JPS62296487A - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JPS62296487A
JPS62296487A JP14066386A JP14066386A JPS62296487A JP S62296487 A JPS62296487 A JP S62296487A JP 14066386 A JP14066386 A JP 14066386A JP 14066386 A JP14066386 A JP 14066386A JP S62296487 A JPS62296487 A JP S62296487A
Authority
JP
Japan
Prior art keywords
layer
semiconductor
current
substrate
projection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14066386A
Other languages
Japanese (ja)
Inventor
Nagataka Ishiguro
永孝 石黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP14066386A priority Critical patent/JPS62296487A/en
Publication of JPS62296487A publication Critical patent/JPS62296487A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To concentrate an applied current at a projection efficiently by interrupting a current flow forming a reverse bias junction internally by setting a current constriction layer grown selectively in a region except the projection in a different electric conduction type from that of a substrate or the first clad layer. CONSTITUTION:A stripe like projection of definite height and width is formed along a specific crystal axis on the surface of a semiconductor substrate 1 by a photoetching technique, a semiconductor layer 2 which has different conductivity from that of the semiconductor substrate is provided except the region of the stripe like projection for a current constriction layer and covering these, the first clad layer 3, an active layer 4 and the second clad layer 5 are formed in sequence by epitaxial growth. The semiconductor layer 2 for the current constriction layer is set to have as different conductivity type from that of the substrate 1 or the first clad layer 3 and a reverse bias junction is formed internally for interrupting a current flow.

Description

【発明の詳細な説明】 3、発明の詳細な説明 産業上の利用分野 本発明は、半導体レーザ、詳しくは、半導体レーザの電
流狭窄構造に関する。
DETAILED DESCRIPTION OF THE INVENTION 3. Detailed Description of the Invention Field of Industrial Application The present invention relates to a semiconductor laser, and more particularly, to a current confinement structure of a semiconductor laser.

従来の技術 半導体−レーザは、小型・高効率・長寿命などのすぐれ
た特長から、光フアイバ通信や光ディスクの光源として
最適であり、すでにこれらへの応用が開始されている。
BACKGROUND OF THE INVENTION Semiconductor lasers are ideal as light sources for optical fiber communications and optical disks due to their excellent features such as small size, high efficiency, and long life, and their applications in these areas have already begun.

最近では、コンパクト・ディスク等の民生機器にも積極
的に利用され、その需要も急速に増加してきている。
Recently, they have been actively used in consumer electronics such as compact discs, and the demand for them is rapidly increasing.

上記のような多種の用途に半導体レーザを応用するには
、第1にレーザ光の集光性や光ファイバ等への結合効率
を高めるためには、接合と平行方向での横モードが安定
な単峰性形状に制御されておらねばならず、また第2に
は、注入電流が有効にレーザ活性領域に供給されるよう
に、電流狭窄制限層などの導入が必要となる。
In order to apply semiconductor lasers to the various applications mentioned above, firstly, in order to improve the focusing ability of the laser beam and the coupling efficiency to optical fibers, etc., it is necessary to stabilize the transverse mode in the direction parallel to the junction. It must be controlled to have a single peak shape, and secondly, it is necessary to introduce a current confinement limiting layer or the like so that the injection current is effectively supplied to the laser active region.

