JPS62295188A - 信号並行処理ネツトワ−ク - Google Patents
信号並行処理ネツトワ−クInfo
- Publication number
- JPS62295188A JPS62295188A JP62089999A JP8999987A JPS62295188A JP S62295188 A JPS62295188 A JP S62295188A JP 62089999 A JP62089999 A JP 62089999A JP 8999987 A JP8999987 A JP 8999987A JP S62295188 A JPS62295188 A JP S62295188A
- Authority
- JP
- Japan
- Prior art keywords
- input
- conductance
- amplifier
- values
- amplifiers
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000011159 matrix material Substances 0.000 claims description 25
- 238000013528 artificial neural network Methods 0.000 claims description 14
- 238000000034 method Methods 0.000 claims description 11
- 238000004364 calculation method Methods 0.000 claims 2
- 230000006870 function Effects 0.000 description 29
- 230000015654 memory Effects 0.000 description 20
- 239000013598 vector Substances 0.000 description 14
- 230000008859 change Effects 0.000 description 4
- 238000013459 approach Methods 0.000 description 3
- 230000006399 behavior Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 238000012804 iterative process Methods 0.000 description 2
- 230000001537 neural effect Effects 0.000 description 2
- 230000001846 repelling effect Effects 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000000875 corresponding effect Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 210000005036 nerve Anatomy 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06G—ANALOGUE COMPUTERS
- G06G7/00—Devices in which the computing operation is performed by varying electric or magnetic quantities
- G06G7/12—Arrangements for performing computing operations, e.g. operational amplifiers
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/06—Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons
- G06N3/063—Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons using electronic means
- G06N3/065—Analogue means
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Mathematical Physics (AREA)
- General Physics & Mathematics (AREA)
- Software Systems (AREA)
- Neurology (AREA)
- Computational Linguistics (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Evolutionary Computation (AREA)
- Data Mining & Analysis (AREA)
- General Health & Medical Sciences (AREA)
- Artificial Intelligence (AREA)
- Computer Hardware Design (AREA)
- Amplifiers (AREA)
- Image Analysis (AREA)
- Communication Control (AREA)
- Multi Processors (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
め要約のデータは記録されません。
Description
【発明の詳細な説明】
(技術分野)
本発明は、信号の並行処理を行なう装置に関する。
(従来技術とその問題点)
近時、一群の複雑な問題をアナログ方式で解く高度に並
行的な計算回路が開発された。それるの回路は、S字形
伝達関数を有する複数の増幅器と、各増幅器の出力を他
の増幅器の入力に接続する抵抗性フィードバック回路網
とを備えている。各増幅器の入力は、接地されたコンデ
ンサと接地された抵抗器とをも含んでいるが、寄生キャ
パシタンスとコンダクタンスとの外にキャパシタンスと
コンダクタンスとを含んでもよいし含まなくてもよい。
行的な計算回路が開発された。それるの回路は、S字形
伝達関数を有する複数の増幅器と、各増幅器の出力を他
の増幅器の入力に接続する抵抗性フィードバック回路網
とを備えている。各増幅器の入力は、接地されたコンデ
ンサと接地された抵抗器とをも含んでいるが、寄生キャ
パシタンスとコンダクタンスとの外にキャパシタンスと
コンダクタンスとを含んでもよいし含まなくてもよい。
入力に入力電流が各増幅器の入力に供給され、出力が増
幅器の出力電圧の集合から得られる。
幅器の出力電圧の集合から得られる。
この回路の概略図が第1図であり、正及び負の出力V1
、V2 、v3 、VJ 、Vn をそnぞn 有する
増幅器10.11.12.13.14を示す。
、V2 、v3 、VJ 、Vn をそnぞn 有する
増幅器10.11.12.13.14を示す。
それらの出力は、増幅器10〜140入力にそれぞれ接
続された出力ライン41〜45を持った相互接続ブロッ
