side of the container was used to apply a rotating magnetic field to generate swirling flow, and as a result, as shown in Figure 2, water W' on the surface of the bath of mercury m It was confirmed that all of the mercury m was brought into contact with the swirling flow of mercury m generated in the curved tube container, mixed together, and transferred to the other end of the curved tube container.

この実験では水を1吏用したが、さらに水辺外の種々の
比重の液体や粉体について試したところ水銀に比し比重
のより小さいものであればほぼ同様の結果が(尋られる
In this experiment, we used one liter of water, but we also tested liquids and powders of various specific gravities outside the water's edge, and found almost the same results as long as the specific gravity was lower than that of mercury.

以上の知見を基に発明者らは曲管容器による精錬実験を
行った結果、従来の溶融金属の化学反応容器によるより
も更に高い反応効率がもたらされて、精錬剤(吏用量や
処理時間の節減が可能になることを確かめた。脱硫処理
を例として以下に詳しく説明する。
Based on the above knowledge, the inventors conducted a refining experiment using a curved pipe vessel, and as a result, it was found that the reaction efficiency was even higher than that using a conventional chemical reaction vessel for molten metal, and the refining agent (the amount and processing time) It has been confirmed that it is possible to save on the amount of water used.Desulfurization treatment will be explained in detail below using an example.

(作 用) 第1図に示した反応容器2内に溶銑3を収容保持し、回
転磁場発生装置5により溶銑3に回転磁界を作用させて
回転力を強制した。その結果溶銑3の浴に生じる回転運
動は反応容器2の屈曲部に当る最深部を通して回・転磁
場発生装買5が作動されていない反対側にまで伝わり、
溶銑全体が回転運動する。
(Function) Hot metal 3 was housed and held in the reaction vessel 2 shown in FIG. 1, and a rotating magnetic field was applied to the hot metal 3 by the rotating magnetic field generator 5 to force rotational force. As a result, the rotational motion generated in the bath of hot metal 3 is transmitted through the deepest part of the reaction vessel 2, which corresponds to the bending part, to the opposite side where the rotating/rotating magnetic field generating device 5 is not operated.
The entire hot metal moves in rotation.

この時回転磁場発生装置5が作動されていない側から溶
銑に脱硫剤のフラックス4をインジェクションランス6
より少量の搬送ガスと共に吹き込んだ。
At this time, the desulfurizing agent flux 4 is injected into the hot metal from the side where the rotating magnetic field generator 5 is not activated.
It was blown in with a smaller amount of carrier gas.

フラックス4は溶銑3の回転運動に巻きこまれ、脱硫反
応を生じつつ反応容器2中を溶銑と接触しながら反応し
た後スラグ7となって浮上する。
The flux 4 is drawn into the rotational movement of the hot metal 3, reacts while coming into contact with the hot metal in the reaction vessel 2 while causing a desulfurization reaction, and then floats up as slag 7.

そこで回転磁場発生装置5を−たん停止し、油側に取り
付けた回転磁場発生装置5′により溶銑3に回転磁界を
作用させた。このときスラグ7は第1図(b)に示した
ように溶銑3の回転運動に巻きこまれ、さらに脱硫反応
を生じつつ反応容器2中を溶銑と接触しながら反応した
後回転磁場発生装置5′側の溶銑上に浮上する。
Therefore, the rotating magnetic field generator 5 was temporarily stopped, and a rotating magnetic field was applied to the hot metal 3 by the rotating magnetic field generator 5' attached to the oil side. At this time, the slag 7 is drawn into the rotational movement of the hot metal 3 as shown in FIG. 1(b), and after reacting while contacting the hot metal in the reaction vessel 2 while causing a desulfurization reaction, the rotating magnetic field generator 5' It floats above the hot metal on the side.

この発明によればまず溶銑3の回転によってフラックス
4が溶銑3の浴中に巻きこまれ溶銑との接触攪拌が充分
に行われつつ、反応容器2の片側開口jこ向けて貫流移
行するため、脱硫反応速度が大きくてきる。
According to this invention, the flux 4 is first drawn into the bath of the hot metal 3 by the rotation of the hot metal 3, and the flux 4 is sufficiently stirred in contact with the hot metal, and flows through the opening toward one side of the reaction vessel 2, thereby preventing desulfurization. The reaction rate increases.