第4図〜第6図はこれまでに提案されているストライプ
構造の各代表例を示す要部断面図である。第4図は、活
性層14とクラッド層18とで形成したダブルヘテロ接
合をストライプ状に残してエツチングした後、これを禁
制帯幅の広い低屈折率の電流狭窄層15で埋込んだ構造
であり、埋込みへテロ・ストライプ構造と呼ばれる。第
5図は、これと逆にまず電流狭窄層15を基板17上に
成長した後にストライプ状溝を形成し、第2のエピタキ
シャル成長で溝内にダブルヘテロ接合を作製した埋込み
クレッセント・ストライプ構造である。また、第6図は
基板17に形成した溝により活性層14に隣接した光ガ
イド層19の厚さを変化させて等測的な屈折率光導波路
としだ平凸導波路ストライプ構造であり、電流集中は、
熱拡散による高濃度領域16の形成による。それぞれの
構造において、レーザ活性領域14が周囲を低屈折率媒
質で囲まれた光導波路となり、横モード制御やその安定
化がはかられ、また、p−n逆接合層などの内部層15
や高濃度拡散領域16により、電流経路の制限がなされ
ている。このような工夫により、信頼性の高い高効率な
半導体レーザが実現されるようになってきており、前述
の法分野への応用は上記のような改善努力の結果による
ものである。
FIGS. 4 to 6 are sectional views of main parts showing representative examples of striped structures that have been proposed so far. FIG. 4 shows a structure in which a double heterojunction formed by an active layer 14 and a cladding layer 18 is etched to leave a stripe shape, and then this is embedded with a low refractive index current confinement layer 15 with a wide forbidden band width. Yes, it is called an embedded hetero-stripe structure. In contrast, FIG. 5 shows a buried crescent stripe structure in which a current confinement layer 15 is grown on a substrate 17, a striped groove is formed, and a double heterojunction is formed in the groove by second epitaxial growth. . In addition, FIG. 6 shows an isometric refractive index optical waveguide and a plano-convex waveguide stripe structure in which the thickness of the optical guide layer 19 adjacent to the active layer 14 is changed by grooves formed in the substrate 17. Concentration is
This is due to the formation of the high concentration region 16 by thermal diffusion. In each structure, the laser active region 14 becomes an optical waveguide surrounded by a low refractive index medium, and transverse mode control and stabilization are achieved.
The current path is restricted by the high concentration diffusion region 16 and the high concentration diffusion region 16. Through such efforts, highly reliable and highly efficient semiconductor lasers have come to be realized, and the application to the above-mentioned law field is the result of the above-mentioned improvement efforts.

発明が解決しようとする問題点 第4図〜第6図に代表される従来技術においては、上記
の構造を実現するために、複数回のエピタキシャル成長
あるいは、熱拡散などの高温工程が必要であり、製造工
程が複雑化していた。特性のすぐれた半導体レーザを作
製するには、各層の厚さや幅を精密に制御しなければな
らず、工程の複雑化は歩留りを著しく低下させる原因と
なる。
Problems to be Solved by the Invention In the conventional technology represented by FIGS. 4 to 6, in order to realize the above structure, multiple epitaxial growths or high-temperature processes such as thermal diffusion are required. The manufacturing process was becoming more complex. In order to manufacture a semiconductor laser with excellent characteristics, the thickness and width of each layer must be precisely controlled, and complicating the process causes a significant decrease in yield.

また、電流狭窄層のエピタキシャル成長や熱拡散工程中
に、既成長居への添加不純物の拡散や熱的損傷が生じ、
これらが信頼性を損なう原因にもなる。以上のように、
従来の構造では、信顆度の高い、すぐれた特性の素子を
量産性良く得るには不充分であり、上記の点を解決する
ための新構造が要望されるところである。
Additionally, during the epitaxial growth and thermal diffusion process of the current confinement layer, diffusion of added impurities and thermal damage to the already grown regions may occur.
These also cause a loss of reliability. As mentioned above,
The conventional structure is insufficient to mass-produce elements with high reliability and excellent characteristics, and there is a need for a new structure to solve the above-mentioned problems.

問題点を解決するための手段 本発明は、半導体基体にストライプ状の凸部を設け、こ
の半導体基体へのエピタキシャル成長を、まず、上記の
凸部以外の部分にのみ、電流経路を制限するための電流
狭窄層となるように、同基体とは導電型の異なる半導体
層で成長させ、これに続いて、第1クラッド層、活性層
および第2クラッド層として、全面にわたって、順次成
長させ、ダブルヘテロ接合としたものである。
Means for Solving the Problems The present invention provides a striped convex portion on a semiconductor substrate, and firstly restricts the current path to only areas other than the above-mentioned convex portions during epitaxial growth on the semiconductor substrate. A semiconductor layer having a conductivity type different from that of the substrate is grown to form a current confinement layer, and then a first cladding layer, an active layer, and a second cladding layer are grown sequentially over the entire surface to form a double heterostructure. It is a joint.

