JPS6229516B2 - - Google Patents

Info

Publication number
JPS6229516B2
JPS6229516B2 JP54141145A JP14114579A JPS6229516B2 JP S6229516 B2 JPS6229516 B2 JP S6229516B2 JP 54141145 A JP54141145 A JP 54141145A JP 14114579 A JP14114579 A JP 14114579A JP S6229516 B2 JPS6229516 B2 JP S6229516B2
Authority
JP
Japan
Prior art keywords
palladium
bath
nitrite
ions
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54141145A
Other languages
Japanese (ja)
Other versions
JPS5629689A (en
Inventor
Jeen Meiyaa Rinda
Deyuba Robaato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OMI International Corp
Original Assignee
OMI International Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OMI International Corp filed Critical OMI International Corp
Publication of JPS5629689A publication Critical patent/JPS5629689A/en
Publication of JPS6229516B2 publication Critical patent/JPS6229516B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/50Electroplating: Baths therefor from solutions of platinum group metals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating And Plating Baths Therefor (AREA)

Description

【発明の詳細な説明】 素地上に種々の厚さの金属を電着させる方法は
電着及び電気メツキとして金属被覆業界において
公知である。
DETAILED DESCRIPTION OF THE INVENTION The method of electrodepositing metal of various thicknesses onto a substrate is known in the metallization industry as electrodeposition and electroplating.

メツキすべき金属のイオン及び適切な電解質か
ら成る典型的なメツキ浴においては、被メツキ物
品を浴中に浸漬又は浴と接触させ、その間該被メ
ツキ物品をカソードとして電源に接続し、金属電
極を同じ電源にアノードとして接続する。
In a typical plating bath consisting of ions of the metal to be plated and a suitable electrolyte, the article to be plated is immersed in or in contact with the bath, while the article to be plated is connected to a power source as a cathode, and a metal electrode is connected to the bath. Connect to the same power supply as an anode.

運転中、析出されるべき金属のイオンは浴中で
ゼロ価の金属に還元されて処理物品表面に析出す
る。素地面上、特に金属表面上に金属パラジウム
を電着させる方法に関しては種々の文献がある。
これらの従来方法の場合、パラジウム電着浴は不
安定になる傾向があつて、浴効率の著しい低下を
覚悟しない限り長時間に亘つて連続的に浴を使用
することができない。ここでいう浴効率とは、フ
アラデーの法則から数学的に算出される理論的浴
メツキ速度に対する実際の浴メツキ速度の、その
時の電流密度における比率である。
During operation, ions of the metal to be deposited are reduced to zero-valent metals in the bath and deposited on the surface of the treated article. There are various publications regarding methods for electrodepositing metallic palladium on substrate surfaces, particularly on metal surfaces.
In the case of these conventional methods, palladium electrodeposition baths tend to be unstable, and the baths cannot be used continuously for long periods of time unless one is prepared to suffer a significant decrease in bath efficiency. The bath efficiency here is the ratio of the actual bath plating rate to the theoretical bath plating rate mathematically calculated from Faraday's law, at the current density.

浴中のパラジウムイオンは運転中に、より高次
の原子価状態に酸化されるためにパラジウムイオ
ンは金属パラジウムに還元されるのがより困難で
あつて、このために過剰な電流を浴に供給しない
限り、メツキ層が析出しなくなるものと考えられ
ている。
Palladium ions in the bath are oxidized to higher valence states during operation, making it more difficult for the palladium ions to be reduced to metallic palladium, and for this reason excessive current is supplied to the bath. It is believed that the plating layer will not precipitate unless it is done.

