JPS63969A - Nonaqueous electrolyte cell - Google Patents

Nonaqueous electrolyte cell

Info

Publication number
JPS63969A
JPS63969A JP14323486A JP14323486A JPS63969A JP S63969 A JPS63969 A JP S63969A JP 14323486 A JP14323486 A JP 14323486A JP 14323486 A JP14323486 A JP 14323486A JP S63969 A JPS63969 A JP S63969A
Authority
JP
Japan
Prior art keywords
lithium
nonaqueous electrolyte
salt
acid
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14323486A
Other languages
Japanese (ja)
Inventor
Toshiya Kuwamura
俊哉 桑村
Toyoji Sugimoto
杉本 豊次
Fumio Oo
大尾 文夫
Takashi Matsuoka
隆 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP14323486A priority Critical patent/JPS63969A/en
Publication of JPS63969A publication Critical patent/JPS63969A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Primary Cells (AREA)

Abstract

PURPOSE:To improve a long period high-temperature preservation property and a long period discharge reliability, by adding an organic carbonic acid or its salt to a nonaqueous electrolyte. CONSTITUTION:To a nonaqueous electrolyte which is made by dissolving lithium boron-fluoride or lithium perchlorate as a solvent to gamma-butyrolactone propylene carbonate, dimethoxyethane, or their mixture solvent, for example, an organic carbon acid, its lithium salt, or its sodium salt is added. In this case, the adding amount of the organic carbonic acid or its salt shall be 100 to 600 PPM.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、非水電解液電池に関するものである。[Detailed description of the invention] Industrial applications The present invention relates to a non-aqueous electrolyte battery.

従来の技術 リチウムなど活性な金属を負極活物質、フッ化炭素や二
酸化マンガンを正極活物質とし、非水電解液とから構成
されたリチウム電池は現在広く用いられている。
BACKGROUND OF THE INVENTION Lithium batteries are currently widely used, which are composed of an active metal such as lithium as a negative electrode active material, carbon fluoride or manganese dioxide as a positive electrode active material, and a non-aqueous electrolyte.

発明が解決しようとする問題点 しかし、この種の電池は60゜C以上の長期高温保存又
は数μA以下の微弱長期放電κおいては,内部抵抗が異
常に上昇するという問題点がある。
Problems to be Solved by the Invention However, this type of battery has a problem in that its internal resistance increases abnormally when it is stored at a high temperature of 60° C. or higher or when subjected to a weak long-term discharge κ of several μA or less.

その原因は定かではないが、主に活性な負極活物質、例
えばリチウムと、非水電解液との化学反応によりリチウ
ム表面が酸化され酸化皮膜によって不動態化し、酸化皮
膜の成長により膜が次第に厚くなって内部抵抗が上昇す
ると考えられる。
Although the cause is not clear, the lithium surface is oxidized due to a chemical reaction between the active negative electrode active material, such as lithium, and the non-aqueous electrolyte, becoming passivated by an oxide film, and as the oxide film grows, the film gradually thickens. It is thought that this causes the internal resistance to rise.

本発明は、負極活物質である活性な金属、例えばリチウ
ムの表面に非水電解液に対して化学的に安定な化合物被
膜を形成させて長期高温保存及び長期放電における電池
特性を改良することを目的とするものである。
The present invention aims to improve battery characteristics during long-term high-temperature storage and long-term discharge by forming a chemically stable compound film against non-aqueous electrolytes on the surface of an active metal, such as lithium, which is an active material for the negative electrode. This is the purpose.

問題点を解決するための手段 本発明は上記目的を達成するためK、非水電解液、例え
ばγ−プチロラクトン(以下γ−BLという),プロピ
レンカーボネート(以下PCという)もしくはジメトキ
シエタン(以下D M E トイう)あるいはそれらの
混合溶媒に、ホウフッ化リチウム又は過塩素酸リチウム
全溶質どして溶解した非水電解液に、有機カルボン酸も
しくはそれらのリチウム塩又はナトリウム塩を添加した
ものである。ここでの有機カルボン酸またはその塩の添
加量は100〜600PPMが好ましい。
Means for Solving the Problems In order to achieve the above objects, the present invention uses K, a non-aqueous electrolyte such as γ-butyrolactone (hereinafter referred to as γ-BL), propylene carbonate (hereinafter referred to as PC) or dimethoxyethane (hereinafter referred to as DM). Organic carboxylic acids or their lithium salts or sodium salts are added to a non-aqueous electrolyte in which lithium fluoroborate or lithium perchlorate is dissolved in a mixed solvent thereof or a mixed solvent thereof. The amount of the organic carboxylic acid or its salt added here is preferably 100 to 600 PPM.