作用 本発明によると、凸部以外の部分に選択的に成長した電
流狭窄層を、基体および第1クラッド層と電気伝導型が
異なるように設定することで、内部に逆バイアス接合を
形成し、電流の流れを妨げることができ、これにより、
注入電流を効率よく、前記の凸部に集中させることがで
きる。また、電流狭窄層として、第1クラッド層とは屈
折率の異なる半導体材料を遺べば、活性層に導波される
光モードに対する等価的屈折率を凸部とその他の部分と
で変化でき、p−n接合と平行方向での横モードの制御
が可能である。
According to the present invention, a reverse bias junction is formed inside by setting the current confinement layer selectively grown in a portion other than the convex portion to have a different electrical conductivity type from that of the base and the first cladding layer. The flow of current can be blocked, thereby
Injected current can be efficiently concentrated on the convex portion. Furthermore, if a semiconductor material having a refractive index different from that of the first cladding layer is used as the current confinement layer, the equivalent refractive index for the optical mode guided by the active layer can be changed between the convex portion and the other portions. It is possible to control the transverse mode in the direction parallel to the pn junction.

実施例 第1図は、本発明実施例の要部断面図であり、所定の導
電型を有する半導体基体1の表面部に、周知の写真食刻
技術により、特定結晶軸に沿って所定の高さおよび幅の
ストライプ状凸部を形成し、このストライプ状凸部以外
の部分に、同半導体基体とは導電性の異なる半導体層2
を設けて電流狭窄層となし、これらをおおって、第1ク
ラッド層3.活性7層4および第2クラッド層5を、順
次、エピタキシャル成長層で形成したものである。電流
狭窄層としての半導体層2は、基体1および第1クラッ
ド層3の両層と導電型が異なるように設定して、内部に
逆バイアス接合を形成し、電流の流れを妨げる作用をな
す。
Embodiment FIG. 1 is a sectional view of a main part of an embodiment of the present invention, in which a surface portion of a semiconductor substrate 1 having a predetermined conductivity type is etched at a predetermined height along a specific crystal axis by a well-known photolithography technique. A striped convex portion having a length and a width is formed, and a semiconductor layer 2 having a conductivity different from that of the semiconductor substrate is formed in a portion other than the striped convex portion.
are provided to serve as a current confinement layer, and a first cladding layer 3. is formed to cover these layers. The active 7 layer 4 and the second cladding layer 5 are sequentially formed as epitaxially grown layers. The semiconductor layer 2 serving as the current confinement layer is set to have a different conductivity type from both the base body 1 and the first cladding layer 3, and forms a reverse bias junction therein to function to prevent current flow.

第2図は、本説明の他の実施例の要部断面図であり、電
流狭窄層としての半導体層を、禁制帯幅の異なる二層2
1.22で構成したものである。
FIG. 2 is a sectional view of a main part of another embodiment of the present description, in which a semiconductor layer as a current confinement layer is formed into two layers having different forbidden band widths.
1.22.

この場合、第1の半導体層21を電流制限用とし、第2
の半導体層22をレーザ発振の横モード制御用として、
高効率かつ単峰性の基本モード発振特性を実現すること
ができる。
In this case, the first semiconductor layer 21 is used for current limiting, and the second
The semiconductor layer 22 is used for controlling the transverse mode of laser oscillation,
Highly efficient and unimodal fundamental mode oscillation characteristics can be achieved.

第3図は、活性層をInGaAsPとし、基体をInP
とした、いわゆる長波長半導体レーザでの実施例断面図
である。
In Figure 3, the active layer is InGaAsP and the base is InP.
FIG. 2 is a cross-sectional view of an embodiment of a so-called long wavelength semiconductor laser.