通常のパラジウム電着浴は初期及び運転当初に
は良好な浴効率を示すが、数時間以内にこの浴効
率が急速に減少する場合がしばしばあり、ある場
合においては僅か約24時間後にもとの50%以下に
低減する。パラジウムメツキ速度をもとの水準又
はもとの水準近くに維持するためにはメツキ浴に
対して追加的な電流を供給してやる必要があり、
原価高になる。
Although conventional palladium electrodeposition baths exhibit good bath efficiency initially and initially in operation, this bath efficiency often decreases rapidly within a few hours, and in some cases returns to its original value after only about 24 hours. Reduce to 50% or less. In order to maintain the palladium plating rate at or near the original level, it is necessary to supply additional current to the plating bath.
The cost will be high.

この発明の目的は、長時間に亘り、ほぼ一定の
浴効率で金属パラジウムを析出することができる
ようなメツキ浴組成を提供することにある。また
他の目的は、浴効率をほぼ一定に維持するために
有効なパラジウム電着補給液の組成を提供するこ
とにある。さらにこの発明は水性メツキ浴から金
属パラジウムを電着させるための改良方法を提供
することにある。これら及びその他の諸目的は次
に述べる発明の実施態様の記載からより明瞭にな
ろう。
An object of the present invention is to provide a plating bath composition that allows metal palladium to be deposited with substantially constant bath efficiency over a long period of time. Another object is to provide a palladium electrodeposition replenishment solution composition that is effective in maintaining substantially constant bath efficiency. A further object of this invention is to provide an improved method for electrodepositing metallic palladium from an aqueous plating bath. These and other objects will become more apparent from the following description of embodiments of the invention.

この発明による組成は水中で解離してパラジウ
ムイオンを生ずるような水溶性パラジウム化合
物、電解質及びパラジウムイオンに対して化学量
論的に一定過剰量の遊離亜硝酸イオンを生成する
のに十分な量の亜硝酸イオン源から成る。これら
の各成分は、あらかじめ混合して外販可能な形態
とし、次いでこの混合物を水中に添加してPHを7
以上に調整するか、又は各成分を別々に水に溶解
してメツキ浴を調整する。上記組成の特徴は、素
地上に長時間に亘つて金属パラジウムを電着させ
る際に、メツキ速度の低下を防ぐために余剰の電
流を追加する必要がないことである。しかもこの
発明は、長期に亘つて浴効率を一定に維持するの
に効果的な、パラジウム浴への補給液組成を提供
するものである。かかる組成物は、電解質を含ま
ず、かつ水溶性パラジウム化合物と水溶性亜硝酸
化合物との混合物から成り、後者は水に溶解した
ときに混合物中のパラジウムイオンに対して化学
量論的に一定過剰量の遊離亜硝酸イオンを生成す
るのに十分な量で含有されていることが特徴であ
る。
The composition according to the invention comprises a water-soluble palladium compound which dissociates in water to produce palladium ions, an electrolyte and an amount sufficient to produce a stoichiometric excess of free nitrite ions relative to the palladium ions. Consisting of a nitrite ion source. These components are mixed in advance to form a form that can be sold externally, and this mixture is then added to water to bring the pH to 7.
Prepare the plating bath by adjusting the above or by dissolving each component separately in water. A feature of the above composition is that when metal palladium is electrodeposited on a substrate over a long period of time, there is no need to add an extra current to prevent a decrease in the plating speed. Moreover, the present invention provides a palladium bath replenishment composition that is effective in maintaining constant bath efficiency over long periods of time. Such a composition is electrolyte-free and consists of a mixture of a water-soluble palladium compound and a water-soluble nitrite compound, the latter in a constant stoichiometric excess over the palladium ions in the mixture when dissolved in water. It is characterized in that it is contained in an amount sufficient to generate a large amount of free nitrite ions.

この発明はパラジウム化合物、好ましくは2価
のパラジウム化合物の水溶液から成るメツキ浴を
用いて金属パラジウムを電着させる方法に関し
て、パラジウムイオン源に対して一定過剰量の亜
硝酸イオンを浴中に存在させて浴効率を長時間に
亘つて一定に安定化させるための改良法を提供す
るものである。
This invention relates to a method for electrodepositing metallic palladium using a plating bath consisting of an aqueous solution of a palladium compound, preferably a divalent palladium compound, in which nitrite ions are present in the bath in a certain excess amount relative to the palladium ion source. The present invention provides an improved method for stabilizing bath efficiency over a long period of time.