ク20に接続されている。相互接続ブロック20の中で
、各出力電圧V1はコンダクタンス(例えば抵抗器)を
通してブロック20の各出力ラインに接続されている。
続された出力ライン41〜45を持った相互接続ブロッ
ク20に接続されている。相互接続ブロック20の中で
、各出力電圧V1はコンダクタンス(例えば抵抗器)を
通してブロック20の各出力ラインに接続されている。
便宜上、コンダクタンスは、そのコンダクタンスによっ
て特定の電圧ラインに接続された特定の出力ライン(す
なわち、ソース)によって識別することができる。
て特定の電圧ラインに接続された特定の出力ライン(す
なわち、ソース)によって識別することができる。
例えば、T2+は、非反転出力V2を第1増幅器(ライ
ン41)の入力に接続するコンダクタンスを示す。
ン41)の入力に接続するコンダクタンスを示す。
各増幅器の入力には、第2リード線が接地されたコンデ
ンサと抵抗器との並列回路と、(外部ソースから)電流
を各入力に注入する手段とが更に接続されている。
ンサと抵抗器との並列回路と、(外部ソースから)電流
を各入力に注入する手段とが更に接続されている。
第1図の各増幅器iの入力に本ルヒホノフの電流に関す
る法則を適用すると下記の方程式が得ちれる。
る法則を適用すると下記の方程式が得ちれる。
C+ (dut /dj) −−U、 /R4+Σ(T
、J−T′ij) (■、−U、)−I+ (1)
二こで、 C1は増幅器lの入力とグランドとの間のキャパシタン
スであり、 等しく、ここでP、は増幅器iの入力とグランドとの開
の抵抗であり、 Ulは増幅器iの入力における電圧であり、T7jは増
幅器Jの非反転出力と増幅器1の入力との間のコンダク
タンスであり、 T1.は増幅器Jの反転出力と増幅器1の入力との間の
コンダクタンスであり、 ■、は、VJ =g i (UJ )の方程式でU、
に関連する増幅器jの正出力電圧であり、■、は外部ソ
ースから増幅器1の入力に注入される電流である。
、J−T′ij) (■、−U、)−I+ (1)
二こで、 C1は増幅器lの入力とグランドとの間のキャパシタン
スであり、 等しく、ここでP、は増幅器iの入力とグランドとの開
の抵抗であり、 Ulは増幅器iの入力における電圧であり、T7jは増
幅器Jの非反転出力と増幅器1の入力との間のコンダク
タンスであり、 T1.は増幅器Jの反転出力と増幅器1の入力との間の
コンダクタンスであり、 ■、は、VJ =g i (UJ )の方程式でU、
に関連する増幅器jの正出力電圧であり、■、は外部ソ
ースから増幅器1の入力に注入される電流である。
便宜上TI、と書き表わすことができ、そして、対称T
i j頂を持って方程式(1)を満す回路は安定であ
ることが知られている。また、そのよう?;回路は加え
られた刺激に応答して短い遷移時間の後に安定状態に達
するということもよく知られている。安定状態では、d
ut /dt= 0であって、且つdVJ/dt=0で
ある。
i j頂を持って方程式(1)を満す回路は安定であ
ることが知られている。また、そのよう?;回路は加え
られた刺激に応答して短い遷移時間の後に安定状態に達
するということもよく知られている。安定状態では、d
ut /dt= 0であって、且つdVJ/dt=0で
ある。
この既知の安定性に留意して、第1図の回路に関連する
とともに同回路の入力信号、同回路の出力信号及び/又
は同回路の内部パラメータに関係する他の関数の挙動を
調べることができる。
とともに同回路の入力信号、同回路の出力信号及び/又
は同回路の内部パラメータに関係する他の関数の挙動を
調べることができる。
実際に、下記の形の関数を調べた。
−ΣIt Vi ・ (2)
増幅器lの利得が無限大に近づくに従って関数g+
(V)の積分が0に近づくことが分った。また、関数E
の時間微分は負であって、電圧V、の時間微分がOにな
る時に0になる。方程式(1)はdVl/dtが全ての
1について0に近づく事を保証しているので、方程式(
2)の関数Eは確実に安定状態に到達する。この関数E
が発見されたので、問題を解く応用分野、結合記憶応用
分野、及び分解問題に第1図の回路が使われるようにな
った。 ゛ 第1図の回路は、最小化するべき関数が方程式(2)と
の対応を可能にする問題の幾つかのパラメータについて
高々2次の項を持つように構成することのできる問題を
解くことができる。けれども、他の問題では、2次より
高次の項を含む方程式を最小化する必要があることもあ
る。それらの問題は、異なる値をとるコンダクタンスで
あるTl、、Tij介在介在ロイロン増幅器いて解くこ
とができ、その稙は解くべき問題の関数である。しかし
、数学的な厳密性を追求することは現実的でない場合も
ある。特に、現実の大概のシステムにおいては、Ttj
がとることができる値のダイナミックレンジは限られて
いる。Tl、コンダクタンスの限られたレパートリ−で
これらの高度並行1目互作用回路を構在し得ることは重
要である。2の値のコンダクタンスのみを1吏えば、神
経回路網に用いられる増幅器は正出力を全く持たなくて
もよいので、好都合である。そのようにすれば、もっと
小さな増幅器を使うことができるし、もっと少ないリー
ド線で神経回路網を構成することができる。
(V)の積分が0に近づくことが分った。また、関数E
の時間微分は負であって、電圧V、の時間微分がOにな
る時に0になる。方程式(1)はdVl/dtが全ての
1について0に近づく事を保証しているので、方程式(
2)の関数Eは確実に安定状態に到達する。この関数E
が発見されたので、問題を解く応用分野、結合記憶応用
分野、及び分解問題に第1図の回路が使われるようにな
った。 ゛ 第1図の回路は、最小化するべき関数が方程式(2)と
の対応を可能にする問題の幾つかのパラメータについて
高々2次の項を持つように構成することのできる問題を
解くことができる。けれども、他の問題では、2次より
高次の項を含む方程式を最小化する必要があることもあ
る。それらの問題は、異なる値をとるコンダクタンスで
あるTl、、Tij介在介在ロイロン増幅器いて解くこ
とができ、その稙は解くべき問題の関数である。しかし
、数学的な厳密性を追求することは現実的でない場合も
ある。特に、現実の大概のシステムにおいては、Ttj
がとることができる値のダイナミックレンジは限られて
いる。Tl、コンダクタンスの限られたレパートリ−で
これらの高度並行1目互作用回路を構在し得ることは重
要である。2の値のコンダクタンスのみを1吏えば、神
経回路網に用いられる増幅器は正出力を全く持たなくて
もよいので、好都合である。そのようにすれば、もっと
小さな増幅器を使うことができるし、もっと少ないリー
ド線で神経回路網を構成することができる。
大きな神経回路網を構成する上でしばしば制限要因とな
るのはコンダクタンス・マトリックスとの接読のための
リード線の数であるから、上記の少ないリード線で神経
回路網を構成し得るという利点:よ重要である。
るのはコンダクタンス・マトリックスとの接読のための
リード線の数であるから、上記の少ないリード線で神経
回路網を構成し得るという利点:よ重要である。
(発明の摘要)
私の発間の原理に従って、単一の出力を持つ負利得増幅
器と、2つの値(固定低抗器又は開放回路によってセッ
