JP3666145B2 - Hot metal pretreatment method - Google Patents

Hot metal pretreatment method Download PDF

Info

Publication number
JP3666145B2
JP3666145B2 JP28966196A JP28966196A JP3666145B2 JP 3666145 B2 JP3666145 B2 JP 3666145B2 JP 28966196 A JP28966196 A JP 28966196A JP 28966196 A JP28966196 A JP 28966196A JP 3666145 B2 JP3666145 B2 JP 3666145B2
Authority
JP
Japan
Prior art keywords
hot metal
dephosphorization
desulfurization
dip tube
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28966196A
Other languages
Japanese (ja)
Other versions
JPH10130710A (en
Inventor
善彦 樋口
政樹 宮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP28966196A priority Critical patent/JP3666145B2/en
Publication of JPH10130710A publication Critical patent/JPH10130710A/en
Application granted granted Critical
Publication of JP3666145B2 publication Critical patent/JP3666145B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高炉から出銑後、転炉装入までの間に溶銑の脱りん、脱硫を一つの精錬容器で効率良く行う溶銑予備処理方法に関する。
【0002】
【従来の技術】
転炉の精錬負荷軽減を目的に、転炉炉外での溶銑の脱珪、脱りんおよび脱硫処理が行われている。従来の方法では、同一精錬容器単一処理の方式が採用され、これらの各処理を複数組み合わせて溶銑の予備処理を実施している。この方法は各反応を最適フラックス組成で行わせることができるため、精錬剤コストを低減できると言う点で有利と言える。
【0003】
しかし、一方では転炉一括精錬法と比べると、工程増加による溶銑の温度降下、処理ステーションの増加による設備コスト、耐火物コストの増大などの点で問題があった。
【0004】
そこで、溶銑の予備処理の要求を満たし、かつ工程増加によるコスト増加を防ぐことを目的に、同一精錬容器内で溶銑の脱りんと脱硫を行う技術が提案されている。その例を以下に示す。
【0005】
特開平3−24215号公報では、「脱珪された溶銑に、生石灰若しくは生石灰とAlを混合してなる脱硫剤を吹き込んで脱硫するとともに、脱硫処理後のスラグのCaO/(SiO2+Al2O3)を2以上とし、この脱硫滓を排滓することなく、次いで生石灰と酸化剤およびCaF2を添加して脱P処理し且つ脱P処理後の最終スラグのCaO/SiO2を2以上とすることを特徴とする生石灰利用効率の高い溶銑予備処理法」が提案されている。
【0006】
特開平3−64410号公報では、「(1)同一精錬容器内で脱りん剤と脱硫剤を異なるランスから吹き込むことを特徴とする溶銑予備処理」「(2)精錬容器内 に堰を設け、脱りんスラグと脱硫スラグを分離し、混入を防止する上記方法」が提案されている。
【0007】
【発明が解決しようとする課題】
前述のような同一精錬容器内での溶銑脱りん脱硫技術には以下の問題点がある。
【0008】
特開平3−24215号公報中の記載では、脱硫後の脱りん処理時にスラグの滓化度を制御すれば復硫しない条件が存在するとしている。しかし、CaO系脱硫剤を用いた場合の脱硫反応は下式のような還元反応であるので、基本的に脱硫処理時にはスラグの酸素ポテンシャルを下げる必要がある。
【0009】
CaO+S=CaS+O
一方、脱りん反応は溶銑中のりんを酸化させ、酸化りんをスラグ中へ移行させる反応であるので、脱硫処理とは逆にスラグ中の酸素ポテンシャルを上げる必要がある。したがって、特開平3−24215号公報で示されたような単なる滓化度の制御だけでは、復硫が生じるという問題は避けられない。
【0010】
この問題を解決するには脱硫スラグと脱りんスラグを物理的に分離する必要がある。特開平3−64410号公報では、同一精錬容器に堰を設け両スラグの混合を防止する方法が開示されている。しかし、この方法でも、耐火物の溶損等により堰の両端のシールを完全に保持することは困難で、両スラグ間を遮断してスラグの混合を避けるのは難しい。また、脱りん剤と脱硫剤を異なるランスから吹き込むためランス昇降装置が二つ必要となり設備費およびランス耐火物のランニングコストが高くなるという問題もある。
【0011】
本発明は、設備費とランニングコストを高めることなく、一つの精錬容器内で高反応効率の脱りんおよび脱硫処理を行うことを課題としてなされたものであり、特に、脱りんスラグと脱硫スラグを物理的に安定して分離させ、脱りんと脱硫を効率的に行う方法を提供することを目的としている。
【0012】
【課題を解決するための手段】
本発明の要旨は、次の一つの精錬容器内で高反応効率の脱りんおよび脱硫処理を行う溶銑の予備処理方法にある。
【0013】
まず、精錬容器に収容された溶銑中にランスを浸漬し、溶銑上に脱りん剤を上置きした状態で、ランスから撹拌ガスとして不活性ガスもしくは酸化性ガスを吹き込むか、または脱りん剤とともに撹拌用ガスを溶銑中に吹き込んで脱りん処理する。
【0014】
引き続き、不活性ガスまたは酸化性ガスを吹き込み、その量を増加して溶銑の上昇流を強化し、溶銑面上の脱りんスラグを精錬容器の内壁側に移動させることにより溶銑面を露出させ、さらに溶銑露出部に中空状の浸漬管の下端部を挿入する。
【0015】
その後、上記浸漬管でかこまれた溶銑露出部領域の溶銑中に、溶銑中に浸漬したランスから、キャリアガスとしての不活性ガスあるいは還元性ガスとともに脱硫剤を吹き込んで脱硫処理を行う。
【0016】
ここで、不活性ガスとはArまたはN2などであり、酸化性ガスとは不活性ガスとO2、CO2などとの混合気体などである。また、還元性ガスとは不活性ガスとCO、H2などとの混合気体などである。