第3図に示すように、P型InP基板6上に化学エツチ
ング法により、ストライプ状の凸部を<011>結晶軸
方向に沿って形成した。高さは約3μmであり、凸部の
幅は3〜4μlである。エピタキシャル成長において、
溶融液の過飽和度を非常に小さくした状態で上記の基板
上に成長すると、凸部での成長が抑制される。経験によ
ると、凸部の幅が6μm以下では、成長時間によって、
凸部上には全(成長が行なわれず、その他の部分に選択
的に成長が可能であった。ここでは、凸部の外側に、電
流制限用のn型1nP7および横モード制御用のn型1
nGaAsP (λg=1.3μm)8を成長させ、こ
れに続いて、P型1nPクラッド層9.InGaAsP
活性層(λg〜1.3μm)10、n型1nPクラッド
層11を順次全面にわたって成長し、ダブルヘテロ接合
とした。凸部の外側では、n型1nGaAsP層8がク
ラッド層9をはさんで活性層10に近接しているため、
等測的な屈折率が減少し、凸部との間で屈折率光導波路
を形成する。クラッド層9と活性層10の厚さを適当に
選ぶことで、横モードを安定に基本モードに維持できる
。本実施例では、活性層厚を約0.1μl、クラッド層
を約0.4μmとした。
As shown in FIG. 3, striped convex portions were formed along the <011> crystal axis direction on the P-type InP substrate 6 by chemical etching. The height is about 3 μm, and the width of the convex portion is 3 to 4 μl. In epitaxial growth,
If the melt is grown on the substrate with a very low degree of supersaturation, growth on the convex portions will be suppressed. According to experience, when the width of the convex part is less than 6 μm, depending on the growth time,
No growth was carried out on the convex part, and selective growth was possible on other parts. 1
nGaAsP (λg=1.3 μm) 8 is grown, followed by a P-type 1nP cladding layer 9. InGaAsP
An active layer (λg to 1.3 μm) 10 and an n-type 1nP cladding layer 11 were sequentially grown over the entire surface to form a double heterojunction. On the outside of the convex portion, the n-type 1nGaAsP layer 8 is close to the active layer 10 with the cladding layer 9 in between.
The isometric refractive index decreases and forms a refractive index optical waveguide with the convex portion. By appropriately selecting the thicknesses of the cladding layer 9 and the active layer 10, the transverse mode can be stably maintained in the fundamental mode. In this example, the active layer thickness was approximately 0.1 μl, and the clad layer thickness was approximately 0.4 μm.

以上のように作製したエピタキシャルウェハーに電極1
3を形成し、襞間等の工程を経て、ステム上に組立て、
特性を測定した。電流注入による発光は、凸部の部分に
集中し、電流狭窄が完全に行なわれていることが確認で
きた。また、発振しきい電流値は約40a+A前後であ
り、単峰性の基本モードで発振し、構モードについても
安定であった。
Electrode 1 was placed on the epitaxial wafer fabricated as described above.
3, and after going through processes such as creases, assemble it on the stem,
Characteristics were measured. It was confirmed that the light emission caused by current injection was concentrated in the convex portion, and that current confinement was completely performed. Further, the oscillation threshold current value was around 40a+A, oscillation was in a single-peak fundamental mode, and the structural mode was also stable.

本発明の実施例では、InPを基板としたInGaAs
P長波長レーザの場合を示したが、活性層の禁制帯幅が
基板のそれよりも小さい材料の組合せであるならば、他
材料に対しても全く同様の効果があることは言うまでも
ない。
In the embodiment of the present invention, InGaAs with InP as a substrate is used.
Although the case of a P long wavelength laser has been shown, it goes without saying that the same effect can be obtained for other materials as long as the active layer has a combination of materials in which the forbidden band width is smaller than that of the substrate.

発明の詳細 な説明してきたように、本発明は従来技術における問題
点を解決し、すぐれた特性の半導体レーザを量産性よく
提供できる。また、これを行なうための方法が、極めて
簡単であり、容易に実現できる点で利点が大きい。また
、本発明はエピタキシャル成長の特質をうま(利用して
おり、例えば、凸部の上への成長は成長速度が平坦部に
比べて小さくなるので、活性層やクラッド層の精密な厚
さ制御も、従来法と比べ非常に容易となる。
As described in detail, the present invention solves the problems in the prior art and can provide semiconductor lasers with excellent characteristics with good mass production. Further, the method for doing this is extremely simple and has a great advantage in that it can be easily realized. In addition, the present invention takes advantage of the characteristics of epitaxial growth; for example, growth on convex portions has a lower growth rate than on flat portions, making it possible to precisely control the thickness of the active layer and cladding layer. , which is much easier than the conventional method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は本発明の各実施例半導体レーザの
要部断面図、第3図は本発明の別の実施例の要部断面図
、第4図〜第6図は従来構造の代表的な各個の断面図で
ある。 1・・・・・・半導体基板、2,21.22・・・・・
・電流狭窄層、3・・・・・・第1クラッド層、4・・
・・・・活性層、5・・・・・・第2クラッド層、6・
・・・・・P−1nP基板7゜11−− n型1nP、
8−− n型1nGaAsP。 9−・−P−1nP、10−・−InGaAsP活性層
。 代理人の氏名 弁理士 中尾敏男 ほか1名第1図  
  1−十算)鉢体 2−慣流jL%4 (千卑1碕) 3−一一第1クラブ)′漕 4−璋+【骨 5−一〜芥22ラッレ曾 第2図 第3図 昧 &/)     i
1 and 2 are sectional views of main parts of a semiconductor laser according to each embodiment of the present invention, FIG. 3 is a sectional view of main parts of another embodiment of the present invention, and FIGS. 4 to 6 are sectional views of main parts of a semiconductor laser of a conventional structure. It is a representative sectional view of each. 1...Semiconductor substrate, 2,21.22...
・Current confinement layer, 3...First cladding layer, 4...
...Active layer, 5...Second cladding layer, 6.
...P-1nP substrate 7゜11-- n-type 1nP,
8-- n-type 1nGaAsP. 9-.-P-1nP, 10-.-InGaAsP active layer. Name of agent: Patent attorney Toshio Nakao and one other person Figure 1
1-10 arithmetic) bowl body 2-inertial current jL%4 (1000 1000 yen) 3-11 1st club)' row 4-sho + [bone 5-1 ~ 22 Ralle so 2nd figure 3rd figure Maki &/) i

