JPH0453397B2 - - Google Patents

Info

Publication number
JPH0453397B2
JPH0453397B2 JP60104596A JP10459685A JPH0453397B2 JP H0453397 B2 JPH0453397 B2 JP H0453397B2 JP 60104596 A JP60104596 A JP 60104596A JP 10459685 A JP10459685 A JP 10459685A JP H0453397 B2 JPH0453397 B2 JP H0453397B2
Authority
JP
Japan
Prior art keywords
neutron
keff
concentration
multiplication factor
total
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60104596A
Other languages
Japanese (ja)
Other versions
JPS61262690A (en
Inventor
Masanobu Futakuchi
Kyoshi Ueda
Takeshi Kyono
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Tokyo Electric Power Co Holdings Inc
Original Assignee
Toshiba Corp
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Electric Power Co Inc filed Critical Toshiba Corp
Priority to JP60104596A priority Critical patent/JPS61262690A/en
Publication of JPS61262690A publication Critical patent/JPS61262690A/en
Publication of JPH0453397B2 publication Critical patent/JPH0453397B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は非破壊測定により燃料集合体の核特性
の評価を行なう燃料集合体の非破壊測定方法に係
り、特にアクテイブ中性子測定法により使用済燃
料集合体の各種燃焼パラメータを求める使用済燃
料集合体の非破壊測定方法に関する。
Detailed Description of the Invention [Technical Field of the Invention] The present invention relates to a method for non-destructive measurement of fuel assemblies for evaluating the nuclear properties of fuel assemblies by non-destructive measurement, and in particular to a method for evaluating the nuclear properties of a fuel assembly using active neutron measurement. This invention relates to a method for non-destructive measurement of spent fuel assemblies to determine various combustion parameters of the assemblies.

[発明の技術的背景とその問題点] 一般に、原子炉から取り出された使用済燃料
は、一定期間燃料貯蔵プールに貯蔵され半減期の
短い放射能の減衰をした後、輸送容器に収納され
再処理工場又は長期貯蔵施設に運ばれる。
[Technical background of the invention and its problems] In general, spent fuel taken out from a nuclear reactor is stored in a fuel storage pool for a certain period of time to attenuate its radioactivity, which has a short half-life, and then is stored in a transport container and recycled. Transported to processing plants or long-term storage facilities.

このような使用済燃料の燃焼特性を把握してお
くことは、輸送、貯蔵及び再処理時の臨界安全性
を確保する上で、また、核物質の管理の面で極め
て重要なことである。
Understanding the combustion characteristics of spent fuel is extremely important in ensuring criticality safety during transportation, storage, and reprocessing, and in terms of nuclear material management.

使用済燃料の燃焼特性を示すパラメータとして
は、燃焼度、残存核分裂核種濃度、増倍率、全プ
ルトニウム濃度等があり、これを定量する方法と
して、使用済燃料から放出されるガンマ線スペク
トルを測定するガンマ線スペクトル測定法、使用
済燃料から放出される中性子を測定するパツシブ
中性子測定法及び外部に配置した中性子源から放
出された中性子を使用済燃料に入射させ、形成さ
れた中性子束を測定するアクテイブ中性子測定法
がある。アクテイブ中性子測定法は増倍中性子測
定法あるいは増倍率測定法と呼ぶこともできる。
使用済燃料の輸送、貯蔵及び再処理時の臨界安全
性の確保又は保障措置の面で最も重要なパラメー
タは増倍率と全核分裂核種濃度(以下Fissと記
す)であるが、従来の測定法では測定装置が大が
かりであつたり、上記燃焼パラメータの絶対値を
決定するのが容易でないなどの欠点があつた。
Parameters that indicate the combustion characteristics of spent fuel include burnup, residual fission nuclide concentration, multiplication factor, total plutonium concentration, etc. A method for quantifying these parameters is gamma ray measurement, which measures the gamma ray spectrum emitted from spent fuel. Spectral measurement method, passive neutron measurement method that measures neutrons emitted from spent fuel, and active neutron measurement method that measures neutron flux formed by injecting neutrons emitted from an external neutron source into the spent fuel. There is a law. The active neutron measurement method can also be called a multiplied neutron measurement method or a multiplication factor measurement method.
The most important parameters in terms of ensuring criticality safety or safeguards during spent fuel transportation, storage, and reprocessing are the multiplication factor and total fission nuclide concentration (hereinafter referred to as Fiss), but conventional measurement methods There were disadvantages such as the measuring device was large-scale and it was not easy to determine the absolute values of the combustion parameters.