浴効率は、メツキ作業を開始すると殆んど同時
に低下しはじめるから、運転当初から過剰の亜硝
酸イオンを存在させてメツキ周期を通してかかる
浴組成を維持することが重要である。
Because bath efficiency begins to decline almost immediately after the plating operation begins, it is important to have an excess of nitrite ions present from the beginning of operation and maintain such bath composition throughout the plating cycle.

浴中にパラジウムイオンを供給するのに好適な
ジニトロジアミンパラジウムのような水溶性パラ
ジウム化合物は亜硝酸根を含んでいるにもかかわ
らず、この亜硝酸根は浴中で錯イオンとして存在
するために“遊離”の亜硝酸イオン源としては役
に立たない。したがつて、錯イオン形態をとらな
い遊離の亜硝酸イオンを生成するような他の解離
可能な亜硝酸化合物を浴中に最初から含有させて
おくことが必要である。遊離の亜硝酸イオン源と
しては水溶性無機亜硝酸化合物、特に亜硝酸ナト
リウム、亜硝酸カリウムその他のアルカリ金属の
亜硝酸塩、又は亜硝酸アンモニウムが好適であ
る。
Although water-soluble palladium compounds such as dinitrodiamine palladium, which are suitable for supplying palladium ions into the bath, contain nitrite radicals, this nitrite radical exists as a complex ion in the bath. It is useless as a source of “free” nitrite ions. It is therefore necessary to initially include other dissociable nitrite compounds in the bath which produce free nitrite ions that do not take the form of complex ions. Suitable sources of free nitrite ions include water-soluble inorganic nitrite compounds, particularly sodium nitrite, potassium nitrite, other alkali metal nitrites, or ammonium nitrite.

浴の安定化に寄与させるための亜硝酸イオンの
過剰量は極く僅少でも十分効果があり、通常、浴
中のパラジウムイオンに対して少なくとも0.05重
量%である。多く場合、初期における遊離亜硝酸
イオンの過剰量はパラジウムイオンに対して約
0.1〜約50重量%になるように浴を調製する。
The excess amount of nitrite ions to contribute to the stabilization of the bath can be sufficiently effective even in a very small amount, and is usually at least 0.05% by weight relative to the palladium ions in the bath. In many cases, the initial excess of free nitrite ions relative to palladium ions is approximately
Prepare the bath from 0.1 to about 50% by weight.

メツキ操作が継続され析出によりパラジウムが
消費されるにつれて、浴中の遊離亜硝酸イオンの
一部が同時に酸化により消費されて硝酸イオンに
なる。
As the plating operation continues and palladium is consumed by precipitation, some of the free nitrite ions in the bath are simultaneously consumed by oxidation to nitrate ions.

最初に亜硝酸イオンをかなり過剰に存在させて
もメツキ作業が進むにつれて遊離の亜硝酸根は結
局は消費されてしまう。したがつてメツキ作業を
通じて遊離の亜硝酸根を過剰に維持するために遊
離亜硝酸根源を時おり新しく追加してやる必要が
ある。このためには、消費したパラジウムを補給
するために定期的にパラジウム化合物を補給する
際に同時に亜硝酸化合物を浴中に添加するのが簡
便である。いづれの場合でも、一般原則としてパ
ラジウム化合物により供給されるパラジウムイオ
ンに対して亜硝酸イオンを少なくとも約10重量%
過剰に生成するのに十分な量の亜硝酸化合物を加
える必要がある。
Even if nitrite ions are initially present in considerable excess, free nitrite roots will eventually be consumed as the plating process progresses. Therefore, it is necessary to occasionally add new free nitrite sources to maintain an excess of free nitrite roots throughout the plating process. For this purpose, it is convenient to add the nitrite compound to the bath at the same time as periodically replenishing the palladium compound to replenish the consumed palladium. In any case, as a general rule at least about 10% by weight of nitrite ions relative to the palladium ions provided by the palladium compound.
Sufficient amount of nitrite must be added to produce excess.