トされる値)のみを持つコンダクタンスT目を持ったク
リップドTマ) IJックス止を用′、)ることによっ
て有利な神経回路網を作ることができる。クリップドT
マトリックスのTl」項の値は、クリンプト・マトリッ
クス及びノンクリップド・マトリックスに作用して、ク
リップドTマトリンクスを使用した結果として生じる8
%aを最小化する反復プロセスを通して得ふれる。
器と、2つの値(固定低抗器又は開放回路によってセッ
トされる値)のみを持つコンダクタンスT目を持ったク
リップドTマ) IJックス止を用′、)ることによっ
て有利な神経回路網を作ることができる。クリップドT
マトリックスのTl」項の値は、クリンプト・マトリッ
クス及びノンクリップド・マトリックスに作用して、ク
リップドTマトリンクスを使用した結果として生じる8
%aを最小化する反復プロセスを通して得ふれる。
(詳剛な説明)
方程式(2)で与えられるエネルギー関数Eは第1図の
回路のLyapunov関数であることが知ちれている
。この事は、単に、■、電圧が第1図の回路の動作の方
程式に従うので、E (V(t))が特開の非増加関数
であるようにVI W圧が変化するということを意味す
る。Eは下側が制限されているので、収束するはずであ
る。
回路のLyapunov関数であることが知ちれている
。この事は、単に、■、電圧が第1図の回路の動作の方
程式に従うので、E (V(t))が特開の非増加関数
であるようにVI W圧が変化するということを意味す
る。Eは下側が制限されているので、収束するはずであ
る。
神経電圧v1が時間的に一定となるリミットポイント(
一般にはエネルギー面の極小値)に向かってシステムが
必然的に収束するということもまた知られている。この
事は、Lyapunov関数は最早減少しないが座標が
時間的に変化し続ける(惑星の永久軌道のような)リミ
ットサイクルに向かってシステムが収束する物理学にお
ける他のシステムと対照的である。対称的神経回路括は
リミットサイクルのみを持ち、非対称的回路網j;!
リミットサイクルを持つことができる。
一般にはエネルギー面の極小値)に向かってシステムが
必然的に収束するということもまた知られている。この
事は、Lyapunov関数は最早減少しないが座標が
時間的に変化し続ける(惑星の永久軌道のような)リミ
ットサイクルに向かってシステムが収束する物理学にお
ける他のシステムと対照的である。対称的神経回路括は
リミットサイクルのみを持ち、非対称的回路網j;!
リミットサイクルを持つことができる。
更に、第1図の回路の動力が、エネルギー関数の安定極
小筐を表わすパターンへ向:すて\11電圧を変化させ
ようとすると5)う事も知られて5″lるユこのような
特性を持っているので神経回路鋼はコンテント・アドレ
ッサブル・メモリー(Contentaddressa
bie memory)として適している。実際、第1
図のシステムと方程式(2)のエネルギー関数とは、粘
性流体中でエネルギー関数上を転落するはじき玉と同様
にして協働するということを示すqとができる。この類
似関係において、方程式(2)はエネルギー関数であり
、神経回路の色々な出力電圧は多次元空間中のはじき玉
の位置を特定するベクトルの成分である。この類似関係
に留意して、エネルギー関数に低地点(これは記憶され
ている点に対応する)がある時には、任意の位置に置か
れたはじき玉は最も急な下降経路をたどって低地点へ転
落して停止するということを認めることができる。
小筐を表わすパターンへ向:すて\11電圧を変化させ
ようとすると5)う事も知られて5″lるユこのような
特性を持っているので神経回路鋼はコンテント・アドレ
ッサブル・メモリー(Contentaddressa
bie memory)として適している。実際、第1
図のシステムと方程式(2)のエネルギー関数とは、粘
性流体中でエネルギー関数上を転落するはじき玉と同様
にして協働するということを示すqとができる。この類
似関係において、方程式(2)はエネルギー関数であり
、神経回路の色々な出力電圧は多次元空間中のはじき玉
の位置を特定するベクトルの成分である。この類似関係
に留意して、エネルギー関数に低地点(これは記憶され
ている点に対応する)がある時には、任意の位置に置か
れたはじき玉は最も急な下降経路をたどって低地点へ転
落して停止するということを認めることができる。
第2図は、2つの極小渣((T、T)に1つと、(F、
F)に1つ)を持つように構成された3次元エネル
ギー関数を示す。第2図のエネルギー関数には、はじき
玉を点(T、 T)に向かわせる区域と、はじき玉を点
(F、F)に向かわせる区域とがあるということが直観
的に認められる。これらの低地点は電圧座標のセットで
胡確に示すことができ、各々N個の成分を持つメモリー
・ベクトルv1と見なすことができ、ここでNはエネル
ギー関数の次元であり、あるいはまた、具体的には、N
は神経回路網中の増幅器の数である。
F)に1つ)を持つように構成された3次元エネル
ギー関数を示す。第2図のエネルギー関数には、はじき
玉を点(T、 T)に向かわせる区域と、はじき玉を点
(F、F)に向かわせる区域とがあるということが直観
的に認められる。これらの低地点は電圧座標のセットで
胡確に示すことができ、各々N個の成分を持つメモリー
・ベクトルv1と見なすことができ、ここでNはエネル
ギー関数の次元であり、あるいはまた、具体的には、N
は神経回路網中の増幅器の数である。
畝上は、第1図の回路との関連で、与えられたエネルギ
ー関数は極小値を持つことができるという事実と、それ
らの極小値を用いてコンテント・アドレッサブル・メモ
リーを作ることができるという事実とを目立たせるもの
である。その意味するところは、所望のメモリー状態、
すなわちメモリー・ベクトルの与えられたセットかろ出
発することができ、所望のメモリーに対応する極小(直
のセットを提供するためにコンダクタンス・マトリック
スを展開することができるということである。
ー関数は極小値を持つことができるという事実と、それ
らの極小値を用いてコンテント・アドレッサブル・メモ
リーを作ることができるという事実とを目立たせるもの
である。その意味するところは、所望のメモリー状態、
すなわちメモリー・ベクトルの与えられたセットかろ出
発することができ、所望のメモリーに対応する極小(直
のセットを提供するためにコンダクタンス・マトリック
スを展開することができるということである。
実際に、これが事実である。
TiJマトリックス値を展開する一つの方法は1949
年にニューヨークのワイリイ書百から発行されたディー
・オー・ヘッダ(D、0. Hebb )の「挙動の組
織(ヒ」 (罫he、Organization of
Behavior’、 Wiley 、 New Yo
rk 、 (1949) )の教示に従うことである。
年にニューヨークのワイリイ書百から発行されたディー
・オー・ヘッダ(D、0. Hebb )の「挙動の組
織(ヒ」 (罫he、Organization of
Behavior’、 Wiley 、 New Yo
rk 、 (1949) )の教示に従うことである。
この方法によると、次の方程式
に従ってT1J項を選ぶことによって、メモリーベクト
