JPS62294997A - Method of measuring non-criticality - Google Patents

Method of measuring non-criticality

Info

Publication number
JPS62294997A
JPS62294997A JP61137904A JP13790486A JPS62294997A JP S62294997 A JPS62294997 A JP S62294997A JP 61137904 A JP61137904 A JP 61137904A JP 13790486 A JP13790486 A JP 13790486A JP S62294997 A JPS62294997 A JP S62294997A
Authority
JP
Japan
Prior art keywords
multiplication system
measured
subcriticality
neutron
multiplication
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61137904A
Other languages
Japanese (ja)
Inventor
精 植田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Nippon Atomic Industry Group Co Ltd
Original Assignee
Toshiba Corp
Nippon Atomic Industry Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Nippon Atomic Industry Group Co Ltd filed Critical Toshiba Corp
Priority to JP61137904A priority Critical patent/JPS62294997A/en
Publication of JPS62294997A publication Critical patent/JPS62294997A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)
  • Measurement Of Radiation (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 3、発明の詳細な説明 [発明の目的] (産業上の利用分野) 本発明は、使用済核燃料等の未臨界度を測定する未臨界
度の測定方法に関する。
Detailed Description of the Invention 3. Detailed Description of the Invention [Object of the Invention] (Industrial Application Field) The present invention relates to a subcriticality measuring method for measuring the subcriticality of spent nuclear fuel, etc.

(従来の技術) 一般に原子力発電所等で使用された使用済核燃料物質は
、核燃料再処理tM股等において再処理される。
(Prior Art) Spent nuclear fuel materials used in nuclear power plants and the like are generally reprocessed at nuclear fuel reprocessing facilities and the like.

このような核燃料再処理施設内では、溶解槽、各種貯槽
、配管類等の内部に多種多用な使用済核燃料物質が存在
する。
In such a nuclear fuel reprocessing facility, a wide variety of spent nuclear fuel materials exist inside dissolution tanks, various storage tanks, piping, and the like.

たとえば溶解槽内ては、3〜5cm長に切断された使用
済核燃料物質が、加熱された硝酸によって溶解される。
For example, in a melting tank, spent nuclear fuel material cut into pieces of 3 to 5 cm in length is melted with heated nitric acid.

このため、溶解(曹では、ウラン−235、プルトニウ
ム−239、プルトニウム−2旧等の核分裂性核種と、
直接的または間接的に生成するセシウム−134、セシ
ウム−137、ヨーロビウムー154等の核分裂生成物
と、キュリウム−244、プルトニウム−240、プル
トニウム−238等の自発中性子を放出する核種とが流
体状物質内に混在し、中性子増倍体系を構成している。
For this reason, dissolution (in carbon dioxide, fissile nuclides such as uranium-235, plutonium-239, and plutonium-2 old)
Nuclear fission products such as cesium-134, cesium-137, and eurobium-154, which are generated directly or indirectly, and nuclides that emit spontaneous neutrons, such as curium-244, plutonium-240, and plutonium-238, are present in the fluid material. They are mixed together to form a neutron multiplication system.

そして、これらの濃度は時間的あるいは局所的に複雑に
変化しており、この濃度が高くなった場合は臨界状態と
なる危険性がある。
These concentrations change temporally or locally in a complicated manner, and if these concentrations become high, there is a risk of a critical state.

このため従来は、使用済核燃料物質の濃度の最高値を非
常に低い値に制限したり、溶解、漕等の形状を内部の使
用済核燃料物質か決して臨界状態になることのない形状
とする等の方法で、使用済核燃料物質が臨界状態となる
ことを防止し、臨界安仝性の確保を行なっている。
For this reason, conventional methods have been used, such as limiting the maximum concentration of spent nuclear fuel material to a very low value, and shaping the melting tank, etc., so that the spent nuclear fuel material inside never reaches a critical state. This method prevents spent nuclear fuel material from reaching a critical state and ensures criticality safety.

(発明が解決しようとする問題点) しかしながら従来では、たとえば核燃料再処理施設の溶
解槽内等の使用済核燃料物質等の中性子増倍体系未臨界
度を測定する有効な方法がなく、このため核燃料再処理
施設等においては、使用済核燃料物質を確実に未臨界に
保ち、臨界安全性を確保するために必要以上に使用済核
燃料物質の最高濃度を低く抑制したり、使用済核燃料物
質の密度を低くするため溶解槽等の形状を細くあるいは
薄くする等、その設置に広い空間を必要とする形状とす
るため、処理効率の悪化や、建設コス1〜の増大を招く
等の問題があった。
(Problem to be solved by the invention) However, in the past, there was no effective method for measuring the subcriticality of a neutron multiplier system such as spent nuclear fuel material in a melting tank of a nuclear fuel reprocessing facility. In reprocessing facilities, etc., it is necessary to keep the spent nuclear fuel material subcritical and to suppress the maximum concentration of the spent nuclear fuel material lower than necessary to ensure criticality safety, or to reduce the density of the spent nuclear fuel material. In order to lower the temperature, the shape of the dissolution tank or the like is made narrower or thinner, and the shape requires a wider space for installation, which causes problems such as deterioration of processing efficiency and increase in construction cost.