[発明の目的] 本発明はかかる点に対処してなされたもので、
水中に配設された燃料集合体の一側面に中性子源
を、対向する他の側面に中性子検出器を配置し、
中性子源から放出された中性子を燃料集合体に入
射させて形成された中性子束(以下φと記す)を
測定するアクテイブ中性子測定法により、実効中
性子増倍率(以下Keffと記す)を求め、さらに
このKeffの値からFiss、燃焼度、プルトニウム濃
度等の燃焼パラメータを決定する方法を提供しよ
うとするものである。
[Object of the invention] The present invention has been made to address the above problems, and
A neutron source is placed on one side of a fuel assembly placed underwater, and a neutron detector is placed on the opposite side,
The effective neutron multiplication factor (hereinafter referred to as Keff) is determined by the active neutron measurement method, which measures the neutron flux (hereinafter referred to as φ) formed by injecting neutrons emitted from a neutron source into a fuel assembly. The purpose is to provide a method for determining combustion parameters such as Fiss, burnup, and plutonium concentration from the value of Keff.

[発明の概要] すなわち、本発明は、(a)水中に配設された燃料
集合体をはさんで一側面に中性子線を対向する他
の側面に中性子検出器を配置したアクテイブ中性
子測定法において、中性子検出器で計測される中
性子束が実効中性子増倍率Keffとの間に(1−
Keff)に反比例するような燃料集合体の軸方向
位置を予め実験または解析により求め、該位置に
前記中性子検出器を配置してアクテイブ中性子測
定法により中性子束φを測定するステツプと、(b)
ステツプ(a)で求めた中性子束φから、予め模擬実
験又は解析を行なつて求めた中性子束φと実効中
性子増倍率Keffとの相関関係を用いて、実効中
性子増倍率Keffを求めるステツプと、(c)ステツ
プ(b)で得た実効中性子増倍率Keffから、予め求
められた実効中性子増倍率Keffと無限中性子増
倍率k及び全核分裂性核種濃度Fissとの相関関係
を用いて、無限中性子増倍率k及び全核分裂性
核種濃度Fissを求めるステツプと、(d)ステツプ(c)
で得た無限中性子増倍率k及び全核分裂性核種
濃度Fissの値から、予め求められた、これらの値
と、燃焼度、全プルトニウム対全ウラン濃度比
Pu/U、235U濃度、239Pu濃度または241Pu濃度との
相関関係を用いて、使用済燃料集合体の燃焼特性
を示す燃焼度をその他のパラメータを求めるステ
ツプとを含むことを特徴とする使用済燃料集合体
の非破壊測定方法である。
[Summary of the Invention] That is, the present invention relates to (a) an active neutron measurement method in which a neutron beam is opposed to one side of a fuel assembly disposed underwater, and a neutron detector is arranged on the other side; , the neutron flux measured by the neutron detector is between (1-
(b) determining the axial position of the fuel assembly which is inversely proportional to Keff) by experiment or analysis, placing the neutron detector at the position and measuring the neutron flux φ by an active neutron measurement method;
a step of calculating an effective neutron multiplication factor Keff from the neutron flux φ obtained in step (a), using the correlation between the neutron flux φ and the effective neutron multiplication factor Keff, which was obtained by conducting a simulation experiment or analysis in advance; (c) From the effective neutron multiplication factor Keff obtained in step (b), use the correlation between the effective neutron multiplication factor Keff obtained in advance, the infinite neutron multiplication factor k (d) step (c) to obtain the multiplication factor k and the total fissile nuclide concentration Fiss;
From the values of the infinite neutron multiplication factor k and the total fissile nuclide concentration Fiss obtained in
The method is characterized by comprising the step of determining the burnup indicating the combustion characteristics of the spent fuel assembly and other parameters using correlation with Pu/U, 235 U concentration, 239 Pu concentration or 241 Pu concentration. This is a non-destructive measurement method for spent fuel assemblies.

[発明の実施例] 以下、図面に示す一実施例について本発明を詳
細に説明する。
[Embodiment of the Invention] The present invention will be described in detail below with reference to an embodiment shown in the drawings.