【0017】
【発明実施の形態】
精錬容器での反応効率を高めるには、各反応がどのような形態で進むかを確認する必要がある。本発明者らはこれについて検討を重ね、次の知見を得た。
【0018】
脱りん反応は溶銑と溶銑上のスラグとの界面で起こるパーマネント反応が主体で進行する。したがって、脱りん反応を効率的に行わせるには、スラグと溶銑との接触面積を大きくとることが必要となる。ただし、ランスから吹き込む粉体が溶銑内を上昇する際に生じるトランジトリー反応の寄与も認められ、溶銑上への脱りん剤上置とランスからの脱りん剤インジェクションの併用も効果があることがわかった。
【0019】
一方、脱硫反応はランスから吹き込む脱硫剤が溶銑中を浮上する過程における脱硫剤表面と溶銑との反応、すなわち、トランジトリー反応が主体であり、溶銑上のスラグと溶銑との反応によるパーマネント反応の寄与はきわめて小さい。
【0020】
したがって、脱りんは、脱りん剤を上置きした状態で、ランスから撹拌用ガスとして不活性ガスもしくは酸化性ガスを吹き込むか、または脱りん剤を含んだ撹拌用ガスを吹き込み、一方脱硫は、ランスからキャリアガスとしての不活性ガスまたは還元性ガスを脱硫剤とともに溶銑中に吹き込むのが効率的である。
【0021】
さらに、この二つの反応は異なった酸素ポテンシャルで進行するので、反応を起こさせるタイミングをずらさなければならず、また復りんおよび復硫を防止する意味でもそれぞれで生成したスラグが混合しないように処置しなければならない。
【0022】
図1に、本発明の溶銑予備処理方法を実施するための溶銑処理装置の模式的縦断面図および処理手順の一例を示す。
【0023】
高炉から出銑された溶銑1をトーピードカーに受けて溶銑処理ステーションまで移送し、このステーションで精錬容器2に収容する。精錬容器は上部に昇降可能でかつ不活性ガスおよび粉体吹込み可能なランス3を備え、そのランスを包むような位置に昇降可能で水平断面が円形あるいは楕円形の浸漬管4を備えている。浸漬管は脱りん処理後および脱硫処理後それぞれのスラグを分離するための仕切の役割をはたす。
浸漬管の上部にはスラグや溶銑のスプラシュの飛散を防ぐ意味で覆いを設けた方が望ましいが、解放されていても、とくに溶銑処理の各操作に支障はない。またランスは、浸漬管の外側から斜めに浸漬し、その先端が浸漬管の下部に来るように設置してもよい。
【0024】
この装置を用いた溶銑予備処理の手順について説明する。
【0025】
脱りん処理と脱硫処理とでは、反応の形態に相違があり、脱りん反応は溶銑と溶銑表面上の脱りん剤との界面で起こるパーマネント反応が主体であり、接触界面積が広いほど反応が進み易いという特徴がある。本発明の方法では、精錬容器への溶銑装入時溶銑表面はほぼ露出状態にあり、脱りん剤で全面を覆いやすいので、はじめに脱りん処理を行うのが得策である。
【0026】
したがって、まず脱りん処理を行う。脱りん処理時には精錬容器内の溶銑上にCaOを主体としてCaF2、酸化鉄あるいはMnO、MnO2を含有する脱りん剤5を上置きした上でランスから撹拌用ガスとして不活性ガス6または脱りん剤を含む撹拌用ガスを精錬容器中央部の溶銑中に吹込み、溶銑を撹拌する(図1(a)参照)。この時、不活性ガスは、脱りん剤が常に溶銑の表面を覆う状態を保持する吹き込み量のレベルに抑制する。
【0027】
脱りん処理後、引き続きランスから不活性ガスだけを吹き込む。その吹き込み量を、精錬容器中央部の溶銑上昇流を強化して脱りん後のスラグ7を精錬容器の内壁側に移動させるレベルにまで増加させる。この操作により、精錬容器の中央部は溶銑が露出した状態(図1(b)参照)となる。ここに浸漬管4の下端部を浸漬して(図1(c)参照)、脱りん後のスラグを精錬容器内側と浸漬管外側の間に存在させかつ浸漬管内側には溶銑のみが存在する状態にする。
【0028】
その後、脱硫処理を行う。脱硫剤8の組成としては、CaOを主体とし、Al2O3およびCaF2の一方、もしくは両方を含んだフラックスを用いる。この脱硫剤をキャリアガスとともに、挿入したランスから、浸漬管で囲まれた溶銑露出部領域の溶銑中に吹き込んで脱硫処理を行う(図1(d)参照)。脱硫剤の吹き込み位置は、溶銑露出部領域の中央部とするのが望ましい。
【0029】
脱硫後のスラグ9は浸漬管の内側に浮上させる。そのためには浸漬管の水平内側断面積の最小値を決める必要がある。また、浸漬管を溶銑に浸漬する前の溶銑面を露出させる操作で得られる溶銑表面積の確保にも限度があり、この点からは浸漬管の水平内側断面積の最大値を決める必要が生じる。この点について調査した。
【0030】
水平断面が円形または楕円形の形状を有する浸漬管の水平内側断面積は、精錬容器の水平内側断面積の0.3〜0.6倍の範囲であることが望ましい。0.3倍未満であると脱硫反応後のスラグの一部が浸漬管の外へ流出し、酸素ポテンシャルの高い脱りんスラグと接触して復硫を起こすからである。一方、0.6倍を超えると、不活性ガス吹き込みよる脱りんスラグの精錬容器の内壁側への移動が困難な部分が出現し、脱りんスラグの一部が浸漬管内へ残留して、次の工程の脱硫反応が進行しにくくなる。
【0031】
用いる脱りん剤、脱硫剤の組成については、スラグの粘性を左右するCaF2濃度に留意する必要がある。特に脱硫剤に添加するCaF2が問題で、その濃度は5〜20重量%(以下、化学組成の%表示は重量%を意味する)が望ましい。5%未満ではスラグの粘性が高く脱硫が進行しにくく、20%を超えると必要以上にスラグの粘性が低下してしまい、脱硫スラグが浸漬管内溶銑上に浮上した後、容易に浸漬管外に流出して浸漬管外の脱りん後スラグと混合し、復硫および復りんが生じてしまうからである。さらに、CaF2が20%を超えると、ランスや浸漬管の耐火物溶損が大きくなり耐火物コストが大きくなるため溶製コストが上昇してしまう欠点もある。
【0032】
脱りん処理後から浸漬管浸漬までの時間については10分以下が望ましい。10分を超えると、脱りんスラグ中のFeOが溶銑中の炭素により還元され、酸素ポテンシャルが低下して復りんが生じるからである。
【0033】
脱硫処理完了後はランスおよび浸漬管を引き上げ、精錬容器を静置した状態でスラグドラッガーでスラグを掻き出した後溶銑を転炉に注銑する。
【0034】
【実施例】
高炉から出銑された溶銑をトーピードカーに受け、製鋼工場に搬送し、精錬容器に溶銑を収容して本発明を実施した。用いた設備の構成は図1に示す通りである。
【0035】
使用した溶銑の化学組成は、表1の通りである。
【0036】
【表1】