作用 本発明の構成をとることにより60’C以上の高温にお
ける保存劣化あるいは数μA以下の長期微弱電流放電劣
化を防ぎ、電池特性を改良することができる。
Effect By adopting the configuration of the present invention, storage deterioration at high temperatures of 60'C or higher or long-term weak current discharge deterioration of several μA or less can be prevented, and battery characteristics can be improved.

実施例 以下、本発明の詳細を実施例により説明する。Example The details of the present invention will be explained below using examples.

第1図はフッ化炭素一リチウム系電池を示す。図中1は
活物質であるフソ化炭素に導電材として黒鉛,カーボン
プラノクなどの炭素粉末を添加し,さらに結着剤として
フッ素樹脂を添加した正極合剤をチタンのエキスバンド
メタルよりなる集電体に付着させた正極である。2はリ
チウムのシートにニッケルよりなるエキスバンドメタル
を埋め込んだ負極である。この正,負極がポリプロピレ
ンの不織布よりなるセパレータ3を介して渦巻状に巻回
され負極端子を兼ねたニッケルメッキ鋼板よりなる電池
ケース4に収納されている。5はチタンよりなる正極端
子板、6はステンレス鋼よりなるキャップ、7はポリプ
ロピレンよりなるガスケットである。8は正極と正極端
子板5とを電気的に接続しているチタンよりなるリード
である。
FIG. 1 shows a fluorocarbon monolithium battery. 1 in the figure shows a positive electrode mixture made of expanded titanium metal, which is made by adding carbon powder such as graphite or carbon plank as a conductive material to fluorinated carbon as an active material, and fluororesin as a binder. It is a positive electrode attached to an electric body. 2 is a negative electrode in which expanded metal made of nickel is embedded in a lithium sheet. The positive and negative electrodes are spirally wound through a separator 3 made of a polypropylene nonwoven fabric, and housed in a battery case 4 made of a nickel-plated steel plate which also serves as a negative electrode terminal. 5 is a positive terminal plate made of titanium, 6 is a cap made of stainless steel, and 7 is a gasket made of polypropylene. A lead 8 is made of titanium and electrically connects the positive electrode and the positive terminal plate 5.

以上の様な構成の電池に次の様な電解液を用いた。The following electrolyte solution was used in the battery configured as described above.

■ γ−BLに1モル/lのホウフッ化リチウムを溶解
した従来の電解液。
■ Conventional electrolyte solution in which 1 mol/l of lithium borofluoride is dissolved in γ-BL.

■ 電解液1に500PPMのn−ギ酸プチルを溶解し
た本発明の電解液。
(2) Electrolytic solution of the present invention in which 500 PPM of n-butyl formate is dissolved in Electrolytic Solution 1.

以上の電解液を用いた2種類の単2サイズの円筒形リチ
ウム電池を製造した。製造直後20゜Cにおける8Ωの
定抵抗における放電特性を第2図に示す。図中1は○の
電解液を用いた従来品、2は■の電解液を用いた本発明
品である。さらに同種電池を70゜Cにて1カ月間保存
した後の製造直後と同じ条件にて放電を行った結果を第
3図に示す。
Two types of AA size cylindrical lithium batteries were manufactured using the above electrolyte. Figure 2 shows the discharge characteristics at a constant resistance of 8Ω at 20°C immediately after manufacture. In the figure, 1 is a conventional product using an electrolytic solution marked ○, and 2 is a product of the present invention using an electrolytic solution marked ▪. Furthermore, the same type of battery was stored at 70° C. for one month and then discharged under the same conditions as immediately after manufacture, and the results are shown in FIG.