とくに脱硫剤としてCaF2などの活性なフラックスを
使用した場合でも、投入したフラックス4は回転運動の
中心に集まる(なんとなれば、フラックスには磁界によ
る誘導電流が生じないため、電磁力が作用しないので回
転磁界による回転力は作用せずして溶銑3との間の比重
差の下に浴の中心:こ集まる)ので反応容器2を構築す
る耐火物との接触によって、耐火物と反応し損傷を与え
る機会を殆どなくず。
In particular, even when an active flux such as CaF2 is used as a desulfurizing agent, the injected flux 4 gathers at the center of the rotational motion (this is because the flux does not generate an induced current due to the magnetic field, so no electromagnetic force acts on it). The center of the bath gathers under the difference in specific gravity between the hot metal 3 and the hot metal 3 without the rotational force generated by the rotating magnetic field, so when it comes into contact with the refractories that make up the reaction vessel 2, it reacts with the refractories and causes damage. I almost lost the opportunity to give.

さるに;ま溶銑3の回転運動を利用してフラックス4を
瞬時に溶銑に巻きこませ、貫流中ての充分な接触を生じ
させることができるので短時間の下に処理可能となる。
Furthermore, the rotational movement of the hot metal 3 can be used to instantaneously entrain the flux 4 into the hot metal and sufficient contact can be created during the flow through, so that the process can be carried out in a short period of time.

上記手順を複数回くり返せばフラックスの消波機能を完
全に利用し高反応効率、短時間の下で精錬が可能て極低
硫鋼も容易に溶製できる。また、鉄鉱石等の金属酸化物
などを主体とする原料を溶銑中に供給して還元反応を促
進することも可能である。
By repeating the above procedure several times, the wave-dissipating function of the flux can be fully utilized and refining can be performed with high reaction efficiency and in a short time, making it possible to easily melt ultra-low sulfur steel. It is also possible to promote the reduction reaction by supplying a raw material mainly consisting of metal oxides such as iron ore into the hot metal.

反応容器2の形状は一般にU字管、V字管のように曲部
を有するものであればよい。
Generally, the shape of the reaction vessel 2 may be any shape having a curved part such as a U-shaped tube or a V-shaped tube.

上述説明では、脱硫(精錬)処理につし)で示したが、
精錬剤を変えて目的に合った精錬をすることができるの
は勿論で例えば、脱りん1+1諌において溶銑3の脱炭
過程の初期(C:3.3%以上)に、脱りん剤を添加し
て、溶銑3に回転流を与え、脱りん剤との接触反応率を
向上させることもできる。
In the above explanation, desulfurization (refining) treatment was used, but
Of course, it is possible to perform refining according to the purpose by changing the refining agent. For example, in a dephosphorization 1+1 tank, a dephosphorization agent can be added at the beginning of the decarburization process of hot metal 3 (C: 3.3% or more). It is also possible to give a rotating flow to the hot metal 3 to improve the contact reaction rate with the dephosphorizing agent.

ここに示す精錬剤とは、脱りん剤、脱硫剤、脱珪剤等の
酸化精錬剤や還元精錬剤を指し、液体固体の単独または
混合などの状態に制限されない。
The refining agent referred to herein refers to an oxidizing refining agent or a reductive refining agent such as a dephosphorizing agent, a desulfurizing agent, a desiliconizing agent, etc., and is not limited to a state of a liquid solid alone or a mixture.

(実施例) 実施(列1 内径がt4oommで高さが1000mmの回転磁場発
主装’15(r4?1.異空間の直径が1400mmで
高さが1000mm、空間中心部での磁界強さは最大で
600ガウス)を、非難I生材料の外板と耐火物で製作
した外径1300mm、内径9QQmmのV字管クイブ
になり、:母ぼ直径の屈曲部を有する曲管状の反応容器
2に対し第1図に示しように設置した。
(Example) Implementation (Row 1 Rotating magnetic field generator '15 (r4?1) with an inner diameter of t4oomm and a height of 1000mm. The diameter of the different space is 1400mm and the height is 1000mm, and the magnetic field strength at the center of the space is A maximum of 600 Gauss) was made into a V-shaped tube quib with an outer diameter of 1300 mm and an inner diameter of 9 QQ mm made of a refractory material and an outer plate of non-responsive I raw material, and was placed in a curved tube-shaped reaction vessel 2 having a bent part with the diameter of the motherboard. On the other hand, it was installed as shown in Figure 1.

この時反応容器に1400℃の16tの溶銑(炭素濃度
4.3%)を挿入し、ランス6を鉄浴中に浸漬し、脱硫
剤としてCaO系フラックスを用い、搬送ガスとしてN
2を用いて吹き込んだ。
At this time, 16 tons of hot metal (carbon concentration 4.3%) at 1400°C was inserted into the reaction vessel, lance 6 was immersed in the iron bath, CaO-based flux was used as the desulfurization agent, and N was used as the carrier gas.
2 was used to blow the air.