本発明はかかる従来の事情に対処してなされたもので、
簡単な装置で未臨界度を測定することができ、核燃料再
処理施設等にあける臨界安全性の確保と、処理効率の向
上および建設コストの低減を図ることのできる未臨界度
の測定方法を提供しようとするものである。
The present invention has been made in response to such conventional circumstances,
We provide a method for measuring subcriticality that can measure subcriticality with a simple device, ensuring criticality safety in nuclear fuel reprocessing facilities, improving processing efficiency, and reducing construction costs. This is what I am trying to do.

[発明の構成] (問題点を解決するための手段) すなわち本発明の未臨界度の測定方法は、中性子源と中
性子検出器とを備えた標準増倍体系を、被測定増倍体系
に近づけ、前記標準増倍体系と前記被測定増倍体系との
反応度の干渉を前記中性子検出器により検出し、前記被
測定増倍体系の未臨界度を測定する。
[Structure of the Invention] (Means for Solving the Problems) In other words, the method for measuring subcriticality of the present invention is to bring a standard multiplication system equipped with a neutron source and a neutron detector closer to the multiplication system to be measured. , detecting interference in reactivity between the standard multiplication system and the multiplication system to be measured by the neutron detector, and measuring the degree of subcriticality of the multiplication system to be measured.

(作用) 本発明方法では、反応度既知の中性子源と、中性子検出
器とを備えた標準増倍体系を、被測定増倍体系に近づけ
る。このとき、標準増倍体系と被測定増倍体系との間で
反応度の干渉が生じるので、この反応度の干渉を中性子
検出器の中性子計数率の変化により検出し、被測定増倍
体系の未臨界度を測定する。
(Operation) In the method of the present invention, a standard multiplication system including a neutron source with known reactivity and a neutron detector is brought close to the multiplication system to be measured. At this time, interference in reactivity occurs between the standard multiplication system and the multiplication system to be measured, so this interference in reactivity is detected by changes in the neutron count rate of the neutron detector, and Measure subcriticality.

(実施例) 以下本発明方法の詳細を図面を参照して実施例について
説明する。
(Example) The details of the method of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例方法を示すもので、この実施
例では、側方に中性子検出器1を配置され、内部に局所
的あるいは分散されて中性子源(図示せず)を配置され
た容器からなる標準増倍体系2を、例えば使用済核燃料
等の未臨界度が未知の被測定増倍体系3へ近づける。
FIG. 1 shows a method according to an embodiment of the present invention, in which a neutron detector 1 is placed on the side and a neutron source (not shown) is placed locally or distributed inside. A standard multiplication system 2 consisting of a container made of a metal is brought close to a multiplication system 3 to be measured whose degree of subcriticality is unknown, such as spent nuclear fuel, for example.

なお、被測定増倍体系3は内部の組成によって1票準増
倍体系2が離れている場合でも中性子放出率が変化する
場合があるので、被測定増倍体系3の側方には、この変
化をモニタするための中性子検出器4か配置されている
Note that the neutron emission rate of the multiplication system 3 to be measured may change depending on the internal composition even if the 1-vote semi-multiplying system 2 is far away, so this A neutron detector 4 is also arranged to monitor changes.

このようにして標準増倍体系2を被測定増倍体系3へ近
づけると、標準増倍体系2と被測定増倍体系3との間に
反応度の干渉が生じる。
When the standard multiplication system 2 is brought closer to the multiplication system 3 to be measured in this manner, interference in reactivity occurs between the standard multiplication system 2 and the multiplication system 3 to be measured.

第2図のグラフは縦軸を中性子検出器1の中性子計数率
φの逆数、横軸を標準増倍体系2と被測定増倍体系3と
の距離℃として、曲線a、b、cはそれぞれでの変化に
よる1/φの変化を示すもので、βが充分に大きな時は
、標準増倍体系2は被測定増倍体系3とは独立で、1/
φは被測定増倍体系3の未臨界度とは無関係に一定とな
るが、λが小さくなると、実効増倍率に干渉効果が生じ
、被測定増倍体系3の未臨界度に応じて、1/φには曲
線a、b、cに示すような異なった変化が生じる。
In the graph of Figure 2, the vertical axis is the reciprocal of the neutron count rate φ of the neutron detector 1, the horizontal axis is the distance °C between the standard multiplication system 2 and the multiplication system to be measured 3, and the curves a, b, and c are respectively This shows the change in 1/φ due to a change in .When β is sufficiently large, standard multiplication system 2 is independent of measured multiplication system 3, and 1/φ
φ remains constant regardless of the subcriticality of the multiplication system 3 to be measured, but as λ becomes smaller, an interference effect occurs on the effective multiplication factor, and depending on the subcriticality of the multiplication system 3 to be measured, φ becomes constant. /φ undergoes different changes as shown in curves a, b, and c.