第2図および第3図から明らかな様に、製造直後には各
電池とも放電特性に差は認められないが、第3図に示し
たとおり70’C1カ月保存の後において、本発明の電
池2は第2図に示されている製造直後の電池と、ほぼ同
じ放電特性を示し、保存における劣化はほとんどみられ
ないが、従来の電池では保存後における電池特性の劣化
が大きく、特にその差は7 0 ’C 1刀月保存した
後の電池特性を示した第3図と、第2図に示す放電初期
特性において特に明瞭である。このことはリチウム表面
上に形成された酸化皮膜の厚みの差と考えられ、2の電
解液では、カルボン酸の水素Hが、リチウム表面で下記
に示す反応式 チウム表面から離れず、酸化皮膜の形成を妨害している
と考えられる。したがってリチウムの表面上酸化皮膜の
厚みは、Oの電解液の場合よりも全体的に薄いと考えら
れる。そこで各電池の保存前後における内部抵抗を測定
した結果、次の表1の如くであった。
As is clear from FIGS. 2 and 3, there is no difference in the discharge characteristics of the batteries immediately after manufacture, but as shown in FIG. 2 shows almost the same discharge characteristics as the immediately manufactured battery shown in Figure 2, and shows almost no deterioration during storage, but with conventional batteries, the battery characteristics deteriorate significantly after storage, and the difference is particularly noticeable. This is particularly clear in FIG. 3, which shows the battery characteristics after storage at 70'C for one month, and in the initial discharge characteristics shown in FIG. This is thought to be due to the difference in the thickness of the oxide film formed on the lithium surface, and in electrolyte 2, the hydrogen H of the carboxylic acid does not separate from the lithium surface on the lithium surface using the reaction formula shown below, and the oxide film forms on the lithium surface. It is thought that it is interfering with the formation. Therefore, the thickness of the lithium oxide film on the surface is considered to be thinner overall than in the case of O electrolyte. Therefore, the internal resistance of each battery before and after storage was measured, and the results were as shown in Table 1 below.

表1 なお内部抵抗の測定は1 KHzの交流を用いて行った
。又、n−ギ酸ブチルの添加量全変えた場合の70’0
1カ月後の内部抵抗の測定結果を次の表2に示す。
Table 1 Note that the internal resistance was measured using 1 KHz alternating current. Also, 70'0 when the total amount of n-butyl formate added was changed.
The measurement results of internal resistance after one month are shown in Table 2 below.

(以 下 余 白) 表2 以上の様にn−ギ酸プチル100〜600PPMの範囲
で添加することで、電池劣化をおさえる効果があった。
(Margins below) Table 2 As shown above, adding n-butyl formate in the range of 100 to 600 PPM was effective in suppressing battery deterioration.

又、前記O,■の電解液を使用した電池による46゜C
IMΩ長期放電における内部抵抗を測定した結果を表3
に示す。
In addition, at 46°C with a battery using the electrolyte of O,■
Table 3 shows the results of measuring the internal resistance during IMΩ long-term discharge.
Shown below.

(以 下 余 白) 表3 以上、n−ギ酸プチルを添加した場合、長期放電におい
ても、内部劣化をおさえる効果があった。
(Margins below) Table 3 As described above, when butyl n-formate was added, it was effective in suppressing internal deterioration even during long-term discharge.

又、本実施例以外にアセト酢酸,イソ酪酸,グルタル酸
等の有機カルボン酸でも同等の効果が得られた。
In addition to this example, similar effects were obtained using organic carboxylic acids such as acetoacetic acid, isobutyric acid, and glutaric acid.

発明の効果 上記説明で明らかなように、非水電解液中に有機カルボ
ン酸あるいはその塩を添加することにより、長期高温保
存及び長期放電の信頼性に優れた特性を提供するもので
ある。
Effects of the Invention As is clear from the above description, by adding an organic carboxylic acid or its salt to the non-aqueous electrolyte, it provides excellent characteristics in long-term high-temperature storage and long-term discharge reliability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の電池の断面図、第2図は同電池の初期
放電特性を示す図、第3図は電池の7o’C Iカ月保
存後の電池特性を示す図である01・・・・・・正極合
剤、2・・・・・・負極、3・・・・・・七ノ《レータ
、4・・・・・・ケース、5・・・・・・正極端子板、
6・・・・・・キャノプ,7・・・・・ガスケット、8
・・・・・・リード。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
Figure 1 is a cross-sectional view of the battery of the present invention, Figure 2 is a diagram showing the initial discharge characteristics of the battery, and Figure 3 is a diagram showing the battery characteristics after storage for 7 o'C I months. ...Positive electrode mixture, 2...Negative electrode, 3...7 parts, 4...Case, 5...Positive terminal plate,
6... Canop, 7... Gasket, 8
...Lead. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
figure