所定量の脱硫剤を吹き込み乍ら回転磁場発生装置5を動
作させ、フラックスが溶銑中に巻きこまれ、回転磁場発
生装置5の側にスラグ7となって全て浮上した後、回転
磁場発生装置5を停止し、代わりに回転磁場発生装置5
′を作用させた。スラグ7は再び溶銑中に巻きこまれ、
回転磁場発生装置5の側の開口部へ移行した。浮上した
スラグ7′は所定の時間まで容器内にためた後定期的に
樋9より排出した。
The rotating magnetic field generator 5 is operated while a predetermined amount of desulfurization agent is injected, and after the flux is engulfed in the hot metal and floats as slag 7 on the side of the rotating magnetic field generator 5, the rotating magnetic field generator 5 is operated. stopped, and the rotating magnetic field generator 5 instead
' was applied. Slag 7 is rolled into the hot metal again,
It moved to the opening on the side of the rotating magnetic field generator 5. The floated slag 7' was stored in the container for a predetermined time and then periodically discharged from the gutter 9.

一方比較実験として第3図に示す設備を用いて次の実験
を行った。
On the other hand, as a comparative experiment, the following experiment was conducted using the equipment shown in FIG.

実施例と同じく非磁性材料の外板と耐火物で製作した外
径1300mm、内径900mmの円筒容器8を設置し
た。円筒容器8に1400℃の5.3tの溶銑(炭素濃
度約4.3%)を装入し、実施例と同じくランス6′を
鉄浴中に浸漬し同じ脱硫剤を、N2を搬送ガスとして吹
きこんだ。
A cylindrical container 8 having an outer diameter of 1300 mm and an inner diameter of 900 mm made of a refractory material and an outer plate made of a non-magnetic material was installed as in the example. 5.3 tons of hot metal (carbon concentration approximately 4.3%) at 1400°C was charged into the cylindrical container 8, and the lance 6' was immersed in the iron bath as in the example, and the same desulfurization agent and N2 were used as the carrier gas. I blew it.

この時の実施例および比較例における脱硫剤吹きこみ量
と溶銑成分の関係を第4図に示す。
FIG. 4 shows the relationship between the amount of desulfurizing agent injected and the hot metal components in Examples and Comparative Examples.

比較例に比べて本発明による実施例では同一の%Sまで
脱硫するのに必要な脱S剤は約4kg/を少ないことが
わかる。
It can be seen that the amount of desulfurization agent required to desulfurize to the same %S in the example according to the present invention is about 4 kg/less compared to the comparative example.

なお、この発明につき溶銑の脱硫を例にして説明したが
、溶銑脱りん、脱けい、その他溶鉄の化学反応は勿論、
その他の溶融金属の化学反応容器として全てに有効であ
る。
Although this invention has been explained using desulfurization of hot metal as an example, it is of course applicable to dephosphorization of hot metal, desulfurization, and other chemical reactions of molten iron.
It is effective as a chemical reaction vessel for other molten metals.

(発明の効果) 以上のようにこの発明では両端にて上向きに開口させた
曲管状の反応容器2中の溶湯に回転磁界を作用させて主
に回転方向の運動を生じさせ、回転運動に伴なって生じ
る溶銑中の流動を利用することにより溶銑の脱硫脱りん
などの化学反応において従来の方法に比べて高い化学反
応速度が得ちれ、また高反応効率、短時間で反応を行え
る容器を提供できる。
(Effects of the Invention) As described above, in this invention, a rotating magnetic field is applied to the molten metal in the curved tube-shaped reaction vessel 2 which is opened upward at both ends to cause movement mainly in the rotational direction. By utilizing the flow in the hot metal that occurs, a higher chemical reaction rate can be achieved in chemical reactions such as desulfurization and dephosphorization of hot metal compared to conventional methods. Can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例を示す断面図、第2図:ま水
銀を用いたモデル実験を示す断面図であり、 第3図はこの発明の比較例を示す断面図、第4図はCa
O系脱硫剤の原単位と溶銑中の(%S)の関係を示す図
である。 1・・・開口      2・・・反応容器3・・・溶
銑      4・・・フラックス5・・・回転磁場発
生装置 6・・・インジェクションランス 7・・・スラグ     8・・・反応容器9・・・騒 第3図 第4図 脱5鱗:lQl餌<;、−ン)
Figure 1 is a sectional view showing an embodiment of this invention, Figure 2 is a sectional view showing a model experiment using mercury, Figure 3 is a sectional view showing a comparative example of this invention, and Figure 4 is a sectional view showing a comparative example of this invention. Ca
It is a figure showing the relationship between the basic unit of O-based desulfurization agent and (%S) in hot metal. 1... Opening 2... Reaction vessel 3... Hot metal 4... Flux 5... Rotating magnetic field generator 6... Injection lance 7... Slag 8... Reaction vessel 9... Fig. 3 Fig. 4 Degradation of scales: lQl bait <;, -n)