ルVASVF′、Vo、 、をエネルギー関数に組み込
むことができる。
ルVASVF′、Vo、 、をエネルギー関数に組み込
むことができる。
この規則は、全てのメモリー・ベクトルが既知である時
、T14項のセットを作る。この規則には変形態もあ;
八それは、旧回路網新メモリーを教えることが可能であ
るという意味で増分的である。
、T14項のセットを作る。この規則には変形態もあ;
八それは、旧回路網新メモリーを教えることが可能であ
るという意味で増分的である。
状BA及びBを記憶するマトリックスT1.から出発し
て、次の方程式 に従って旧マトリンクスを変形することを通して追加の
記憶内容をマ) IJフックス教え込むことができる。
て、次の方程式 に従って旧マトリンクスを変形することを通して追加の
記憶内容をマ) IJフックス教え込むことができる。
この方法は、メモリー・ベクトル間に存在する相関のレ
ベルに敏感なマトリックスを発展させるという点を除け
ば良好である。ベクトルが直交するとき;ま成果は良好
であるが、ベクトルがt目間している場合には成果は良
くない。もっと良い規則は であり、ここで である。この規則は、メモリー・ベクトルが相関してい
るときにも良好に働くので、ヘッダの規則より優れてい
る。残念なことに、これは非対称的で非可換である。最
後に与えられた記憶内容は池の記憶内容を踏み荒らす傾
向がある。この規則を改良したものが であり、ここでF〈1である。rが1より小さいので、
回路網は、教え込まれる毎に、6分的に記憶するに過ぎ
ない。所望の記憶内容のリストを繰り返して呈示すれば
(ランダムな順序で行なうのが好ましい) 、T、、I
iiのマトリックスが著しく収束することを示すことが
できる。
ベルに敏感なマトリックスを発展させるという点を除け
ば良好である。ベクトルが直交するとき;ま成果は良好
であるが、ベクトルがt目間している場合には成果は良
くない。もっと良い規則は であり、ここで である。この規則は、メモリー・ベクトルが相関してい
るときにも良好に働くので、ヘッダの規則より優れてい
る。残念なことに、これは非対称的で非可換である。最
後に与えられた記憶内容は池の記憶内容を踏み荒らす傾
向がある。この規則を改良したものが であり、ここでF〈1である。rが1より小さいので、
回路網は、教え込まれる毎に、6分的に記憶するに過ぎ
ない。所望の記憶内容のリストを繰り返して呈示すれば
(ランダムな順序で行なうのが好ましい) 、T、、I
iiのマトリックスが著しく収束することを示すことが
できる。
適切な補間を行なうだけでなく良好な幾何学的解釈を有
する規則は てあり、ここで分母のV−項の間の点はN (NはV−
ベクトルの次元である)で割った内債を表わす。上記の
ものの一層の改良が から得ちれる。ここで、上記と同様に、r<1である。
する規則は てあり、ここで分母のV−項の間の点はN (NはV−
ベクトルの次元である)で割った内債を表わす。上記の
ものの一層の改良が から得ちれる。ここで、上記と同様に、r<1である。
上記の規則により展開されたTI、値は、大体において
、どんな正又は負の値をとることもできる。
、どんな正又は負の値をとることもできる。
以上にT″、、によって示された正のコンダクタンス値
は、第1図の適切な増幅器の正出力、すなわち非反転出
力、と他の適切な増幅器の入力との間に接続された適当
な値の抵抗器によって実現される。
は、第1図の適切な増幅器の正出力、すなわち非反転出
力、と他の適切な増幅器の入力との間に接続された適当
な値の抵抗器によって実現される。
以上にTTJで示された負のコンダクタンス値は、第1
図の適切な増幅器の負出力すなわち反転出力と池の適切
な増幅器の入力との開に接続された適当な値の抵抗器に
よって実現される。
図の適切な増幅器の負出力すなわち反転出力と池の適切
な増幅器の入力との開に接続された適当な値の抵抗器に
よって実現される。
コンダクタンス値の限られたセットで神経回路網を構成
し得るということは極めて有利である。
し得るということは極めて有利である。
そのセットがたった2つの要素、rオン」及び「オフ」
、又は固定コンダクタンス及びゼロ・コンダクタンス、
だけを持つときは一層有利である。
、又は固定コンダクタンス及びゼロ・コンダクタンス、
だけを持つときは一層有利である。
この大きな利益は次の2つの事実、すなわち、(1)単
一の値のコンダクタンスだけを作る必要があるときは、
回路を製造し易いということ、(2)2つの値を持つコ
ンダクタンスを使うときには、増幅器の出力のうちの一
方が不要であるということ、から生じるものである。正
出力すなわち非反転出力を省略して、増幅器を小型化し
くVLSI上に占める面積を小さくする)、且つマトリ
ックスに接続されなければならない増幅器のリード線を
少なくするのが最も有利である。マトリックスを4+%
’4しているリード線はマ)IJソクスの大部分を占め
るものであるから、リード線の数が半分になればマ)
IJフックス大きさは大体半分になる。
一の値のコンダクタンスだけを作る必要があるときは、
回路を製造し易いということ、(2)2つの値を持つコ
ンダクタンスを使うときには、増幅器の出力のうちの一
方が不要であるということ、から生じるものである。正
出力すなわち非反転出力を省略して、増幅器を小型化し
くVLSI上に占める面積を小さくする)、且つマトリ
ックスに接続されなければならない増幅器のリード線を
少なくするのが最も有利である。マトリックスを4+%
’4しているリード線はマ)IJソクスの大部分を占め
るものであるから、リード線の数が半分になればマ)
IJフックス大きさは大体半分になる。
2つの1直のみを持つクリッブド・マトリックスT′へ
の元のフルダイナミックレンジ・マトリックスT0.の
裁断は、記憶されるべきメモリー・ベクトルの各々を考
慮し、その考慮に基づいてクリンプト・マトリックスを
展開する反復プロセスに従かう。全てのメモリーベクト
ルを記憶させる反復試行の後、クリップドマトリックス
は良好なエネルギー関数を表わす。
の元のフルダイナミックレンジ・マトリックスT0.の
裁断は、記憶されるべきメモリー・ベクトルの各々を考
慮し、その考慮に基づいてクリンプト・マトリックスを
展開する反復プロセスに従かう。全てのメモリーベクト
ルを記憶させる反復試行の後、クリップドマトリックス
は良好なエネルギー関数を表わす。
クリンプト・マトリックスTl、を展開する手順は次の
通りである。すなわち、各メモリーベクトルvAについ
て を計算し、そして、これに基づいて を計算する。方程式顛に代るものは、 この方法は、幾つかのベクトルが固定点でなし)ときに
は良く働く。その場合には、方程式αQ及びαD1又は
αQ及びαaによって特定される手順を実行すれば、そ
の繰返し毎に、マトリックスは僅かな量rだけ変化する
。上記の手順を繰返すと、クリンプト・マトリックスは
平均の、中間の1直に収束する。繰返しによってマトリ
ックスT′が変化しなければ、手順を停止し、クリンプ
ト・マトリックスのT′ij値を第3図の回路網に挿入
する。
通りである。すなわち、各メモリーベクトルvAについ
て を計算し、そして、これに基づいて を計算する。方程式顛に代るものは、 この方法は、幾つかのベクトルが固定点でなし)ときに