Claims (3)

【特許請求の範囲】[Claims] (1)リチウムまたはリチウム合金を負極に用い、フッ
化炭素、金属酸化物またはそれらの混合物を正極とする
非水電解液電池であって、前記非水電解液に有機カルボ
ン酸あるいはその塩を添加したことを特徴とする非水電
解液電池。
(1) A nonaqueous electrolyte battery using lithium or a lithium alloy as a negative electrode and a fluorocarbon, a metal oxide, or a mixture thereof as a positive electrode, in which an organic carboxylic acid or a salt thereof is added to the nonaqueous electrolyte. A non-aqueous electrolyte battery characterized by:
(2)有機カルボン酸の添加量が100〜600PPM
である特許請求の範囲第1項記載の非水電解液電池。
(2) Addition amount of organic carboxylic acid is 100 to 600 PPM
A non-aqueous electrolyte battery according to claim 1.
(3)有機カルボン酸としてn−ギ酸ブチル、アセト酢
酸、イソ酪酸、グルタル酸のいずれかを用いた特許請求
の範囲第1項又は第2項記載の非水電解液電池。
(3) The non-aqueous electrolyte battery according to claim 1 or 2, using any one of n-butyl formate, acetoacetic acid, isobutyric acid, and glutaric acid as the organic carboxylic acid.
JP14323486A 1986-06-19 1986-06-19 Nonaqueous electrolyte cell Pending JPS63969A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14323486A JPS63969A (en) 1986-06-19 1986-06-19 Nonaqueous electrolyte cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14323486A JPS63969A (en) 1986-06-19 1986-06-19 Nonaqueous electrolyte cell

Publications (1)

Publication Number Publication Date
JPS63969A true JPS63969A (en) 1988-01-05

Family

ID=15334018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14323486A Pending JPS63969A (en) 1986-06-19 1986-06-19 Nonaqueous electrolyte cell

Country Status (1)

Country Link
JP (1) JPS63969A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011091034A (en) * 2009-09-24 2011-05-06 Panasonic Corp Lithium primary battery
US7985502B2 (en) * 2004-03-22 2011-07-26 Ube Industries, Ltd. Nonaqueous electrolyte solution and lithium secondary battery using same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7985502B2 (en) * 2004-03-22 2011-07-26 Ube Industries, Ltd. Nonaqueous electrolyte solution and lithium secondary battery using same
JP2011091034A (en) * 2009-09-24 2011-05-06 Panasonic Corp Lithium primary battery

Similar Documents

Publication Publication Date Title
JPH0750165A (en) Non-aqueous electrolyte battery
JP2001243950A (en) Manufacturing method of lithium secondary battery and negative electrode material
JPH1092467A (en) Nonaqueous electrolyte secondary battery
US20190074519A1 (en) Nonaqueous electrolyte battery and member for nonaqueous electrolyte battery
JPH10188977A (en) Lithium secondary battery
JPS63969A (en) Nonaqueous electrolyte cell
JPH02144860A (en) Nonaqueous electrolyte secondary battery
JPS6151387B2 (en)
JP2000285928A (en) Nonaqueous electrolyte battery
JPS62186470A (en) Non-aqueous electrolytic solution cell
JPH0462764A (en) Nonaqueous electrolyte cell
JPH07142088A (en) Lithium secondary battery
JPH0359963A (en) Lithium secondary battery
JP3017756B2 (en) Non-aqueous electrolyte secondary battery
JPS58158856A (en) Nonaqueous electrolytic battery
JPS5973849A (en) Nonaqueous electrolyte battery
JPH0711967B2 (en) Non-aqueous electrolyte battery
JP2594034B2 (en) Non-aqueous electrolyte battery
JPS61294756A (en) Organic electrolyte battery
JPS59134567A (en) Organic electrolytic battery
JP2005141997A (en) Lithium / iron disulfide primary battery, and manufacturing method
JPS59163766A (en) Nonaqueous electrolyte battery
JP2594827B2 (en) Method for producing electrolytic manganese dioxide
JP2552438B2 (en) Non-aqueous electrolyte battery
JP2980618B2 (en) Organic electrolyte primary battery