JPS62295354A - Manufacture of manganese dioxide for alkaline manganic cell - Google Patents

Manufacture of manganese dioxide for alkaline manganic cell

Info

Publication number
JPS62295354A
JPS62295354A JP61136181A JP13618186A JPS62295354A JP S62295354 A JPS62295354 A JP S62295354A JP 61136181 A JP61136181 A JP 61136181A JP 13618186 A JP13618186 A JP 13618186A JP S62295354 A JPS62295354 A JP S62295354A
Authority
JP
Japan
Prior art keywords
manganese dioxide
alkaline
manganese
cell
dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61136181A
Other languages
Japanese (ja)
Inventor
Noriyuki Imada
今田 宣之
Yoshimi Hata
祥巳 畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP61136181A priority Critical patent/JPS62295354A/en
Publication of JPS62295354A publication Critical patent/JPS62295354A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To improve the cell property extensively, by adjusting the pH of a manganese dioxide used for a positive electrode active substance of an alkaline manganic cell between 2.5 and 4.0. CONSTITUTION:By adjusting the pH of the manganese dioxide in a specific range, in a meutralization treatment which is the latter process of the manganese dioxide manufacture process, the discharge performance, especially that at a low temperature area such as -20 deg. is improved remarkably. The manganese dioxide has an optimum pH value to improve the cell property, and the range is pH 2.5 to 4.0. The manganese dioxide used for this purpose has no special designation, and an electrolyzed maganese dioxide, a chemical manganese dioxide, and the like, for example, can be used.

Description

【発明の詳細な説明】 3、発明の詳細な説明 [発明の属する分野] 本発明はアルカリマンガン電池において、正極活物質と
して使用される二酸化マンガンの製造法に関するもので
ある。
Detailed Description of the Invention 3. Detailed Description of the Invention [Field to which the invention pertains] The present invention relates to a method for producing manganese dioxide used as a positive electrode active material in an alkaline manganese battery.

[発明の背rA] アルカリマンガン電池はマンガン乾電池に比べ、重負荷
での放電性能において優れていることからカメラの自動
ワインダー、ストロボ並びに携帯用テープレコーダーな
どに使用され、近年急速にその需要が伸びてきている。
[Background of the invention] Alkaline manganese batteries have superior discharge performance under heavy loads compared to manganese dry batteries, so they are used in automatic camera winders, strobes, portable tape recorders, etc., and demand for them has increased rapidly in recent years. It's coming.

しかし、アルカリマンガン電池に使用される二酸化マン
ガンについては、アルカリマンガン電池がマンガン乾電
池に比べて歴史が浅いことから、どのような特性をもつ
二酸化マンガンが適しているのか、まだ充分に検討され
ていないのが現状である。
However, since alkaline manganese batteries have a shorter history than manganese dry batteries, the characteristics of manganese dioxide that are suitable for use in alkaline manganese batteries have not yet been fully investigated. is the current situation.

マンガン乾電池の電解液としては、中性溶液が用いられ
るため、二酸化マンガン自身のpHも電解液に近い値に
調整されている。
Since a neutral solution is used as the electrolyte for manganese dry batteries, the pH of manganese dioxide itself is also adjusted to a value close to that of the electrolyte.

一方、アルカリマンガン電池おいては、電解液として強
アルカリ性(例えば40%KOH溶液)のものが使用さ
れているため、使用する二酸化マンガンの01−1に拘
わらず、電池内に組込まれると、強アルカリ性の電解液
とほぼ同一となるため、アルカリマンガン電池に関して
は、二酸化マンガン自身のpHなどは考慮されていなか
った。
On the other hand, in alkaline manganese batteries, a strongly alkaline electrolyte (e.g. 40% KOH solution) is used. Since it is almost the same as an alkaline electrolyte, the pH of manganese dioxide itself has not been taken into consideration in alkaline manganese batteries.