Figure 0003666145
【0037】
精錬容器の内径は溶銑湯面レベルで3.0m、溶銑深さは3.0mとした。浸漬管の材質はアルミナキャスタブル製であり、内径は1.5mを基準とし、それ以外の内径のものも使用した(明記しない場合は内径1.5mの浸漬管を用いた)。ランスは、外側をアルミナキャスタブルで被覆した外径250mmのものを用いた。ランスのノズル形状は、ランス先端から200mmの位置に水平方向にノズルを2孔有するもので、ノズル内径は14mmとした。
【0038】
ランスから吹き込む撹拌ガスあるいはキャリアーガスとしてはアルゴンガスを用い、その流量は脱りんおよび脱硫処理時は0.5Nm3/min、溶銑を露出させる操作の場合は1.0Nm3/min とした。また、ノズルの浸漬深さが2.5mとなるように、ランス先端の高さは溶銑取鍋底部耐火物上面から0.5mの位置に設定した。
【0039】
また、脱りん処理時には、表2の混合フラックスを取鍋内溶銑上に上置きし、脱りん処理時間(ガス撹拌時間)は10分とした。
【0040】
【表2】
Figure 0003666145
【0041】
さらに、撹拌用ガスとともに表3に示す混合フラックスをランスで溶銑に吹き込む脱りん処理も行った。
【0042】
【表3】
Figure 0003666145
【0043】
脱硫処理時の吹込フラックスには、表4の粉体を基準して用い、それ以外の組成のものでも試験した(明記しない場合は表4の組成のものを用いた)。脱硫時間(ガス撹拌時間)は6分とした。
【0044】
【表4】
Figure 0003666145
【0045】
また、脱りん処理後から浸漬管浸漬までの時間は1分を基準とし、それ以外の条件でも試験した(明記しない場合は、1分の条件で処理した)。
【0046】
▲1▼浸漬管使用の効果と脱りん、脱硫処理の順序の影響
比較例の浸漬管なしのケースと本発明方法の浸漬管ありの条件で処理を行った。その結果を表5に示す。浸漬管を使用しない場合はいずれも、脱硫率、脱りん率共に低レベルであった。
【0047】
【表5】
Figure 0003666145
【0048】
また、浸漬管を使用しても、脱硫処理後に脱りん処理を行った場合(No.4)は、脱硫率、脱りん率は上がらない。
【0049】
高い脱硫率と脱りん率を確保するためには、浸漬管を使用し、かつ、脱りん後に脱硫を行う処理が最適と言える。
【0050】
さらに、脱りん率向上の観点で言えば、ランスで撹拌用ガスとともに脱りん剤を吹き込むのが有利である。
【0051】
▲2▼浸漬管内径の影響
浸漬管を使用し、脱りん後に脱硫を行う順序として、浸漬管内径のみを変化させて処理した。その結果を表6に示す。浸漬管内径(D)と精錬容器内径(Do)の比D/Doが0.3〜0.6の範囲では脱硫率、脱りん率ともに80%以上が得られたが、D/Doが0.3未満あるいは0.6を超えると脱硫率と脱りん率のいずれも50%未満となった。
【0052】
【表6】
Figure 0003666145
【0053】
したがって、脱硫率と脱りん率の両方を、操業上必要とされる80%以上に維持するためには、D/Doを0.3〜0.6の範囲にするのが適当である。
【0054】
▲3▼脱硫剤組成の影響
浸漬管を使用し、脱りん後に脱硫を行う条件で、脱硫剤中のCaF2濃度のみを変化させて処理した。ここでは耐火物コストも調査し、CaF2濃度10%の時のコストを基準に耐火物コスト指数で評価した。その結果を表7に示す。
【0055】
【表7】
Figure 0003666145
【0056】
CaF2濃度を5〜20%の範囲に調整することにより、脱硫率と脱りん率の両方を、操業上必要とされる80%以上に維持し、かつ耐火物コストを抑制できることが明らかである。
【0057】
▲4▼脱りん後浸漬管浸漬までの時間の影響
脱りん後に脱硫を行う点を一定とし、脱りん後浸漬管浸漬までの時間(T)のみを変化させて処理した。その結果を表8に示す。時間Tが10分以下であれば復りんは起こらず、目標とする脱りん率80%以上が確保できる。
【0058】
【表8】
Figure 0003666145
【0059】
【発明の効果】
本発明方法により、同一精錬容器内で高効率の溶銑脱りんおよび脱硫処理が可能となり、溶銑予備処理時間の短縮および設備コスト、耐火物コストの低減が達成できる。
【図面の簡単な説明】
【図1】本発明方法を実施するための溶銑処理装置の模式的縦断面図および処理工程の説明図であり、(a)は脱りん処理時、(b)は溶銑表面露出時、(c)は浸漬管浸漬時、(d)は脱硫処理時の状態を示す。
【符号の説明】
1:溶銑、 2:精錬容器、
3:ランス、 4:浸漬管、
5:脱りん剤、 6:不活性ガス、
7:脱りん後スラグ、 8:脱硫剤、
9:脱硫後スラグ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hot metal preliminary treatment method in which hot metal dephosphorization and desulfurization are efficiently performed in a single refining vessel between the blast furnace and the time when the converter is charged.
[0002]
[Prior art]
In order to reduce the refining load of the converter, hot metal desiliconization, dephosphorization, and desulfurization are performed outside the converter furnace. In the conventional method, a single refining vessel single treatment method is employed, and a plurality of these treatments are combined to perform hot metal preliminary treatment. This method can be said to be advantageous in that each reaction can be carried out with an optimum flux composition, so that the cost of the refining agent can be reduced.
[0003]
However, on the other hand, compared with the converter refining method, there were problems in terms of the temperature drop of the hot metal due to the increase in the process, the equipment cost due to the increase in processing stations, and the increase in the refractory cost.
[0004]
Therefore, a technique for dephosphorizing and desulfurizing the hot metal in the same refining vessel has been proposed for the purpose of satisfying the requirement for the hot metal pretreatment and preventing the cost increase due to the increase in the number of processes. An example is shown below.
[0005]
In Japanese Patent Laid-Open No. 3-24215, “desulfurized hot metal or a mixture of quick lime and Al is blown into the degassed hot metal for desulfurization, and CaO / (SiO 2 + Al 2 of slag after desulfurization treatment is used. O 3 ) is set to 2 or more, and this desulfurized soot is not discharged. Then, quick lime, oxidizing agent and CaF 2 are added to perform de-P treatment, and the final slag after de-P treatment contains 2 or more CaO / SiO 2 The hot metal pretreatment method with high lime utilization efficiency characterized by the above has been proposed.
[0006]
In Japanese Patent Laid-Open No. 3-64410, “(1) Hot metal pretreatment characterized by blowing dephosphorizing agent and desulfurizing agent from different lances in the same refining vessel” “(2) Weir in refining vessel, The above-mentioned method for separating dephosphorization slag and desulfurization slag and preventing mixing has been proposed.
[0007]
[Problems to be solved by the invention]
The hot metal dephosphorization desulfurization technique in the same refining vessel as described above has the following problems.
[0008]
According to the description in Japanese Patent Laid-Open No. 3-24215, if the degree of hatching of slag is controlled at the time of dephosphorization after desulfurization, there is a condition in which no desulfurization exists. However, since the desulfurization reaction using a CaO-based desulfurization agent is a reduction reaction represented by the following formula, basically, it is necessary to lower the oxygen potential of the slag during the desulfurization treatment.
[0009]
CaO + S = CaS + O
On the other hand, the dephosphorization reaction is a reaction in which phosphorus in hot metal is oxidized and phosphorus oxide is transferred into slag. Therefore, it is necessary to increase the oxygen potential in the slag as opposed to desulfurization. Accordingly, the problem of sulfidation is unavoidable only by controlling the degree of hatching as disclosed in JP-A-3-24215.
[0010]