は良く働く。その場合には、方程式αQ及びαD1又は
αQ及びαaによって特定される手順を実行すれば、そ
の繰返し毎に、マトリックスは僅かな量rだけ変化する
。上記の手順を繰返すと、クリンプト・マトリックスは
平均の、中間の1直に収束する。繰返しによってマトリ
ックスT′が変化しなければ、手順を停止し、クリンプ
ト・マトリックスのT′ij値を第3図の回路網に挿入
する。
勿論、クリッピングを、rsigrB関数、すなわち関
数y=sign (X)に従って行なう必要:はない。
数y=sign (X)に従って行なう必要:はない。
実際、例えばy=sign (X −1) /2など、
他の多くの関数を用いることができるが、それはまだ階
段関数、あるいは111項が予め選択された区間、すな
わち値の範囲内に存在することを許すランプ関数である
。
他の多くの関数を用いることができるが、それはまだ階
段関数、あるいは111項が予め選択された区間、すな
わち値の範囲内に存在することを許すランプ関数である
。
クリンプト・マトリックスT、Jを展開する上記の手順
(は、私の発明を実施する2つの手段のみの手順である
。少数の方程式のみを特に記載したけれど、他の方程式
も同様に没に立つとともに私の発明の範囲内にあること
は明らかである。
(は、私の発明を実施する2つの手段のみの手順である
。少数の方程式のみを特に記載したけれど、他の方程式
も同様に没に立つとともに私の発明の範囲内にあること
は明らかである。
第1図は神経回路網の標準的構造を示す図、第2図は2
つの極小痕を持つエネルギー関数を示す図、 第3図は本件発明の原理を具現する神経回路網の構造を
示す図である。 主要符号の説明 20 、・相互作用マトリックス 10、11.12.13.14− ・増幅器41 入
力に入力電流 出願人 : アメリカン テレフォン アンドテレグラ
フ カムパニー 、1!、”、・1 代理人 : 岡 邪 正 夫(二苗岸1図面の浄
8(内容に変更なしン FIG、 2 手続補正書 昭和62年 5月21日 特許庁長官 黒 1)明 雄 殿 ■、事件の表示 昭和62年特許願第 89999号 2、発明の名称 信号並行処理ネットワーク 3、特許出願人 4、代理人 5、補正の対象 「図 面」 (1)別紙のとおり、正式図面を1通提出します。
つの極小痕を持つエネルギー関数を示す図、 第3図は本件発明の原理を具現する神経回路網の構造を
示す図である。 主要符号の説明 20 、・相互作用マトリックス 10、11.12.13.14− ・増幅器41 入
力に入力電流 出願人 : アメリカン テレフォン アンドテレグラ
フ カムパニー 、1!、”、・1 代理人 : 岡 邪 正 夫(二苗岸1図面の浄
8(内容に変更なしン FIG、 2 手続補正書 昭和62年 5月21日 特許庁長官 黒 1)明 雄 殿 ■、事件の表示 昭和62年特許願第 89999号 2、発明の名称 信号並行処理ネットワーク 3、特許出願人 4、代理人 5、補正の対象 「図 面」 (1)別紙のとおり、正式図面を1通提出します。
Claims (1)
- 【特許請求の範囲】 1、入力と出力とを有する複数の増幅器(10)と;前
記増幅器の各々の前記入力に入力電流(41)を供給す
る手段とを備えた神経回路網であって、予め選ばれた第
1の値又は予め選ばれた第2の値であるコンダクタンス
(T_2_i)で前記増幅器の各々の前記出力を前記入
力の各々に接続する相互接続マトリックスを備えたこと
を特徴とする回路網。 2、前記の予め選択された値の1つは本質的に0である
ことを特徴とする特許請求の範囲第1項記載の回路網。 3、前記増幅器は反転増幅器であることを特徴とする特
許請求の範囲第1項記載の回路網。 4、入力と反転出力とを有する複数の増幅器と;前記増
幅器の各々の入力に入力電流を供給する手段とを備えた
、複数の極小値を持ったエネルギー関数を最小化するた
めの神経回路網であって、予め選ばれた第1の値又は予
め選ばれた第2の値であるコンダクタンスT′_i_j
で前記増幅器の各々の非反転出力を各々の前記入力に接
続する相互接続マトリックスを備えており、前記T′_
i_jはi番目の増幅器の出力とj番目の増幅器の入力
との間のコンダクタンスを表わし、前記T′_i_jコ
ンダクタンスは、そこにおいて前記回路網が平衡する前
記複数の極小値を作るように選ばれたことを特徴とする
回路網。 5、前記コンダクタンスは、前記複数の極小値を持った
エネルギー関数を作る1組の複数レベルT′_i_j値
を展開し、選ばれた式 (T_i_j+ΓV^+_iV^A_j)の裁断表現で
あるT′_i_j値を反復計算する手続きに従って選ば
れ、ここでΓは1より小さく、V^+_iは(V^A−
T″_i_jV^A_j)に等しく、T″_i_jは先
の反復からのT′_i_jであり、V^A_jは前記極
小値のうちの1つのj番目の成分であり、前記T′_i
_jの計算を前記極小値の全てについて行なうことを特
徴とする特許請求の範囲第4項記載の回路網。 6、前記裁断表現は、前記の選ばれた式の符号を認知す
ることによって実行されることを特徴とする特許請求の
範囲第5項記載の回路網。 7、前記コンダクタンスは、前記複数の極小値を持った
エネルギー関数を作る1組の複数レベルT_i_j値を
展開し、選ばれた式 〔T_i_j+Γ(V^+_iV^+_j)/(V^+
・V_s_u_p_+)〕の裁断表現であるT′_i_
j値を反復計算する手続きに従って選ばれ、ここでΓは
1より小さく、V^+_iは(V^A−T″_i_jV
^A_j)に等しく、T″_i_jは先の反復からのT
′_i_jであり、V^A_jは前記極小値のうちの1
つのj番目の成分であり、前記のT′_i_jの計算を
前記極小値の全てについて行なうことを特徴とする特許
請求の範囲第4項記載の回路網。 8、前記裁断表現は、前記の選ばれた式の符号を認知す
ることによって実行されることを特徴とする特許請求の
範囲第7項項記載の回路網。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US06/851,237 US4737929A (en) | 1986-04-14 | 1986-04-14 | Highly parallel computation network employing a binary-valued T matrix and single output amplifiers |
US851237 | 1986-04-14 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62295188A true JPS62295188A (ja) | 1987-12-22 |
JPH0477351B2 JPH0477351B2 (ja) | 1992-12-08 |
Family
ID=25310310
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62089999A Granted JPS62295188A (ja) | 1986-04-14 | 1987-04-14 | 信号並行処理ネツトワ−ク |
Country Status (6)