本発明者等は長い間、使用済燃料集合体のアク
テイブ中性子測定法及びその装置に関し研究を重
ね、多くの提案を行なつてきた。それらの過程で
φは次式で表わされることを見出した。
The inventors of the present invention have been conducting research on active neutron measurement methods and devices for spent fuel assemblies for a long time, and have made many proposals. Through these processes, it was discovered that φ can be expressed by the following formula.

φ=(A/(1−Keff))・F(Keff) ここで、Aは定数、F(Keff)は局所的に外部
から中性子源を導入するための補正因子である。
外部に中性子源を配置しないで集合体内に一様の
中性子源が分布している時はF(Keff)=1とな
るが、局所的に外部から中性子源を導入すると、
一般にはF(Keff)=1とならない。F(Keff)は
Keffの一次近似として次式で表わされる。
φ=(A/(1−Keff))·F(Keff) Here, A is a constant, and F(Keff) is a correction factor for locally introducing a neutron source from the outside.
When a neutron source is uniformly distributed within the aggregate without placing an external neutron source, F (Keff) = 1, but if a neutron source is locally introduced from the outside,
Generally, F(Keff) does not equal 1. F (Keff) is
Keff is expressed as a linear approximation by the following equation.

F(Keff)=1+B(1−Keff) 但し、Bは定数である。 F(Keff)=1+B(1-Keff) However, B is a constant.

従つて、φとKeffの相関関係においては未知
数はAとBの2つあり、φ対Keffの較正曲線を
作成するためには、2つのKeffが既知の燃料集
合体が必要である。しかしながら、B=0とする
ことができれば、未知数はAのみとなり、φと
Keffの相関関係はより単純化される。
Therefore, in the correlation between φ and Keff, there are two unknowns, A and B, and in order to create a calibration curve of φ versus Keff, two fuel assemblies with known Keff are required. However, if B=0, the only unknown quantity is A, and φ and
Keff's correlation is more simplified.

第1図のフローチヤートで示す本発明の一実施
例においては、まず、F(Keff)の値が、Keffの
値に関係なくほぼ1.0となる測定体系を模擬実験
又は解析により求める。
In one embodiment of the present invention shown in the flowchart of FIG. 1, first, a measurement system in which the value of F (Keff) is approximately 1.0 regardless of the value of Keff is determined by a simulation experiment or analysis.

すなわち、水中に配設された燃料集合体をはさ
んで一側面に中性子源を配置し、対向する他の側
面で中性子検出器の燃料集合体軸と平行方向位置
を変えながら中性子束と(1−Keff)の逆数と
が比例する(又はほぼ比例する)位置を求める。
ついで、第2図に示すように、Keffが既知の1
つの標準燃料集合体を用いてF(Keff)=1の測
定体系におけるφ対Keffの較正曲線を作成する
とともに、測定すべき燃料集合体のφを前記測定
体系と同じ条件の下で測定し、前記φ対Keffの
較正曲線からKeffを求める。
In other words, a neutron source is placed on one side of a fuel assembly disposed underwater, and the neutron flux and (1 Find the position where the reciprocal of (-Keff) is proportional (or nearly proportional).
Next, as shown in Figure 2, Keff is known as 1.
Using two standard fuel assemblies to create a calibration curve of φ vs. Keff in a measurement system of F (Keff) = 1, and measuring φ of the fuel assembly to be measured under the same conditions as the measurement system, Keff is determined from the calibration curve of φ vs. Keff.

さらに、第3図に示すようなFissとKeffとの相
関関係及び第4図に示すような無限中性子増倍率
(以下K∞と記す)とKeffとの相関関係を計算に
より求め、これらを較正曲線として利用してFiss
及びK∞を決定する。
Furthermore, we calculated the correlation between Fiss and Keff as shown in Figure 3 and the correlation between infinite neutron multiplication factor (hereinafter referred to as K∞) and Keff as shown in Figure 4, and added these to the calibration curve. Use as Fiss
and determine K∞.