パラジウムは初期の仕込み及び補充のいづれに
おいても水溶性の有機、若しくは無機第2パラジ
ウム化合物を用い、これらは通常のパラジウム電
着浴に常用されている化合物から選択できる。た
とえばジニトロジアンミンパラジウム〔Pd
(NH32(NO22〕、塩化パラジウム(PdCl2)、硫
酸パラジウム、塩化パラドスアンミン、ジアンミ
ン水酸化パラジウム、テトラアンミン塩化パラジ
ウム及びジクロロジアンミン塩化パラジウムなど
である。これらのうちで特にジニトロジアンミン
パラジウム及び塩化パラジウムが好ましい。
For palladium, a water-soluble organic or inorganic secondary palladium compound is used both in the initial charge and in the replenishment, and these compounds can be selected from compounds commonly used in ordinary palladium electrodeposition baths. For example, dinitrodiammine palladium [Pd
(NH 3 ) 2 (NO 2 ) 2 ], palladium chloride (PdCl 2 ), palladium sulfate, palladium chloride, palladium diammine hydroxide, palladium tetraammine chloride and palladium dichlorodiammine chloride. Among these, dinitrodiammine palladium and palladium chloride are particularly preferred.

電解質としては、水溶化した際に導電性イオン
媒体を生成するような水溶性化合物が使われる。
これらも市販品から自由に選択できる。通常これ
は水溶性硝酸化合物、好ましくは硝酸アンモニウ
ム又は硝酸カリウムや硝酸ナトリウムのようなア
ルカリ金属硝酸塩である。
As the electrolyte, a water-soluble compound is used that generates a conductive ionic medium when dissolved in water.
These can also be freely selected from commercially available products. Usually this is a water-soluble nitric acid compound, preferably ammonium nitrate or an alkali metal nitrate such as potassium or sodium nitrate.

この発明による浴組成中の各成分の量は広範囲
に変更できるが、水中に添加する前の混合物の組
成例は次の通りである。成 分 量、重量部 水溶性2価パラジウム化合物、好ましくはジニト
ロジアンミンパラジウム又は塩化パラジウム
30−40 水溶性電解質、好ましくはアルカリ金属硝酸塩又
は硝酸アンモニウム 65−75 水溶性遊離亜硝酸イオン源、好ましくはアルカリ
金属亜硝酸塩 5−15 これらの各成分を使用して調製したパラジウム
電着浴の組成及びメツキ操作条件は次のようであ
る。成 分 量、g/ 水溶性2価パラジウム化合物、好ましくはジニト
ロジアンミンパラジウム又は塩化パラジウム
40−60g/ 水溶性電解質、好ましくはアルカリ金属硝酸塩又
は硝酸アンモニウム 85−95g/ 水溶性遊離亜硝酸イオン源、好ましくはアルカリ
金属亜硝酸塩 5−15g/ 水 (1に調製する) 温 度 50−70℃ PH 8−9 電流密度 0.1075−53.75A/Dm2 浴のPHは硝酸又は水酸化アンモニウムのような
酸又は塩基を操作前及び/又は操作中に常法に従
がつて加えて調節する。通常、他の諸目的に対し
て添加されるその他の成分を存在させることもで
きる。たとえば、光沢剤、湿潤剤若しくは界面活
性剤、パラジウムイオン錯化剤、酸化防止剤など
であり、いづれも当業者に公知の添加物である。
Although the amounts of each component in the bath composition according to the invention can vary widely, an example composition of the mixture before addition to the water is as follows. Component amount , parts by weight Water-soluble divalent palladium compound, preferably dinitrodiammine palladium or palladium chloride
30-40 Water-soluble electrolyte, preferably alkali metal nitrate or ammonium nitrate 65-75 Water-soluble free nitrite ion source, preferably alkali metal nitrite 5-15 Composition of palladium electrodeposition baths prepared using each of these components And the plating operation conditions are as follows. Component amount , g/water-soluble divalent palladium compound, preferably dinitrodiammine palladium or palladium chloride
40-60g/water-soluble electrolyte, preferably alkali metal nitrate or ammonium nitrate 85-95g/water-soluble free nitrite ion source, preferably alkali metal nitrite 5-15g/water (prepared to 1) Temperature 50-70°C PH 8-9 Current Density 0.1075-53.75 A/Dm 2 The pH of the bath is adjusted by adding an acid or base, such as nitric acid or ammonium hydroxide, in a conventional manner before and/or during the operation. Other components, usually added for other purposes, may also be present. Examples include brighteners, wetting agents or surfactants, palladium ion complexing agents, antioxidants, etc., all of which are additives known to those skilled in the art.