Country | Link |
---|---|
US (1) | US4737929A (ja) |
EP (1) | EP0242110A3 (ja) |
JP (1) | JPS62295188A (ja) |
KR (1) | KR870010456A (ja) |
CA (1) | CA1258132A (ja) |
IL (1) | IL82173A (ja) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1990002381A1 (en) * | 1988-08-31 | 1990-03-08 | Fujitsu Limited | Neurocomputer |
US5131073A (en) * | 1989-07-12 | 1992-07-14 | Ricoh Company, Ltd. | Neuron unit and neuron unit network |
US5167006A (en) * | 1989-12-29 | 1992-11-24 | Ricoh Company, Ltd. | Neuron unit, neural network and signal processing method |
US5185851A (en) * | 1989-07-12 | 1993-02-09 | Ricoh Company, Ltd. | Neuron unit and neuron unit network |
US5191637A (en) * | 1989-07-12 | 1993-03-02 | Ricoh Company, Ltd. | Neuron unit and neuron unit network |
US5581662A (en) * | 1989-12-29 | 1996-12-03 | Ricoh Company, Ltd. | Signal processing apparatus including plural aggregates |
US5588090A (en) * | 1993-05-20 | 1996-12-24 | Ricoh Company, Ltd. | Signal processing apparatus |
US5630023A (en) * | 1993-10-14 | 1997-05-13 | Ricoh Company, Limited | Signal processor |
Families Citing this family (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4809222A (en) * | 1986-06-20 | 1989-02-28 | Den Heuvel Raymond C Van | Associative and organic memory circuits and methods |
US4901271A (en) * | 1987-01-20 | 1990-02-13 | American Telephone And Telegraph Company, At&T Bell Laboratories | Computational network |
US5224066A (en) * | 1987-03-16 | 1993-06-29 | Jourjine Alexander N | Method and apparatus for parallel implementation of neural networks |
US4807168A (en) * | 1987-06-10 | 1989-02-21 | The United States Of America As Represented By The Administrator, National Aeronautics And Space Administration | Hybrid analog-digital associative neural network |
US4903226A (en) * | 1987-08-27 | 1990-02-20 | Yannis Tsividis | Switched networks |
US4866645A (en) * | 1987-12-23 | 1989-09-12 | North American Philips Corporation | Neural network with dynamic refresh capability |
US4849925A (en) * | 1988-01-15 | 1989-07-18 | The United States Of America As Represented By The Secretary Of The Navy | Maximum entropy deconvolver circuit based on neural net principles |
EP0349819B1 (de) * | 1988-07-05 | 1993-12-22 | Siemens Aktiengesellschaft | In integrierter Schaltungstechnik ausgeführtes digitales neuronales Netz |
US5093781A (en) * | 1988-10-07 | 1992-03-03 | Hughes Aircraft Company | Cellular network assignment processor using minimum/maximum convergence technique |
US5201029A (en) * | 1988-10-24 | 1993-04-06 | U.S. Philips Corporation | Digital data processing apparatus using daisy chain control |
FR2644264B1 (fr) * | 1989-03-10 | 1991-05-10 | Thomson Csf | Reseau neuronal analogique programmable |
US5146541A (en) * | 1989-06-19 | 1992-09-08 | The United States Of America As Represented By The Secretary Of The Navy | Signal phase pattern sensitive neural network system and method |
US5113367A (en) * | 1989-07-03 | 1992-05-12 | The United States Of America As Represented By The Secretary Of The Navy | Cross entropy deconvolver circuit adaptable to changing convolution functions |