To solve this problem, it is necessary to physically separate the desulfurized slag and the dephosphorized slag. Japanese Patent Laid-Open No. 3-64410 discloses a method for preventing the mixing of both slags by providing a weir in the same refining vessel. However, even with this method, it is difficult to completely maintain the seals at both ends of the weir due to melting of the refractory, etc., and it is difficult to avoid mixing of slag by blocking between the two slags. In addition, since the dephosphorizing agent and the desulfurizing agent are blown from different lances, two lance lifting devices are required, and there is a problem that the equipment cost and the running cost of the lance refractory are increased.
[0011]
An object of the present invention is to perform dephosphorization and desulfurization treatment with high reaction efficiency in one refining vessel without increasing equipment costs and running costs, and in particular, dephosphorization slag and desulfurization slag are provided. An object of the present invention is to provide a method for physically and stably separating and efficiently performing dephosphorization and desulfurization.
[0012]
[Means for Solving the Problems]
The gist of the present invention resides in a hot metal pretreatment method for performing dephosphorization and desulfurization treatment with high reaction efficiency in the following one refining vessel.
[0013]
First, immerse the lance in the hot metal contained in the refining vessel, and with the dephosphorizing agent placed on the hot metal, blow an inert or oxidizing gas from the lance as a stirring gas, or with the dephosphorizing agent. A degassing treatment is performed by blowing a stirring gas into the hot metal.
[0014]
Subsequently, an inert gas or an oxidizing gas is blown in to increase the amount of the hot metal, and the upward flow of the hot metal is strengthened, and the dephosphorization slag on the hot metal surface is moved to the inner wall side of the refining vessel to expose the hot metal surface. Further, the lower end portion of the hollow dip tube is inserted into the hot metal exposed portion.
[0015]
Thereafter, a desulfurization treatment is performed by blowing a desulfurization agent together with an inert gas or a reducing gas as a carrier gas from a lance immersed in the hot metal in the hot metal in the hot metal exposed portion region held by the dip tube.
[0016]
Here, the inert gas is Ar or N 2 , and the oxidizing gas is a mixed gas of an inert gas and O 2 , CO 2 or the like. The reducing gas is a mixed gas of an inert gas and CO, H 2 or the like.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
In order to increase the reaction efficiency in the smelting vessel, it is necessary to confirm in what form each reaction proceeds. The present inventors have repeatedly studied this and obtained the following knowledge.
[0018]
The dephosphorization reaction proceeds mainly by a permanent reaction that occurs at the interface between hot metal and the slag on the hot metal. Therefore, in order to efficiently perform the dephosphorization reaction, it is necessary to increase the contact area between the slag and the molten iron. However, the contribution of the transition reaction that occurs when the powder blown from the lance ascends in the hot metal is also recognized, and it can be effective to use a dephosphorization agent on the hot metal and a dephosphorization injection from the lance. all right.
[0019]
On the other hand, the desulfurization reaction is mainly a reaction between the surface of the desulfurization agent and the hot metal in the process where the desulfurization agent blown from the lance floats in the hot metal, that is, a transition reaction, and a permanent reaction due to the reaction between the slag and hot metal on the hot metal. The contribution is very small.
[0020]
Therefore, dephosphorization is performed by blowing an inert gas or an oxidizing gas as a stirring gas from the lance with a dephosphorizing agent placed on top, or blowing a stirring gas containing a dephosphorizing agent, while desulfurization is performed by It is efficient to blow an inert gas or reducing gas as a carrier gas from the lance into the hot metal together with the desulfurizing agent.
[0021]
In addition, since the two reactions proceed with different oxygen potentials, the timing for initiating the reaction must be shifted, and in order to prevent dephosphorization and desulfurization, the generated slag is not mixed. Must.
[0022]
FIG. 1 shows a schematic longitudinal sectional view of a hot metal treatment apparatus for carrying out the hot metal pretreatment method of the present invention and an example of a treatment procedure.
[0023]
The hot metal 1 discharged from the blast furnace is received by a torpedo car and transferred to a hot metal treatment station where it is stored in a refining vessel 2. The smelting vessel includes a lance 3 that can be moved up and down and can be blown with an inert gas and powder, and a dip tube 4 that can be moved up and down at a position surrounding the lance and has a circular or elliptical horizontal section. . The dip tube serves as a partition for separating the slag after dephosphorization and desulfurization.
Although it is desirable to provide a cover on the upper part of the dip tube in order to prevent scattering of slag and hot metal splash, even if released, there is no problem in each operation of the hot metal treatment. Alternatively, the lance may be installed so that the lance is immersed obliquely from the outside of the dip tube, and the tip thereof comes to the lower part of the dip tube.
[0024]
The procedure of the hot metal pretreatment using this apparatus will be described.
[0025]