この発明の電着方法においては、浴温は室温、
すなわち25℃から浴の沸点すなわち100℃以下迄
の広範囲の温度で操作できる。メツキ時間は電流
密度、浴温及びパラジウムの膜厚によつて変わ
る。浴温50〜70℃、電流密度0.1075〜53.75A/D
m2の場合であれば約0.0025cmのパラジウム膜を得
るためには、通常、約10分又はそれ以下で充分で
ある。
In the electrodeposition method of this invention, the bath temperature is room temperature;
That is, it can be operated at a wide range of temperatures from 25°C to below the boiling point of the bath, that is, 100°C. Plating time varies depending on current density, bath temperature and palladium film thickness. Bath temperature 50~70℃, current density 0.1075~53.75A/D
In the case of m 2 , about 10 minutes or less is usually sufficient to obtain a palladium film of about 0.0025 cm.

この発明によれば、金属素地上に電着したパラ
ジウムで均一で光沢のある密着層を形成してい
る。被メツキ金属素材は銅、ニツケル、銀及び鋼
などであり、真ちゆう、青銅、ステンレス鋼など
の合金も挙げられる。この発明の実施による浴効
率は90%以上であり、長時間に亘つて操業した後
においてさえも通常、80〜95%の浴効率が得られ
る。しかも前記の高い浴効率は32.25〜37.62A/
Dm2のような電電流密度領域における操業におい
てさえも達成される。たとえば、48.37〜
53.75A/Dm2のような高電流密度においてさえ
60〜70%の浴効率が得られる。
According to this invention, a uniform and glossy adhesion layer is formed from palladium electrodeposited on a metal base. The metal materials to be plated include copper, nickel, silver, steel, etc., and alloys such as brass, bronze, and stainless steel are also mentioned. Bath efficiencies with the practice of this invention are greater than 90%, and bath efficiencies of 80-95% are typically obtained even after long periods of operation. Moreover, the high bath efficiency mentioned above is 32.25~37.62A/
This is achieved even in operation in the current density range such as Dm 2 . For example, 48.37~
Even at high current densities like 53.75A/ Dm2
Bath efficiencies of 60-70% are obtained.

実施例 1 平滑な銅製小平板を前処理し、汚れやグリース
を除き秤量後、次の組成を有するパラジウム浴中
に浸漬した。
Example 1 A small smooth copper plate was pretreated, cleaned of dirt and grease, weighed and then immersed in a palladium bath having the following composition.