US5058049A (en) * | 1989-09-06 | 1991-10-15 | Motorola Inc. | Complex signal transformation using a resistive network |
US5943653A (en) * | 1989-09-21 | 1999-08-24 | Ultradata Systems, Inc. | Electronic coupon storage and retrieval system correlated to highway exit service availability information |
US5021961A (en) * | 1989-09-21 | 1991-06-04 | Laser Data Technology, Inc. | Highway information system |
US5361328A (en) * | 1989-09-28 | 1994-11-01 | Ezel, Inc. | Data processing system using a neural network |
JP2724374B2 (ja) * | 1989-10-11 | 1998-03-09 | 株式会社鷹山 | データ処理装置 |
US5056037A (en) * | 1989-12-28 | 1991-10-08 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Analog hardware for learning neural networks |
JPH03236275A (ja) * | 1990-02-14 | 1991-10-22 | Olympus Optical Co Ltd | メモリ素子およびメモリ装置 |
US5068662A (en) * | 1990-09-27 | 1991-11-26 | Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College | Neural network analog-to-digital converter |
JPH056356A (ja) * | 1990-11-20 | 1993-01-14 | Ricoh Co Ltd | 信号処理方法及びその装置 |
JP2868640B2 (ja) * | 1991-02-26 | 1999-03-10 | 株式会社東芝 | ニューラル・ネットワークを用いた信号処理装置 |
US5276771A (en) * | 1991-12-27 | 1994-01-04 | R & D Associates | Rapidly converging projective neural network |
US5538915A (en) * | 1992-06-05 | 1996-07-23 | The Regents Of The University Of California | Process for forming synapses in neural networks and resistor therefor |
US5485548A (en) * | 1992-08-01 | 1996-01-16 | Ricoh Company, Ltd. | Signal processing apparatus using a hierarchical neural network |
US6167390A (en) * | 1993-12-08 | 2000-12-26 | 3M Innovative Properties Company | Facet classification neural network |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3863231A (en) * | 1973-07-23 | 1975-01-28 | Nat Res Dev | Read only memory with annular fuse links |
DE2658222B1 (de) * | 1976-12-22 | 1978-01-26 | Siemens Ag | Geraet zur ultraschallabtastung |
US4536844A (en) * | 1983-04-26 | 1985-08-20 | Fairchild Camera And Instrument Corporation | Method and apparatus for simulating aural response information |
US4660166A (en) * | 1985-01-22 | 1987-04-21 | Bell Telephone Laboratories, Incorporated | Electronic network for collective decision based on large number of connections between signals |
-
1986
- 1986-04-14 US US06/851,237 patent/US4737929A/en not_active Expired - Lifetime
-
1987
- 1987-04-07 EP EP87303019A patent/EP0242110A3/en not_active Ceased
- 1987-04-10 IL IL82173A patent/IL82173A/xx not_active IP Right Cessation
- 1987-04-11 KR KR870003476A patent/KR870010456A/ko not_active Application Discontinuation
- 1987-04-13 CA CA000534540A patent/CA1258132A/en not_active Expired
- 1987-04-14 JP JP62089999A patent/JPS62295188A/ja active Granted
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1990002381A1 (en) * | 1988-08-31 | 1990-03-08 | Fujitsu Limited | Neurocomputer |
US5131073A (en) * | 1989-07-12 | 1992-07-14 | Ricoh Company, Ltd. | Neuron unit and neuron unit network |
US5185851A (en) * | 1989-07-12 | 1993-02-09 | Ricoh Company, Ltd. | Neuron unit and neuron unit network |
US5191637A (en) * | 1989-07-12 | 1993-03-02 | Ricoh Company, Ltd. | Neuron unit and neuron unit network |
US5167006A (en) * | 1989-12-29 | 1992-11-24 | Ricoh Company, Ltd. | Neuron unit, neural network and signal processing method |