ついでさらに、第3図ないし第6図に示すよう
に、K∞又はFissと燃焼度、全プルトニウム対全
ウラン濃度比(以下Pu/Uと記す)とK∞又は
燃焼度、及びK∞と235U濃度、239Pu濃度、241Pu濃
度との相関関係を別途計算により求め、これらを
較正曲線として利用して燃焼度、Pu/U、235U濃
度、239Pu濃度、241Pu濃度を決定する。
Furthermore, as shown in Figures 3 to 6, K∞ or Fiss and burnup, total plutonium to total uranium concentration ratio (hereinafter referred to as Pu/U) and K∞ or burnup, and K∞ and 235 The correlation between the U concentration, 239 Pu concentration, and 241 Pu concentration is calculated separately, and these are used as a calibration curve to determine the burnup, Pu/U, 235 U concentration, 239 Pu concentration, and 241 Pu concentration.

[発明の効果] 以上の説明からも明らかなように、本発明によ
れば、使用済燃料集合体の輸送、貯蔵及び再処理
時の臨界安全性又は保障装置の面において最も重
要なパラメータである増倍率とFissとを直接的に
求めることができるとともに、燃焼度、Pu/U、
ウラン濃度やプルトニウム濃度等も間接的に求め
ることができる。
[Effects of the Invention] As is clear from the above explanation, according to the present invention, the criticality safety or security device during transportation, storage, and reprocessing of spent fuel assemblies is the most important parameter. The multiplication factor and Fiss can be directly determined, and the burnup, Pu/U,
Uranium concentration, plutonium concentration, etc. can also be determined indirectly.

尚、本発明は使用済燃料集合体に限定されるこ
となく、新燃料集合体又は使用途中で一旦原子炉
からとり出された照射燃料集合体についても当然
適用することができる。
Note that the present invention is not limited to spent fuel assemblies, but can of course be applied to new fuel assemblies or irradiated fuel assemblies once taken out of the reactor during use.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示すフローチヤー
ト、第2図は、φに対するKeffの較正曲線を示
すグラフ、第3図はKeff又はK∞に対するFiss、
235U濃度、239Pu濃度、241Pu241濃度の較正曲線を
示すグラフ、第4図はKeffに対するK∞の較正
曲線を示すグラフ、第5図はK∞に対する燃焼度
の較正曲線を示すグラフ、第6図は燃焼度に対す
るPu/Uの較正曲線を示すグラフである。
FIG. 1 is a flowchart showing an embodiment of the present invention, FIG. 2 is a graph showing a calibration curve of Keff for φ, and FIG. 3 is a graph showing a calibration curve of Keff for Keff or K∞.
Graph showing the calibration curves of 235 U concentration, 239 Pu concentration, 241 Pu241 concentration, Figure 4 is a graph showing the calibration curve of K∞ against Keff, Figure 5 is a graph showing the calibration curve of burnup against K∞, Figure 4 is a graph showing the calibration curve of K∞ against Keff, Figure 6 is a graph showing a calibration curve of Pu/U with respect to burnup.

Claims (1)

【特許請求の範囲】 1 (a) 水中に配設された燃料集合体をはさんで
一側面に中性子線を対向する他の側面に中性子
検出器を配置したアクテイブ中性子測定法にお
いて、中性子検出器で計測される中性子束が実
効中性子増倍率Keffとの間に(1−Keff)に
反比例するような燃料集合体の軸方向位置を予
め実験または解析により求め、該位置に前記中
性子検出器を配置してアクテイブ中性子測定法
により中性子束φを測定するステツプと、 (b) ステツプ(a)で求めた中性子束φから、予め模
擬実験又は解析を行なつて求めた「中性子束φ
と実効中性子増倍率Keffとの相関関係」を用
いて、実効中性子増倍率Keffを求めるステツ
プと、 (c) ステツプ(b)で得た実効中性子増倍率Keffか
ら、予め求められた「実効中性子増倍率Keff
と無限中性子増倍率k及び全核分裂性核種濃
度Fissとの相関関係」を用いて、無限中性子増
倍率k及び全核分裂性核種濃度Fissを求めるス
テツプと、 (d) ステツプ(c)で得た無限中性子増倍率k及び
全核分裂性核種濃度Fissの値から、予め求めら
れた、これらの値と、燃焼度、全プルトニウム
対全ウラン濃度比Pu/U、235U濃度、239Pu濃度
または241Pu濃度との相関関係を用いて、使用
済燃焼集合体の燃焼特性を示す燃焼度をその他
のパラメータを求めるステツプと、 を含むことを特徴とする使用済燃料集合体の非破
壊測定方法。
[Scope of Claims] 1 (a) In an active neutron measurement method in which a neutron beam is placed on one side of a fuel assembly disposed in water and a neutron detector is placed on the other side, the neutron detector The axial position of the fuel assembly is determined in advance by experiment or analysis such that the neutron flux measured by the effective neutron multiplication factor Keff is inversely proportional to (1-Keff), and the neutron detector is placed at that position. (b) measuring the neutron flux φ using the active neutron measurement method;
(c) Calculating the effective neutron multiplication factor Keff obtained in advance from the effective neutron multiplication factor Keff obtained in step (b). Magnification Keff
and (d) calculating the infinite neutron multiplication factor k and the total fissile nuclide concentration Fiss using the correlation between the infinite neutron multiplication factor k and the total fissile nuclide concentration Fiss; These values, burnup, total plutonium to total uranium concentration ratio Pu/U, 235 U concentration , 239 Pu concentration or 241 A method for non-destructive measurement of spent fuel assemblies, comprising the steps of: determining the burnup indicating the combustion characteristics of the spent fuel assemblies and other parameters using the correlation with the Pu concentration;
JP60104596A 1985-05-16 1985-05-16 Nondestructive measurement method of spent fuel aggregate Granted JPS61262690A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60104596A JPS61262690A (en) 1985-05-16 1985-05-16 Nondestructive measurement method of spent fuel aggregate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60104596A JPS61262690A (en) 1985-05-16 1985-05-16 Nondestructive measurement method of spent fuel aggregate