ジニトロジアンミンパラジウムPd(NH32
(NO22 50g/ 硝酸アンモニウム 90g/ 亜硝酸ナトリウム 10g/ 水 (1に調製) 白金被覆を施したタンタル/チタン小片を浴中
に浸漬し直流の定電流電源にアノードとしてつな
ぎ、銅製試料はカソードとしてつないでメツキを
開始した。浴中の亜硝酸イオン対パラジウムイオ
ンは初期において1.5対1重量比であつた。浴の
PHは初期において8〜9の間であつた。浴温を70
℃に保つた。電流は16.12A/Dm2の電流密度に
おいてパラジウムを析出するように調節した。当
該電流密度においては金属パラジウムは30ミリグ
ラム/A・分のメツキ析出速度で銅試料上に析出
した。浴中に初期のパラジウム濃度が維持される
ように時折、新しくジニトロジアンミンパラジウ
ム化合物を補給した。パラジウム化合物の各補給
段階においてジニトロジアンミン化合物のパラジ
ウムイオンに対して10%過剰の亜硝酸イオンに相
当する亜硝酸ナトリウムを添加した。約6分後
0.0025cm厚のパラジウムの膜が析出した。電流密
度、時間及びパラジウムの電着膜厚から算出して
この際の浴効率は95%であつた。その後メツキ操
作を再開し浴中の消耗成分を定期的に補給した。
かくして数週間連続的に該メツキ浴を使用した
が、この間、浴効率は95%近辺に一定に維持でき
た。
Dinitrodiammine palladium Pd( NH3 ) 2
(NO 2 ) 2 50g / ammonium nitrate 90g / sodium nitrite 10g / water (prepared to 1) A small piece of tantalum/titanium coated with platinum is immersed in the bath and connected to a DC constant current power source as an anode, and a copper sample is connected as a cathode. I connected it and started playing. The nitrite ions to palladium ions in the bath were initially in a 1.5 to 1 weight ratio. bath
The pH was between 8 and 9 at the beginning. Bath temperature 70
It was kept at ℃. The current was adjusted to deposit palladium at a current density of 16.12 A/Dm 2 . At this current density, metallic palladium was deposited on the copper sample at a plating deposition rate of 30 milligrams/A-minute. Fresh dinitrodiammine palladium compound was added from time to time to maintain the initial palladium concentration in the bath. Sodium nitrite corresponding to a 10% excess of nitrite ions relative to the palladium ions of the dinitrodiammine compound was added at each replenishment stage of the palladium compound. After about 6 minutes
A 0.0025 cm thick palladium film was deposited. The bath efficiency at this time was 95%, calculated from the current density, time, and thickness of the electrodeposited palladium film. Thereafter, the plating operation was resumed and consumable components in the bath were regularly replenished.
The plating bath was thus used continuously for several weeks, during which time the bath efficiency could be maintained constant at around 95%.

比較例 1 比較のために、操業開始後は亜硝酸化合物を新
く添加しないことのほかは実施例1の手順を繰り
返した。操業後数時間にして浴効率が低下しパラ
ジウムの電着が著しく減少した。
Comparative Example 1 For comparison, the procedure of Example 1 was repeated except that no new nitrite compound was added after the start of operation. Within a few hours of operation, bath efficiency decreased and palladium electrodeposition decreased significantly.

比較例 2 米国特許第4092225号公報記載の実施例1に従
つて次の組成及び条件のメツキ浴を調製した。
Comparative Example 2 A plating bath having the following composition and conditions was prepared according to Example 1 described in US Pat. No. 4,092,225.

10g/のパラジウムイオン 150g/のピロリン酸カリウム 浴温54.4℃ ピロリン酸塩又は水酸化カリウムにより PH=9に調節 この浴を使用し、撹はんし乍ら種々の電流密度
において銅製切取り試片をひつかけメツキした結
果は次のようである。
10 g/palladium ion 150 g/potassium pyrophosphate Bath temperature 54.4°C Adjusted to pH=9 with pyrophosphate or potassium hydroxide This bath was used to test copper coupons at various current densities while stirring. The result of cross-plating is as follows.