Claims (1)

【特許請求の範囲】 1、主反応部分として両側上向きの流路からなる曲管状
の反応容器内に溶融金属を収納し、該開口の一方より溶
融金属の浴面に精錬剤を供給しつつ開口の他方側で溶融
金属浴に回転力を強制して、精錬剤ないしはスラグを、
溶融金属浴中を通し他方の開口側へ貫流移動させ、次に
開口の一方側にて溶融金属浴に回転力を強制して精錬剤
ないしはスラグを逆に貫流移動させる工程を交互に少な
くとも1回行い、この間に溶融金属との直接接触によっ
て精錬を促進させることを特徴とする溶融金属の精錬方
法。 2、主反応部分として両側上向きの流路からなる曲管状
の反応容器から主としてなり、この反応容器の外周に少
なくとも1対として配設した、回転磁場発生装置をそな
えることを特徴とする溶融金属の精錬装置。
[Scope of Claims] 1. Molten metal is stored in a curved tube-shaped reaction vessel consisting of upward flow channels on both sides as the main reaction part, and a refining agent is supplied to the bath surface of the molten metal from one of the openings. On the other side of the molten metal bath, force is applied to the molten metal bath to remove the refining agent or slag.
Alternating at least one step of moving the refining agent or slag through the molten metal bath to the other opening side, and then forcing the molten metal bath on one side of the opening to force a rotational force to move the refining agent or slag back through the bath. A method for refining molten metal, characterized in that the refining is accelerated by direct contact with the molten metal during this period. 2. A method for producing molten metal characterized in that the main reaction part is a curved tube-shaped reaction vessel with upward flow channels on both sides, and is equipped with at least one pair of rotating magnetic field generators arranged around the outer periphery of the reaction vessel. Refining equipment.
JP61139117A 1986-06-17 1986-06-17 Method and apparatus for refining molten metal Pending JPS62297413A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61139117A JPS62297413A (en) 1986-06-17 1986-06-17 Method and apparatus for refining molten metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61139117A JPS62297413A (en) 1986-06-17 1986-06-17 Method and apparatus for refining molten metal

Publications (1)

Publication Number Publication Date
JPS62297413A true JPS62297413A (en) 1987-12-24

Family

ID=15237890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61139117A Pending JPS62297413A (en) 1986-06-17 1986-06-17 Method and apparatus for refining molten metal

Country Status (1)

Country Link
JP (1) JPS62297413A (en)

Similar Documents

Publication Publication Date Title
JPS62297413A (en) Method and apparatus for refining molten metal
JPH01108308A (en) Method for refining molten metal
JP2808197B2 (en) Vacuum refining of molten steel using large diameter immersion tube
JPH0364410A (en) Pretreatment of molten iron
JPS6345314A (en) Method and device for treating molten metal
JPH11172314A (en) Method for dephosphorizing and desulfurizing molten iron
JPH0790337A (en) Pretreatment method for simultaneous dephosphorization and desulphurization of hot metal
JP2005200762A (en) Method for desulfurizing molten pig iron
JPH026806B2 (en)
JP2004300507A (en) Method for restraining foaming of slag
JP3550039B2 (en) Powder desulfurization method of molten steel under reduced pressure and reaction vessel for powder desulfurization under reduced pressure
JPH01306517A (en) Method for pretreating molten iron in mixer car
JPH04235210A (en) Method for desulfurizing molten iron
SU1382856A1 (en) Method of desulfurization of iron in ladle
JP3666145B2 (en) Hot metal pretreatment method
JPH0431016B2 (en)
US4405364A (en) Process of refining iron in oxygen converters with additions of materials containing sodium carbonate
JPS591607A (en) Pretreatment of molten iron
JP2004292924A (en) Lance for refining molten metal and refining method
JP2003113410A (en) Method for smelting molten pig iron
JPH0941015A (en) Pretreatment of molten iron
JPH11172315A (en) Method for reducing mn ore in molten iron pretreatment
JPH1112628A (en) Torpedo car and pre-treatment of molten iron using the same
JPS591609A (en) Refining method of molten iron
JPH0849004A (en) Pre-treatment of molten iron