[発明の目的] 本発明は、上記のような状況に鑑み、アルカリマンガン
Ti池の正極活物質として用いられる二l′iグ化マン
ガンの高性能化を図り、ひいてはアルカリマンガン電池
の電池性能の向上を図ることを目的としたものである。
[Objective of the Invention] In view of the above-mentioned circumstances, the present invention aims to improve the performance of manganese di-l'i-glyde used as a positive electrode active material of an alkaline manganese Ti battery, and thereby improve the battery performance of an alkaline manganese battery. The purpose of this is to improve the performance.

[発明の経緯] 本発明者らは上記目的を達成するために、鋭意研究を行
なったところ、−二酸化マンガン製造工程の後処理工程
である中和処理において、二酸化マンガンのpHを特定
範囲に調!1することにより、アルカリマンガン°市池
の放電性能、特に−20℃のような低温領域での放電性
能が著しく向上するという知見を得て本発明に至ったも
のである。
[Background of the invention] In order to achieve the above object, the present inventors conducted extensive research and found that - the pH of manganese dioxide was adjusted to a specific range in the neutralization treatment, which is a post-treatment step in the manganese dioxide production process; ! The present invention was developed based on the finding that the discharge performance of an alkali manganese city pond, especially in a low temperature region such as -20°C, can be significantly improved by doing the following.

[発明の構成] すなわち、本発明はJISK1467で規定する二酸化
マンガンのpHを2.5〜4.0に調整することを特徴
とする二酸化マンガンの製造法にある。
[Structure of the Invention] That is, the present invention resides in a method for producing manganese dioxide, which is characterized by adjusting the pH of manganese dioxide defined by JIS K1467 to 2.5 to 4.0.

上述のように、従来、アルカリマンガン電池においては
、使用される電解液が強アルカリ性であるため、二酸化
マンガン自身のEIHがどのような値であっても電池内
に組込まれると強アルカリ性の電解液のDHとほとんど
同じとなり、電池性能には二酸化マンガン自身のpHな
どは無関係であると考えられていた。
As mentioned above, conventionally, in alkaline manganese batteries, the electrolyte used is strongly alkaline, so no matter what the EIH of manganese dioxide itself is, when incorporated into the battery, the electrolyte is strongly alkaline. It was thought that the pH of manganese dioxide itself had nothing to do with battery performance.

しかし、二酸化マンガンのpHを6.0以上にした場合
、電池性能が低下したことに着目し、同じ二酸化マンガ
ンを用いて各種1)Hl、:調整し電池性能を調べた結
果、二酸化マンガンのpHを高くすることにより、常温
での放電性能は低下する傾向にあり、特に低温領域、例
えば−20°Cでの放電性能の低下が署しいことが認め
られた。
However, when the pH of manganese dioxide was increased to 6.0 or higher, battery performance decreased.As a result of adjusting the battery performance using the same manganese dioxide, we found that the pH of manganese dioxide It has been found that by increasing the temperature, the discharge performance at room temperature tends to decrease, and the decrease in discharge performance is particularly significant in the low temperature region, for example, -20°C.

この原因については明白ではないが、各種pHに調整し
たニー酸化マンガンの比表面積をBET法で測定した結
果、pHを高めることによって二酸化マンガンの比表面
積は低下する傾向が見られた。
The cause of this is not clear, but as a result of measuring the specific surface area of di-manganese oxide adjusted to various pH values using the BET method, it was found that the specific surface area of manganese dioxide tends to decrease as the pH increases.

各種pHに調整した元の二酸化マンガンは同一のもので
あるのに拘わらず、中和剤を多く使用し1)Hを高める
と二酸化マンガンの比表面積が小さくなることから考え
て、中和剤により二酸化マンガンの活性点が被覆され、
このことにより電池付能の低下を13いているのではな
いかと想定される。
Even though the original manganese dioxide adjusted to various pH values is the same, it is possible to use a large amount of neutralizing agent.1) Considering that increasing the H content reduces the specific surface area of manganese dioxide, The active sites of manganese dioxide are coated,
It is assumed that this causes a decrease in battery performance.