There is a difference in the reaction form between dephosphorization and desulfurization, and the dephosphorization is mainly a permanent reaction that occurs at the interface between the hot metal and the dephosphorizing agent on the hot metal surface. There is a feature that it is easy to proceed. In the method of the present invention, the hot metal surface is almost exposed when the hot metal is charged into the smelting vessel, and it is easy to cover the entire surface with the dephosphorization agent.
[0026]
Therefore, dephosphorization is first performed. During the dephosphorization process, a dephosphorization agent 5 containing CaF 2 , iron oxide or MnO, MnO 2 mainly containing CaO is placed on the hot metal in the smelting vessel, and then the inert gas 6 or degassing as a stirring gas from the lance. A stirring gas containing a phosphorus agent is blown into the hot metal in the center of the refining vessel, and the hot metal is stirred (see FIG. 1 (a)). At this time, the inert gas is suppressed to the level of the blowing amount that keeps the state where the dephosphorizing agent always covers the surface of the hot metal.
[0027]
After dephosphorization, only inert gas is blown in from the lance. The amount of blowing is increased to a level at which the molten iron ascending flow in the center of the refining vessel is strengthened and the slag 7 after dephosphorization is moved to the inner wall side of the refining vessel. By this operation, the molten metal is exposed in the central portion of the refining vessel (see FIG. 1B). The lower end of the dip tube 4 is immersed here (see FIG. 1 (c)), and the dephosphorized slag is present between the inner side of the refining vessel and the outer side of the dip tube, and only hot metal is present inside the dip tube. Put it in a state.
[0028]
Thereafter, desulfurization treatment is performed. As a composition of the desulfurizing agent 8, a flux mainly containing CaO and containing one or both of Al 2 O 3 and CaF 2 is used. The desulfurizing agent is blown into the hot metal in the hot metal exposed portion region surrounded by the dip pipe from the inserted lance together with the carrier gas to perform the desulfurization process (see FIG. 1D). It is desirable that the blowing position of the desulfurizing agent is at the center of the hot metal exposed portion region.
[0029]
The slag 9 after desulfurization is levitated inside the dip tube. For this purpose, it is necessary to determine the minimum value of the horizontal inner cross-sectional area of the dip tube. Further, there is a limit to securing the hot metal surface area obtained by exposing the hot metal surface before immersing the dip tube in the hot metal. From this point, it is necessary to determine the maximum value of the horizontal inner cross-sectional area of the dip tube. We investigated this point.
[0030]
The horizontal inner cross-sectional area of the dip tube having a circular or elliptical horizontal cross section is preferably in the range of 0.3 to 0.6 times the horizontal inner cross-sectional area of the smelting vessel. This is because if it is less than 0.3 times, a part of the slag after the desulfurization reaction flows out of the dip pipe and contacts with the dephosphorization slag having a high oxygen potential to cause sulfurization. On the other hand, when it exceeds 0.6 times, a portion where it is difficult to move the dephosphorization slag to the inner wall side of the refining vessel due to the blowing of inert gas appears, and a part of the dephosphorization slag remains in the dip tube, The desulfurization reaction in this step becomes difficult to proceed.
[0031]
Regarding the composition of the dephosphorizing agent and desulfurizing agent to be used, it is necessary to pay attention to the CaF 2 concentration that affects the viscosity of the slag. In particular, CaF 2 added to the desulfurizing agent is a problem, and its concentration is preferably 5 to 20% by weight (hereinafter, the chemical composition% indicates weight%). If it is less than 5%, the viscosity of the slag is high and desulfurization is difficult to proceed, and if it exceeds 20%, the viscosity of the slag decreases more than necessary, and after the desulfurized slag floats on the hot metal in the dip tube, it is easily removed from the dip tube. This is because it flows out and mixes with slag after dephosphorization outside the dip tube, resulting in sulfation and dephosphorization. Furthermore, if CaF 2 exceeds 20%, the refractory melting loss of the lance and the dip tube is increased, and the refractory cost is increased.
[0032]
About 10 minutes or less is desirable for the time from the dephosphorization treatment to the immersion tube immersion. If it exceeds 10 minutes, FeO in the dephosphorization slag is reduced by the carbon in the hot metal, and the oxygen potential is lowered to cause recovery.
[0033]
After the desulfurization treatment is completed, the lance and the dip tube are pulled up, the slag is scraped out with the slag dragger in a state where the smelting vessel is left still, and the hot metal is poured into the converter.
[0034]
【Example】
The hot metal discharged from the blast furnace was received by a torpedo car, transported to a steelmaking factory, and the hot metal was stored in a refining vessel to carry out the present invention. The configuration of the equipment used is as shown in FIG.
[0035]
The chemical composition of the hot metal used is shown in Table 1.
[0036]
[Table 1]
Figure 0003666145
[0037]