従って、予め想定される幾つかの被測定増倍体系3の未
臨界度に対して、標準増倍体系2内の中性子源の条件か
ら計算により第2図のグラフに示す曲線a、b、cのよ
うな校正曲線を求めてあき、中性子検出器1で測定され
る中性子計数率の変化がどの校正曲線に従って変化する
かによって、被測定増倍体系3の未臨界度を測定するこ
とができる。
Therefore, curves a, b, and c shown in the graph of FIG. The degree of subcriticality of the multiplication system 3 to be measured can be determined by finding a calibration curve such as the following and determining which calibration curve the change in the neutron count rate measured by the neutron detector 1 follows.

第3図は、他の実施例方法を示すもので、この実施例方
法では、側方に2個の中性子検出器1a、1bを配置さ
れ、内部の中央部に中性子源を内臓する中性子検出器1
Cが配置された容器からなる標準増倍体系2aを、例え
ば使用済核燃料等の未臨界度未知の被測定増倍体系3a
に近づける。なおこの実施例でも、被測定増倍体系3a
の側方には、被測定増倍体系3aの中性子放出率の変化
をモニタするための中性子検出器4aが配置されている
FIG. 3 shows another embodiment method. In this embodiment method, two neutron detectors 1a and 1b are arranged on the sides, and a neutron source is built in the center of the neutron detector. 1
A standard multiplication system 2a consisting of a container in which C is placed is used as a multiplication system 3a to be measured with unknown subcriticality, such as spent nuclear fuel.
get closer to Note that in this embodiment as well, the multiplication system to be measured 3a
A neutron detector 4a for monitoring changes in the neutron emission rate of the multiplication system 3a to be measured is arranged on the side of the neutron detector 4a.

上記説明のこの実施例方法では、中性子源を内臓する中
性子検出器1Cと、2個の中性子検出器1a、1bによ
り、ミハルツのPSD法といわれる方法で、標準増倍体
系2a内の実効増倍率kを直接求める。ここで測定され
る実効増倍率には、標準増倍体系2aと被測定増倍体系
3aとの距離βを小さくした場合、干渉効果を含む標準
増倍体系2aと被測定増倍体系3aとの総合的な実効増
倍率となり、縦軸を実効増倍率k、横軸を標準増倍体系
2aと被測定増倍体系3aとの距離lとした第4図のグ
ラフに曲線d、e、f、gで示すように、前述の実施例
と同様にλを小さくした場合被測定増倍体系3aの未臨
界度により異なった変化を示すので、このような校正曲
線を予め計算または実測により求めておき、前述の実施
例と同様に被測定増倍体系3aの未臨界度を測定するこ
とができる。
In this embodiment method described above, a neutron detector 1C containing a neutron source and two neutron detectors 1a and 1b are used to calculate the effective multiplication rate within the standard multiplication system 2a using a method called the Michaltz PSD method. Find k directly. The effective multiplication factor measured here includes the difference between the standard multiplication system 2a and the multiplication system 3a, including interference effects, when the distance β between the standard multiplication system 2a and the multiplication system 3a to be measured is made small. This is the overall effective multiplication factor, and the curves d, e, f, As shown in g, when λ is made smaller as in the previous embodiment, different changes occur depending on the degree of subcriticality of the multiplication system 3a to be measured, so such a calibration curve should be obtained by calculation or actual measurement in advance. , the subcriticality of the multiplication system 3a to be measured can be measured in the same manner as in the above embodiment.