US5333241A (en) * | 1989-12-29 | 1994-07-26 | Ricoh Company, Ltd. | Neuron unit, neural network and signal processing method |
US5504838A (en) * | 1989-12-29 | 1996-04-02 | Ricoh Company, Ltd. | Neuron unit with error signal having components representing pulse densities |
US5581662A (en) * | 1989-12-29 | 1996-12-03 | Ricoh Company, Ltd. | Signal processing apparatus including plural aggregates |
US5619617A (en) * | 1989-12-29 | 1997-04-08 | Ricoh Company, Ltd. | Neuron unit, neural network and signal processing method |
US5588090A (en) * | 1993-05-20 | 1996-12-24 | Ricoh Company, Ltd. | Signal processing apparatus |
US5630023A (en) * | 1993-10-14 | 1997-05-13 | Ricoh Company, Limited | Signal processor |
Also Published As
Publication number | Publication date |
---|---|
IL82173A0 (en) | 1987-10-30 |
EP0242110A2 (en) | 1987-10-21 |
KR870010456A (ko) | 1987-11-30 |
US4737929A (en) | 1988-04-12 |
JPH0477351B2 (ja) | 1992-12-08 |
EP0242110A3 (en) | 1989-01-04 |
IL82173A (en) | 1991-07-18 |
CA1258132A (en) | 1989-08-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS62295188A (ja) | 信号並行処理ネツトワ−ク | |
Ortega et al. | Power shaping: A new paradigm for stabilization of nonlinear RLC circuits | |
Babacan | An operational transconductance amplifier-based memcapacitor and meminductor | |
Wang et al. | Finite-time anti-synchronization control of memristive neural networks with stochastic perturbations | |
Sah et al. | A mutator-based meminductor emulator circuit | |
CN112329365B (zh) | 一种耦合双忆阻器高维隐藏信号发生系统 | |
Aggarwal et al. | New memristor-less, resistor-less, two-OTA based grounded and floating meminductor emulators and their applications in chaotic oscillators | |
US20180068042A1 (en) | Low Drop-Out Voltage Regulator Modeling Systems and Methods | |
CN107784359A (zh) | 一种基于Hopfield神经网络的多稳定状态振荡电路 | |
CN109840365B (zh) | 一种有源忆阻器仿真器 | |
Girosi et al. | Convergence rates of approximation by translates | |
CN110298435B (zh) | 一种忆阻器型全域值bp神经网络电路 | |
Rossetto et al. | Analog VLSI synaptic matrices as building blocks for neural networks | |
Wyatt et al. | Energy concepts in the state-space theory of nonlinear n-ports: Part ii-losslessness | |
Yang et al. | Dynamic Behaviors and the Equivalent Realization of a Novel Fractional‐Order Memristor‐Based Chaotic Circuit | |
CN109325588B (zh) | 基于忆阻器矩阵的权值运算模块 | |
Rahman | A neural network with O (N) neurons for ranking N numbers in O (1/N) time | |
US4153946A (en) | Expandable selection and memory network | |
Singh | New Grounded Passive element-based Memelement Emulator for Meminductor and Memcapacitor Implementation | |
CN210691321U (zh) | 一种二值局部有源忆阻器的仿真器电路 | |
Batterywala et al. | Efficient DC analysis of RVJ circuits for moment and derivative computations of interconnect networks | |
GLUsKIN | On the theory of an integral equation | |
Ochs et al. | A consistent modeling of passive memcapacitive systems | |
Salam et al. | Design of a temporal learning chip for signal generation and classification | |
Vlad et al. | Implementing some fundamental electronics concepts using project based learning in educational platforms |