Claims (2)

【特許請求の範囲】[Claims] (1)所定の導電型を有する半導体基体の表面に、所定
の高さと幅を有するストライプ状の凸部を特定結晶軸に
沿って形成し、前記のストライプ状凸部以外の部分に前
記半導体基体とは導電型の異なる半導体層を設け、これ
らをおおって、第1クラッド層、活性層、および第2ク
ラッド層より成るダブルヘテロ構造をそなえたことを特
徴とする半導体レーザ。
(1) Striped protrusions having a predetermined height and width are formed along a specific crystal axis on the surface of a semiconductor substrate having a predetermined conductivity type, and the semiconductor substrate is formed in a portion other than the striped protrusions. What is claimed is: 1. A semiconductor laser comprising a semiconductor layer having a conductivity type different from that of the first cladding layer and a double heterostructure comprising a first cladding layer, an active layer, and a second cladding layer.
(2)半導体層が禁制帯幅の異なる二層以上の半導体よ
り成ることを特徴とする特許請求の範囲第1項記載の半
導体レーザ。
(2) The semiconductor laser according to claim 1, wherein the semiconductor layer is composed of two or more semiconductor layers having different forbidden band widths.
JP14066386A 1986-06-17 1986-06-17 Semiconductor laser Pending JPS62296487A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14066386A JPS62296487A (en) 1986-06-17 1986-06-17 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14066386A JPS62296487A (en) 1986-06-17 1986-06-17 Semiconductor laser

Publications (1)

Publication Number Publication Date
JPS62296487A true JPS62296487A (en) 1987-12-23

Family

ID=15273870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14066386A Pending JPS62296487A (en) 1986-06-17 1986-06-17 Semiconductor laser

Country Status (1)

Country Link
JP (1) JPS62296487A (en)

Similar Documents

Publication Publication Date Title
US4841532A (en) Semiconductor laser
JP2001345514A (en) Semiconductor laser and its manufacturing method
JPS5940592A (en) Semiconductor laser element
CA1218136A (en) Semiconductor laser device
JP2894186B2 (en) Optical semiconductor device
JP2001057459A (en) Semiconductor laser
JPS62283686A (en) Manufacture of semiconductor laser
JPS62296487A (en) Semiconductor laser
JPS6362292A (en) Semiconductor laser device and manufacture thereof
JPS595689A (en) Distributed feedback type semiconductor laser
JPS6119186A (en) Manufacture of two-wavelength monolithic semiconductor laser array
JPH065969A (en) Semiconductor laser
JPS5834988A (en) Manufacture of semiconductor laser
CA1163350A (en) Semiconductor laser
JPS59200484A (en) Semiconductor laser
JPH0410705Y2 (en)
JPS6234473Y2 (en)
JPS6237835B2 (en)
JPH07312462A (en) Surface laser beam emitting diode and manufacturing method thereof
JPS6358390B2 (en)
JPS61236187A (en) Semiconductor laser device and its manufacture
JPS6136718B2 (en)
JP2003086899A (en) Semiconductor laser element and its manufacturing method
JPS6354234B2 (en)
JPH09283838A (en) Semiconductor laser device and its manufacturing method