一方、二酸化マンガンのp((を逆に低くした場合は、
pH2,5〜4.0の範囲内で電池の低温特性およびス
トロボ特性が向上することが確認された。
On the other hand, if p(() of manganese dioxide is lowered,
It was confirmed that the low temperature characteristics and strobe characteristics of the battery were improved within the pH range of 2.5 to 4.0.

ざらに、二酸化マンガンのDHが極端に低下する、例え
ば2.5未満とするとカメラのストロボに使用された時
の電池性能の低下が見られた。
In general, when the DH of manganese dioxide is extremely reduced, for example, less than 2.5, the battery performance deteriorates when used in a camera strobe.

以上のことよりアルカリマンガン電池に使用される二酸
化マンガンのpHには電池性能を高める最適DI−1が
あることが判明し、その範囲はI)l−12,5〜4.
0であることが判った。
From the above, it has been found that the pH of manganese dioxide used in alkaline manganese batteries has an optimum DI-1 that improves battery performance, and the range is I) l-12,5 to 4.
It turned out to be 0.

本発明に用いられる二酸化マンガンとしては特に制限は
なく、例えば電解二酸化マンガン、化学二酸化マンガン
等が挙げられている。
The manganese dioxide used in the present invention is not particularly limited, and examples thereof include electrolytic manganese dioxide, chemical manganese dioxide, and the like.

また、本発明によりirIられるl)Hを調整した二酸
化マンガンはアルカリマンガン電池の正極活物質として
用いられるが、ここでいうアルカリマンガン電池は亜鉛
を負極活物質とする通常のもので、形状も円筒型、ボタ
ン型(薄型)のいずれでもよく特に制限はない。
Furthermore, the manganese dioxide prepared by adjusting irI (l)H according to the present invention is used as a positive electrode active material of an alkaline manganese battery, but the alkaline manganese battery referred to here is a normal type that uses zinc as a negative electrode active material and has a cylindrical shape. There is no particular restriction, and it may be either type or button type (thin).

[実施例] 以下、本発明を実施例および比較例に基づき具体的に説
明する。
[Examples] The present invention will be specifically described below based on Examples and Comparative Examples.

・を例1〜4および 較例1〜4 二酸化マンガンとして電解二酸化マンガンを用い、中和
剤としての水酸化ナトリウム添加量を変量することによ
って、二酸化マンガンのDHが1.8から6.1までの
試料を作成した(実施例1〜4および比較例1〜4)。
Examples 1 to 4 and Comparative Examples 1 to 4 By using electrolytic manganese dioxide as manganese dioxide and varying the amount of sodium hydroxide added as a neutralizing agent, the DH of manganese dioxide was increased from 1.8 to 6.1. Samples were prepared (Examples 1 to 4 and Comparative Examples 1 to 4).

この作成試料のrlH及びすトリウム添加(1は第1表
に示すごとくであり、pHとナトリウム添加量との間に
は明らかに相関関係が見られた。
The rlH and sthorium addition (1) of this prepared sample were as shown in Table 1, and there was a clear correlation between the pH and the amount of sodium added.

第1表 これらの各種のpHに調整した二酸化マンガンを用いて
、単3形アルカリマンガン電池を作成し、その放電特性
の評価を行なった。
Table 1 Using manganese dioxide adjusted to various pH values, AA alkaline manganese batteries were prepared and their discharge characteristics were evaluated.

なお、評価項目は、 (1)2Ω連続、20℃ (2)2Ω連続、−20℃ (3)ストロボ特性 の3項目とした。The evaluation items are: (1) 2Ω continuous, 20℃ (2) 2Ω continuous, -20℃ (3) Strobe characteristics There were three items:

このようにして得られた放電特性の評価結果を第1〜4
図に示す。
The evaluation results of the discharge characteristics obtained in this way are
As shown in the figure.