The inner diameter of the smelting vessel was 3.0 m at the hot metal surface level, and the hot metal depth was 3.0 m. The material of the dip tube was made of alumina castable, and the inner diameter was 1.5 m as a reference, and other diameters were also used (if not specified, a dip tube having an inner diameter of 1.5 m was used). A lance having an outer diameter of 250 mm whose outer side was coated with alumina castable was used. The nozzle shape of the lance has two nozzles in the horizontal direction at a position 200 mm from the tip of the lance, and the inner diameter of the nozzle was 14 mm.
[0038]
The stirring gas or carrier gas blown from the lance using argon gas, the flow rate during dephosphorization and desulfurization treatment in the case of operations for exposing 0.5 Nm 3 / min, the hot metal was 1.0 Nm 3 / min. Further, the height of the tip of the lance was set at a position 0.5 m from the top surface of the refractory at the bottom of the hot metal ladle so that the immersion depth of the nozzle was 2.5 m.
[0039]
Moreover, at the time of a dephosphorization process, the mixed flux of Table 2 was set | placed on the hot metal in a ladle, and the dephosphorization process time (gas stirring time) was 10 minutes.
[0040]
[Table 2]
Figure 0003666145
[0041]
Furthermore, the dephosphorization process which blows the mixed flux shown in Table 3 with the gas for stirring into hot metal with a lance was also performed.
[0042]
[Table 3]
Figure 0003666145
[0043]
The blown flux during the desulfurization treatment was used with reference to the powder of Table 4, and other compositions were also tested (if not specified, the composition of Table 4 was used). The desulfurization time (gas stirring time) was 6 minutes.
[0044]
[Table 4]
Figure 0003666145
[0045]
Further, the time from dephosphorization treatment to immersion in the dip tube was based on 1 minute, and the test was performed under other conditions (if not specified, the treatment was performed under the condition of 1 minute).
[0046]
(1) Effect of use of dip tube and influence of dephosphorization and desulfurization treatment sequence The treatment was carried out under the conditions of the comparative example without the dip tube and with the dip tube of the method of the present invention. The results are shown in Table 5. In both cases where the dip tube was not used, both the desulfurization rate and the dephosphorization rate were low.
[0047]
[Table 5]
Figure 0003666145
[0048]
Even if a dip tube is used, when dephosphorization is performed after desulfurization (No. 4), the desulfurization rate and dephosphorization rate do not increase.
[0049]
In order to secure a high desulfurization rate and dephosphorization rate, it can be said that a treatment using a dip tube and performing desulfurization after dephosphorization is optimal.
[0050]
Furthermore, from the viewpoint of improving the dephosphorization rate, it is advantageous to blow a dephosphorizing agent together with a stirring gas with a lance.
[0051]
(2) Influence of inner diameter of dip tube A dip tube was used, and the desulfurization was performed after dephosphorization by changing only the inner diameter of the dip tube. The results are shown in Table 6. When the ratio D / Do of the inner diameter (D) of the dip tube and the inner diameter (Do) of the smelting vessel is in the range of 0.3 to 0.6, both the desulfurization rate and the dephosphorization rate are 80% or more, but D / Do is 0. When less than .3 or more than 0.6, both the desulfurization rate and the dephosphorization rate were less than 50%.
[0052]
[Table 6]
Figure 0003666145
[0053]
Therefore, in order to maintain both the desulfurization rate and the dephosphorization rate at 80% or more required for operation, it is appropriate to set D / Do in the range of 0.3 to 0.6.
[0054]
(3) Influence of desulfurizing agent composition Using a dip tube, the desulfurizing agent was treated by changing only the CaF 2 concentration under the condition of desulfurization after dephosphorization. The refractory cost was also investigated here, and the refractory cost index was evaluated based on the cost when the CaF 2 concentration was 10%. The results are shown in Table 7.
[0055]
[Table 7]
Figure 0003666145
[0056]
It is clear that by adjusting the CaF 2 concentration in the range of 5 to 20%, both the desulfurization rate and the dephosphorization rate can be maintained at 80% or more required for operation, and the refractory cost can be suppressed. .
[0057]
(4) Influence of time from dephosphorization to immersion tube immersion The point of desulfurization after dephosphorization was made constant, and only the time from dephosphorization to immersion tube immersion (T) was changed. The results are shown in Table 8. If the time T is 10 minutes or less, recovery does not occur, and a target dephosphorization rate of 80% or more can be secured.
[0058]
[Table 8]
Figure 0003666145
[0059]
【The invention's effect】
By the method of the present invention, hot metal dephosphorization and desulfurization treatment can be performed in the same refining vessel, and the hot metal pretreatment time can be shortened and the equipment cost and refractory cost can be reduced.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a schematic longitudinal sectional view of a hot metal treatment apparatus for carrying out the method of the present invention and an explanatory view of the treatment process, (a) at the time of dephosphorization treatment, (b) at the time of hot metal surface exposure, (c ) Shows a state during dip tube immersion, and (d) shows a state during desulfurization treatment.
[Explanation of symbols]
1: hot metal, 2: refining vessel,
3: Lance, 4: Dip tube,
5: Dephosphorizing agent, 6: Inert gas,
7: Slag after dephosphorization, 8: Desulfurization agent,
9: Slag after desulfurization