表 A 電流密度 浴効率(A/Dm2 (%) 1.08 94 2.15 94 3.21 94 4.30 94 5.37 77 実施例 2 比較のために種々の電流密度において実施例1
を繰返した。結果を次表に示す。
Table A Current density Bath efficiency (A/Dm 2 ) (%) 1.08 94 2.15 94 3.21 94 4.30 94 5.37 77 Example 2 Example 1 at various current densities for comparison
repeated. The results are shown in the table below.

表 B 電流密度 浴効率(A/Dm2 (%) 2.68 97 5.37 97 10.75 94 21.50 86 32.25 80 37.67 77 43.00 73 48.37 67 53.75 60 表からも明らかなように、この発明の組成及び
方法は長時間に亘つて高い浴効率を与えるばかり
でなく、かかる高い浴効率が得られる電流密度が
従来公知の浴及び方法に比べ少なくとも7倍であ
ることがわかる。
Table B Current density Bath efficiency (A/Dm 2 ) (%) 2.68 97 5.37 97 10.75 94 21.50 86 32.25 80 37.67 77 43.00 73 48.37 67 53.75 60 As is clear from the table, the composition and method of the present invention can be used for a long time. It can be seen that not only does the present invention provide high bath efficiencies throughout the process, but the current densities at which such high bath efficiencies are obtained are at least seven times higher than those of previously known baths and methods.

この発明において、その精神と範囲から逸脱し
ない限り種々の変更及び修正がなされうることは
明白である。ここに開示した具体例は発明を明確
にするためのものであつて、発明そのものを限定
するものではない。
It will be apparent that various changes and modifications can be made to this invention without departing from its spirit and scope. The specific examples disclosed herein are for the purpose of clarifying the invention, and are not intended to limit the invention itself.

Claims (1)

【特許請求の範囲】 1 パラジウムイオン源としての水溶性パラジウ
ム化合物を含む水溶液から成るメツキ欲から金属
パラジウムを電着させる方法において、実質的に
一定の浴効率を維持するための改良電着法であつ
て、パラジウムイオンに対して一定過剰量に維持
された遊離亜硝酸イオンを浴中に共存せしめ、か
つカソード電流密度5A/Dm2以上で行なう電着
法。 2 該一定過剰量の維持が、遊離亜硝酸イオン源
としての水溶性亜硝酸化合物の周期的添加によつ
て達成されることを特徴とする特許請求の範囲第
1項記載の電着法。 3 該水溶性亜硝酸化合物がアルカリ金属亜硝酸
塩であることを特徴とする特許請求の範囲第2項
記載の電着法。 4 浴中の遊離亜硝酸イオンの過剰量が0.1〜50
重量%の範囲に維持されるのに十分な量の水溶性
亜硝酸化合物を添加することを特徴とする特許請
求の範囲第2項記載の電着法。
[Scope of Claims] 1. An improved electrodeposition method for maintaining a substantially constant bath efficiency in a method for electrodepositing metallic palladium from a plating solution comprising an aqueous solution containing a water-soluble palladium compound as a source of palladium ions. An electrodeposition method in which free nitrite ions maintained in a constant excess amount relative to palladium ions coexist in the bath, and the electrodeposition is carried out at a cathode current density of 5 A/Dm 2 or more. 2. The electrodeposition method according to claim 1, wherein the constant excess amount is maintained by periodic addition of a water-soluble nitrite compound as a source of free nitrite ions. 3. The electrodeposition method according to claim 2, wherein the water-soluble nitrite compound is an alkali metal nitrite. 4 Excess amount of free nitrite ions in the bath is 0.1 to 50
3. A method according to claim 2, characterized in that a sufficient amount of water-soluble nitrite compound is added to maintain the range of % by weight.
JP14114579A 1979-08-20 1979-10-31 Paladium electrodeposition composition and method Granted JPS5629689A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US6813479A 1979-08-20 1979-08-20

Publications (2)

Publication Number Publication Date
JPS5629689A JPS5629689A (en) 1981-03-25
JPS6229516B2 true JPS6229516B2 (en) 1987-06-26