Publications (2)

Publication Number Publication Date
JPS61262690A JPS61262690A (en) 1986-11-20
JPH0453397B2 true JPH0453397B2 (en) 1992-08-26

Family

ID=14384806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60104596A Granted JPS61262690A (en) 1985-05-16 1985-05-16 Nondestructive measurement method of spent fuel aggregate

Country Status (1)

Country Link
JP (1) JPS61262690A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012122929A (en) * 2010-12-10 2012-06-28 Toshiba Corp Method and apparatus for evaluating nondestructive burnup of reactor fuel
CN108828651B (en) * 2018-08-08 2020-08-21 中国原子能科学研究院 Active neutron analysis method for uranium plutonium content in waste cladding

Also Published As

Publication number Publication date
JPS61262690A (en) 1986-11-20

Similar Documents

Publication Publication Date Title
JP5546174B2 (en) Radioactivity concentration evaluation method and evaluation program for radioactive waste, and radioactivity concentration evaluation apparatus
JP3041101B2 (en) Measurement method of effective multiplication factor of spent fuel assembly loading system
JP2542883B2 (en) Effective multiplication factor measurement method for subcritical systems loaded with irradiation fuel
US4510117A (en) Apparatus for in situ determination of burnup, cooling time and fissile content of an irradiated nuclear fuel assembly in a fuel storage pond
JP3349180B2 (en) How to measure spent fuel
JP4327522B2 (en) Nondestructive measurement method of plutonium 238 in fuel material
JP3628111B2 (en) Nondestructive burnup evaluation method for reactor fuel
JP3103361B2 (en) Measurement method of burnup of nuclear fuel
JPH0453397B2 (en)
Phillips et al. Neutron measurement techniques for the nondestructive analysis of irradiated fuel assemblies
JPH045356B2 (en)
JP3026455B2 (en) Burnup measurement method for irradiated fuel assemblies
JP3651716B2 (en) Nondestructive burnup evaluation method for reactor fuel
JPH0453398B2 (en)
JPH0426718B2 (en)
JPS6316298A (en) Nondestructive measuring method of spent nuclear fuel aggregate
RU2527489C2 (en) Neutron-activation method of monitoring burning of spent fuel assemblies of thermal neutron reactors and apparatus therefor
JPH01199195A (en) Effective multiplication factor measuring method of irradiation fuel charged subcritical system
JPH05288888A (en) Measuring method of effective multiplication factor and disposing method of neutron detector
Forsyth et al. Burn-up determination by high resolution gamma spectrometry: axial and diametral scanning experiments
JPH0226754B2 (en)
JPS6315197A (en) Nondestructive measuring method of spent nuclear fuel aggregate
Inman Research and Development for Safeguards
Beyster EVALUATION OF REACTIVITY METHODS OF NUCLEAR MATERIALS ASSAY.
JPH0659082A (en) Burnup degree credit introduction for spent fuel assembly

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term