Claims (1)

同一の精錬容器を用いて、下記(1)、(2)および(3)の工程を順次実施して脱りんおよび脱硫処理を行うことを特徴とする溶銑の予備処理方法。
(1)溶銑上に脱りん剤を上置きし、溶銑中に浸漬したランスから、攪拌用ガスとして不活性ガスもしくは酸化性ガス、または脱りん剤とともに攪拌用ガスを吹き込む脱りん処理工程。
(2)上記(1)の脱りん処理後、溶銑中に浸漬したランスから、不活性ガスまたは酸化性ガスを吹き込むことにより溶銑表面の一部から脱りんスラグを排除して溶銑表面を露出させ、その溶銑表面露出部に中空状の浸漬管の下端部を挿入する工程。
(3)上記浸漬管でかこまれた溶銑露出部領域の溶銑中に、溶銑中に浸漬したランスから、キャリアガスとしての不活性ガスまたは還元性ガスとともに脱硫剤を吹き込み、生成したスラグを浸漬管内側に浮上せしめ、浸漬管外側の脱りんスラグとの混合を防止しつつ脱硫処理を行う工程。
A hot metal pretreatment method characterized by performing dephosphorization and desulfurization by sequentially performing the following steps (1), (2) and (3) using the same refining vessel.
(1) was placed on the dephosphorization agent onto the hot metal from a lance immersed in the hot metal, dephosphorization treatment step of inert gas or an oxidizing gas as the stirring gas or dephosphorization agent with blown agitation gas.
(2) After the dephosphorization treatment of (1 ) above, the dephosphorization slag is removed from a part of the hot metal surface by blowing an inert gas or an oxidizing gas from the lance immersed in the hot metal to expose the hot metal surface. , the step of inserting the lower end portion of the hollow dip tube to the hot metal surface exposed portion.
(3) A desulfurizing agent is blown together with an inert gas or a reducing gas as a carrier gas from a lance dipped in the hot metal into the hot metal in the hot metal exposed portion region held by the dip tube, and the generated slag is immersed in the dip tube A process of desulfurizing while floating on the inside and preventing mixing with dephosphorization slag outside the dip tube .
JP28966196A 1996-10-31 1996-10-31 Hot metal pretreatment method Expired - Fee Related JP3666145B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28966196A JP3666145B2 (en) 1996-10-31 1996-10-31 Hot metal pretreatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28966196A JP3666145B2 (en) 1996-10-31 1996-10-31 Hot metal pretreatment method