第1図は、2Ω連続、20℃にJ3ける二酸化マンガン
のpHと放電持続時間との関係を示すグラフであり、第
2図は、2Ω連続、−20℃における二酸化マンガンの
pHと放電持続時間との関係を示ずグラフである。
Figure 1 is a graph showing the relationship between the pH of manganese dioxide and the discharge duration at J3 at 2Ω continuous and 20°C, and Figure 2 is a graph showing the relationship between the pH and discharge duration of manganese dioxide at -20°C and 2Ω continuous. It is a graph that does not show the relationship between

また、第3図および第4図は、市販のストロボ(ガイド
ナンバー32)を用いた実機試験にてスト[1ボ性能を
評価したときのグラフであり、第3図において、縦軸は
2回目の発光が起るまでのチャージアップ時間、第4図
において、縦軸はストロボの発光回数を示し、横軸は二
酸化マンガンのpHをそれぞれ示す。
In addition, Figures 3 and 4 are graphs when the flash performance was evaluated in an actual test using a commercially available strobe (guide number 32). In Figure 3, the vertical axis is the second In FIG. 4, the vertical axis shows the number of strobe flashes, and the horizontal axis shows the pH of manganese dioxide.

第1〜4図に示されるように、二酸化マンガンのpHが
3.0近傍で全般に電池性能が最も良くなっており、p
 Hが4.0より大きくなると電池性能の低下が大きく
なる。
As shown in Figures 1 to 4, the battery performance is generally best when the pH of manganese dioxide is around 3.0, and the pH of manganese dioxide is around 3.0.
If H is greater than 4.0, the battery performance will deteriorate significantly.

この傾向は特に−20℃のような低温領域での電池性能
に顕著で、二酸化マンガンのpHが3.0と5.0で比
較するとpHが約5.0の二酸化マンガンの放電持続時
間が3.5分に対しpH約3.0の二酸化マンガンでは
4.4分となり約25%の性能向上が見られる。
This tendency is particularly noticeable in battery performance at low temperatures such as -20°C, and when comparing manganese dioxide with a pH of 3.0 and 5.0, the discharge duration of manganese dioxide with a pH of about 5.0 is 3. .5 minutes, compared to 4.4 minutes for manganese dioxide with a pH of about 3.0, which is an improvement in performance of about 25%.

二酸化マンガンのp)−1が2.0近傍では、低温領域
での放電性能は二酸化マンガンのIIH3,0近傍と比
べ余り低下は見られないが、ストロボ性能においてコン
デンサーのチャージアップ時間、発光回数共に低下が見
られる。
When the p)-1 of manganese dioxide is around 2.0, the discharge performance in the low temperature region does not deteriorate much compared to the IIH around 3.0 of manganese dioxide, but in terms of strobe performance, both the capacitor charge-up time and the number of flashes are A decline is seen.

[発明の効果] 以上説明のごとく、アルカリマンガン電池の正極活物質
としで用いられる二酸化マンガンのpHを2.5から4
.0の範囲に調!することにより、電池性能を大幅に向
上させることができる。
[Effect of the invention] As explained above, the pH of manganese dioxide used as the positive electrode active material of alkaline manganese batteries is 2.5 to 4.
.. Key in the 0 range! By doing so, battery performance can be significantly improved.

従って、本発明により得られるpHが特定範囲にある二
酸化マンガンは、アルカリマンガン電池の正極活物質と
して好適に用いられる。
Therefore, the manganese dioxide obtained by the present invention and having a pH within a specific range is suitably used as a positive electrode active material for alkaline manganese batteries.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、20℃における放電持続時間を示すグラフ、 第2図は、−20℃における放電持続時間を示ずグラフ
、 第3図は、ストロボを用いた実機試験における2回目の
発光が起るまでのチャージアップ時間を示すグラフ、お
よび 第4図は、ストロボを用いた実機試験におけるストロボ
の発光回数を示すグラフである。 特許出願人  三井金属鉱業株式会社 代理人 弁理士 伊 東 辰 雄 代理人 弁理士 伊 東 哲 也 二1吏イしマン力゛ンリpH 第1図 二tl勤しマン力゛ンつpH 第2図
Figure 1 is a graph showing the discharge duration at 20°C, Figure 2 is a graph not showing the discharge duration at -20°C, and Figure 3 is a graph showing the second light emission in an actual test using a strobe. FIG. 4 is a graph showing the charge-up time until the strobe is activated, and FIG. 4 is a graph showing the number of flashes of the strobe in an actual test using the strobe. Patent applicant Mitsui Kinzoku Mining Co., Ltd. Agent Patent attorney Tatsuo Ito Agent Patent attorney Satoshi Ito