Family

ID=22080625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14114579A Granted JPS5629689A (en) 1979-08-20 1979-10-31 Paladium electrodeposition composition and method

Country Status (11)

Country Link
JP (1) JPS5629689A (en)
BE (1) BE879682A (en)
BR (1) BR8000087A (en)
CA (1) CA1163952A (en)
CH (1) CH649581A5 (en)
DE (1) DE2943399C2 (en)
ES (1) ES487727A0 (en)
FR (1) FR2463823B1 (en)
GB (1) GB2057503B (en)
HK (1) HK67886A (en)
NL (1) NL185577C (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE8106693L (en) * 1980-12-17 1982-06-18 Hooker Chemicals Plastics Corp ELECTROPLETING BATHROOM INCLUDING PALLADIUM
US4392921A (en) * 1980-12-17 1983-07-12 Occidental Chemical Corporation Composition and process for electroplating white palladium
US4545868A (en) * 1981-10-06 1985-10-08 Learonal, Inc. Palladium plating
US4622110A (en) * 1981-10-06 1986-11-11 Learonal, Inc. Palladium plating
JPS5920992U (en) * 1982-07-29 1984-02-08 東京瓦斯株式会社 Automatic internal circumference welding device for fixed pipes

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1970950A (en) * 1932-06-20 1934-08-21 Int Nickel Co Electrodeposition of platinum metals
GB958685A (en) * 1960-10-11 1964-05-21 Automatic Telephone & Elect Improvements in or relating to palladium plating
US3925170A (en) * 1974-01-23 1975-12-09 American Chem & Refining Co Method and composition for producing bright palladium electrodepositions

Also Published As

Publication number Publication date
CA1163952A (en) 1984-03-20
DE2943399A1 (en) 1981-03-26
FR2463823B1 (en) 1985-10-31
CH649581A5 (en) 1985-05-31
GB2057503A (en) 1981-04-01
NL185577B (en) 1989-12-18
GB2057503B (en) 1983-05-18
NL185577C (en) 1990-05-16
BR8000087A (en) 1981-03-24
HK67886A (en) 1986-09-18
ES8101658A1 (en) 1980-12-16
FR2463823A1 (en) 1981-02-27
JPS5629689A (en) 1981-03-25
ES487727A0 (en) 1980-12-16
BE879682A (en) 1980-04-28
DE2943399C2 (en) 1983-12-08
NL7907968A (en) 1981-02-24

Similar Documents

Publication Publication Date Title
EP1009869B1 (en) Cyanide-free monovalent copper electroplating solutions
US4428802A (en) Palladium-nickel alloy electroplating and solutions therefor
US3303111A (en) Electro-electroless plating method
US3032436A (en) Method and composition for plating by chemical reduction
US3925170A (en) Method and composition for producing bright palladium electrodepositions
JPS62502972A (en) Methods and compositions for electroless nickel deposition
JPS6254397B2 (en)
US2984604A (en) Platinum plating composition and process
JP3302949B2 (en) Black ruthenium plating solution
US3264199A (en) Electroless plating of metals
US2250556A (en) Electrodeposition of copper and bath therefor
US4297177A (en) Method and composition for electrodepositing palladium/nickel alloys
US4265715A (en) Silver electrodeposition process
US3684666A (en) Copper electroplating in a citric acid bath
JPS6229516B2 (en)
US4552628A (en) Palladium electroplating and bath thereof
GB2046794A (en) Silver and gold/silver alloy plating bath and method
US3775264A (en) Plating copper on aluminum
US4297179A (en) Palladium electroplating bath and process
US4401527A (en) Process for the electrodeposition of palladium
US2751341A (en) Electrodeposition of lead and lead alloys
US3984291A (en) Electrodeposition of tin-lead alloys and compositions therefor
US4436595A (en) Electroplating bath and method
SE502520C2 (en) Bathing, method and use in electroplating with tin-bismuth alloys
US4299670A (en) Palladium plating procedure and bath