[発明の効果] 上述のように本発明の未臨界度の測定方法では、簡単な
装置で未臨界度を測定することができ、核燃料再処理施
設等における臨界安全性の確保と、処理効率の向上およ
び建設コストの低減を図ることができる。
[Effects of the Invention] As described above, the method for measuring subcriticality of the present invention enables the measurement of subcriticality with a simple device, ensuring criticality safety in nuclear fuel reprocessing facilities, etc., and improving processing efficiency. It is possible to improve the performance and reduce construction costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例方法を示す説明図、第2図は
標準増倍体系と被測定増倍体系との距離と中性子計数率
の逆数との関係を示すグラフ、第3図は他の実施例の方
法を示す説明図、第4図は標準増倍体系と被測定増倍体
系との距離と標準増倍体系および被測定増倍体系の実効
増倍率との関係を示すグラフである。 1・・・・・・・・・中性子検出器 訃・・・・・・・・標準増倍体系 3・・・・・・・・・被測定増倍体系 出願人      日本原子力事業株式会社同    
   株式会社 東芝 代理人 弁理士  須 山 佐 − o” 第1図 λ 第2図 σ℃4d 第3図 」 第4図
FIG. 1 is an explanatory diagram showing one embodiment of the method of the present invention, FIG. 2 is a graph showing the relationship between the distance between the standard multiplication system and the multiplication system to be measured and the reciprocal of the neutron count rate, and FIG. An explanatory diagram showing the method of another embodiment, FIG. 4 is a graph showing the relationship between the distance between the standard multiplication system and the multiplication system to be measured and the effective multiplication factor of the standard multiplication system and the multiplication system to be measured. be. 1...Neutron detector death...Standard multiplication system 3...Measurement multiplication system Applicant: Japan Atomic Energy Corporation
Toshiba Corporation Agent Patent Attorney Suyama Sa-o” Figure 1 λ Figure 2 σ℃4d Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] (1)中性子源と中性子検出器とを備えた標準増倍体系
を、被測定増倍体系に近づけ、前記標準増倍体系と前記
被測定増倍体系との反応度の干渉を前記中性子検出器に
より検出し、前記被測定増倍体系の未臨界度を測定する
ことを特徴とする未臨界度の測定方法。
(1) A standard multiplication system equipped with a neutron source and a neutron detector is brought close to the multiplication system to be measured, and the interference in the reactivity between the standard multiplication system and the multiplication system to be measured is eliminated by the neutron detector. A method for measuring a degree of subcriticality, characterized in that the degree of subcriticality of the multiplication system to be measured is measured by detecting the degree of subcriticality.
JP61137904A 1986-06-13 1986-06-13 Method of measuring non-criticality Pending JPS62294997A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61137904A JPS62294997A (en) 1986-06-13 1986-06-13 Method of measuring non-criticality

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61137904A JPS62294997A (en) 1986-06-13 1986-06-13 Method of measuring non-criticality

Publications (1)

Publication Number Publication Date
JPS62294997A true JPS62294997A (en) 1987-12-22

Family

ID=15209397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61137904A Pending JPS62294997A (en) 1986-06-13 1986-06-13 Method of measuring non-criticality

Country Status (1)

Country Link
JP (1) JPS62294997A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009133701A (en) * 2007-11-30 2009-06-18 Toshiba Corp Criticality safety control method for continuous dissolver in reprocessing facility

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009133701A (en) * 2007-11-30 2009-06-18 Toshiba Corp Criticality safety control method for continuous dissolver in reprocessing facility

Similar Documents

Publication Publication Date Title
JPS62294997A (en) Method of measuring non-criticality
JP3103361B2 (en) Measurement method of burnup of nuclear fuel
JPS61139795A (en) Nondestructive measuring method of spent fuel
JP2013257209A (en) Method for subcritical concentration monitoring using measured value of nuclear fission produced gas
JP3026455B2 (en) Burnup measurement method for irradiated fuel assemblies
JPH0453398B2 (en)
JPS62293194A (en) Method of monitoring non-criticality
Steindler Radiation problems associated with the handling of the actinide elements
JPH0317115B2 (en)
JPH0453397B2 (en)
JPS6316298A (en) Nondestructive measuring method of spent nuclear fuel aggregate
JPH0226754B2 (en)
Rao et al. Pyrohydrolytic determination of fluoride in milligram quantities of plutonium fluorides
JP6110915B2 (en) How to monitor subcriticality
Maeck Proposed Determination of Nuclear Fuel Burnup Based on the Ratio of Two Stable Fission Products of the Same Element
Walker et al. Analytical results of physics specimens and dosimeters in fuel pins, 1, 2, and 4 irradiated in the Dounreay prototype fast reactor
Zucker et al. Assay of Low-Enriched Uranium Using Spontaneous Fission Neutrons
Shahrokhi et al. State-of-the art in non-destructive assay systems and their applications to an LMFBR aqueous fuel reprocessing plant
Funk et al. Spent fuel integrity during transportation
Bramblett et al. Application of photoinduced reactions to nuclear materials safeguards problems. Quarterly progress report, April 1--June 30, 1972
Danguay et al. CONTINUOUS MEASUREMENT OF A NEUTRON FLUX BY ACTIVATION OF CIRCULATING SOLUTIONS
JPS5928694A (en) Method of measuring fission product concentration of fuel assembly
Ball et al. POST-IRRADIATION ANALYSIS OF HIGH TEMPERATURE, LOW BURNUP TUNGSTEN-UO2 TEST PLATES
Huffman TECHNICAL QUARTERLY REPORT FOR FOURTH QUARTER, 1953
Kull CATALOGUE OF NUCLEAR MATERIAL SAFEGUARDS INSTRUMENTS.