Claims (1)

【特許請求の範囲】[Claims] 二酸化マンガンの中和処理において、JIS K146
7で規定する二酸化マンガンのpHを2.5〜4.0の
範囲に調整することを特徴とするアルカリマンガン電池
用二酸化マンガンの製造法。
In the neutralization treatment of manganese dioxide, JIS K146
7. A method for producing manganese dioxide for use in alkaline manganese batteries, which comprises adjusting the pH of manganese dioxide to a range of 2.5 to 4.0.
JP61136181A 1986-06-13 1986-06-13 Manufacture of manganese dioxide for alkaline manganic cell Pending JPS62295354A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61136181A JPS62295354A (en) 1986-06-13 1986-06-13 Manufacture of manganese dioxide for alkaline manganic cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61136181A JPS62295354A (en) 1986-06-13 1986-06-13 Manufacture of manganese dioxide for alkaline manganic cell

Publications (1)

Publication Number Publication Date
JPS62295354A true JPS62295354A (en) 1987-12-22

Family

ID=15169232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61136181A Pending JPS62295354A (en) 1986-06-13 1986-06-13 Manufacture of manganese dioxide for alkaline manganic cell

Country Status (1)

Country Link
JP (1) JPS62295354A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008013427A (en) * 2006-06-07 2008-01-24 Tosoh Corp Electrolytic manganese dioxide
JP2009043547A (en) * 2007-08-08 2009-02-26 Fdk Energy Co Ltd Electrolytic manganese dioxide for battery, positive electrode mix, and alkaline battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008013427A (en) * 2006-06-07 2008-01-24 Tosoh Corp Electrolytic manganese dioxide
JP2009043547A (en) * 2007-08-08 2009-02-26 Fdk Energy Co Ltd Electrolytic manganese dioxide for battery, positive electrode mix, and alkaline battery

Similar Documents

Publication Publication Date Title
CA1125365A (en) Alkaline-mn02 cell having a zinc powder-gel anode containing p-n-v-p or pma
US8609281B2 (en) Electrolytic manganese dioxide, positive electrode active material, and battery
FR2435824A1 (en) ACCUMULATOR USING METAL OXIDE ELECTRODES
JPS58166634A (en) Positive electrode for organic solvent cell
JPH0368506B2 (en)
JPS62295354A (en) Manufacture of manganese dioxide for alkaline manganic cell
JPS58206048A (en) Alkaline battery
KR20050054870A (en) Active substance of positive electrode for battery, process for producing the same and battery therefrom
JPH0317181B2 (en)
JP2568590B2 (en) Alkaline battery
FR2683949A1 (en) Novel negative electrode for alkaline generators and its method of manufacture
JP2552438B2 (en) Non-aqueous electrolyte battery
JPH05174841A (en) Manganese cell
JPH05314967A (en) Alkaline battery
JPS6398954A (en) Nonaqueous electrolyte battery
JPH0383818A (en) Manganese dioxide and its production
JPH0499293A (en) Production of manganese dioxide
JPH0251219B2 (en)
JPH079806B2 (en) Zinc electrode for alkaline storage battery
JPH07211319A (en) Lead-acid battery
JPS63969A (en) Nonaqueous electrolyte cell
JPH0547364A (en) Manganese dry battery
JPS62168344A (en) Nonaqueous electrolyte battery
JPS5851475A (en) Silver-dioxide battery
JPS59194355A (en) Manufacture of manganese dry battery