Publications (2)

Publication Number Publication Date
JPH10130710A JPH10130710A (en) 1998-05-19
JP3666145B2 true JP3666145B2 (en) 2005-06-29

Family

ID=17746126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28966196A Expired - Fee Related JP3666145B2 (en) 1996-10-31 1996-10-31 Hot metal pretreatment method

Country Status (1)

Country Link
JP (1) JP3666145B2 (en)

Also Published As

Publication number Publication date
JPH10130710A (en) 1998-05-19

Similar Documents

Publication Publication Date Title
JP5082417B2 (en) Method of melting ultra low sulfur low nitrogen high cleanliness steel
US5902374A (en) Vacuum refining method for molten steel
JP2007051349A (en) Method for dephosphorizing molten pig iron and top-blown lance for dephosphorizing treatment
JPH09217110A (en) Method for melting extra-low sulfur steel
JP3666145B2 (en) Hot metal pretreatment method
JP6024192B2 (en) Method for preventing hot metal after desulphurization
JP6540632B2 (en) Dephosphorization method of hot metal
JP2988305B2 (en) Desulfurization method of molten steel
JP6790796B2 (en) Vacuum degassing equipment
JP4344070B2 (en) Hot metal desulfurization method using sealed freeboard
JP2000212641A (en) High speed vacuum refining of molten steel
JPH11172314A (en) Method for dephosphorizing and desulfurizing molten iron
JPH05311231A (en) Refining method of high purity steel using circulating type vacuum degassing device
JPH11217622A (en) Method for refining molten steel in rh vacuum degassing apparatus
JPH01100216A (en) Ladle refining method for molten steel
JP3668172B2 (en) Hot metal refining method
JP2002285215A (en) Method for dephosphorizing molten iron
JP2005139504A (en) Method for pre-treating molten pig iron
JPH059552A (en) Top blowing lance type ladle refining apparatus
JP4114507B2 (en) Lance for hot metal pretreatment
RU2289630C2 (en) Melt metal bath metallurgical processing method
JPH10204521A (en) Vessel for vacuum-refining molten steel
US4780133A (en) Process to improve the refining of liquid metals by natural gas injection
JP3829610B2 (en) Method for refining molten steel
JPH11172315A (en) Method for reducing mn ore in molten iron pretreatment

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050328

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees