JP3041101B2 - Measurement method of effective multiplication factor of spent fuel assembly loading system - Google Patents

Measurement method of effective multiplication factor of spent fuel assembly loading system

Info

Publication number
JP3041101B2
JP3041101B2 JP3249397A JP24939791A JP3041101B2 JP 3041101 B2 JP3041101 B2 JP 3041101B2 JP 3249397 A JP3249397 A JP 3249397A JP 24939791 A JP24939791 A JP 24939791A JP 3041101 B2 JP3041101 B2 JP 3041101B2
Authority
JP
Japan
Prior art keywords
neutron
multiplication factor
axial
effective multiplication
change
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3249397A
Other languages
Japanese (ja)
Other versions
JPH0587977A (en
Inventor
田 精 植
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3249397A priority Critical patent/JP3041101B2/en
Publication of JPH0587977A publication Critical patent/JPH0587977A/en
Application granted granted Critical
Publication of JP3041101B2 publication Critical patent/JP3041101B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、使用済燃料集合体の装
荷体系の実効増倍率を測定する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring the effective multiplication factor of a spent fuel assembly loading system.

【0002】[0002]

【従来の技術】一般に、原子炉から放出された使用済燃
料は、所定の冷却期間を経過した後、再処理施設に送ら
れて再処理されるか、あるいは長期間貯蔵された後、何
等かの方法で最終処分されることになるが、世界的な傾
向として、再処理容量に比べ原子炉から放出される使用
済燃料の方が多いため、長期貯蔵の重要性は次第に高く
なってきている。
2. Description of the Related Art Generally, spent fuel released from a nuclear reactor is sent to a reprocessing facility after a predetermined cooling period to be reprocessed, or after being stored for a long period of time, is subjected to any treatment. However, the global trend is that long-term storage is becoming increasingly important as more spent fuel is released from reactors than reprocessing capacity. .

【0003】ところで、貯蔵に際しては、高密度で貯蔵
することが経済的に有利ではあるが、臨界に達するおそ
れが全くないことが絶対条件となる。
[0003] In storage, it is economically advantageous to store at high density, but it is an absolute condition that there is no possibility of reaching criticality.

【0004】ところが従来は、貯蔵体系の未臨界度をモ
ニタする実用的な方法が開発されていなかったため、臨
界に達しないことを保証する必要から、過度の安全を確
保しなければならなかった。
However, conventionally, no practical method for monitoring the subcriticality of the storage system has been developed, so that it is necessary to ensure that the criticality is not reached, so that excessive safety must be ensured.

【0005】ここで、貯蔵作業の中途段階において、体
系の未臨界度を容易に評価できれば、過度の裕度を確保
する必要がなくなるため、使用済燃料集合体をより高密
度で貯蔵することが可能となる。
Here, if the subcriticality of the system can be easily evaluated at an intermediate stage of the storage operation, it is not necessary to secure an excessive margin, so that it is possible to store the spent fuel assemblies at a higher density. It becomes possible.

【0006】そこで、本発明者等は先に、特開平1−1
69398号公報において、外部(人工)中性子源を使
用しないで未臨界度をモニタする「自発中性子増倍法」
を提案した。
Therefore, the present inventors first disclosed in Japanese Patent Laid-Open Publication No. 1-1
No. 69398, “Spontaneous neutron multiplication method” for monitoring subcriticality without using an external (artificial) neutron source
Suggested.

【0007】本発明者等はまた、未臨界体系で自発中性
子源が体系内に分布している場合の中性子束分布形は、
未臨界度と独特な関係にあることを実験と解析とにより
確認し、特開平1−250898号公報において、「未
臨界軸方向自発中性子束分布形法」を提案した。
The present inventors have also found that in a subcritical system where the spontaneous neutron source is distributed within the system, the neutron flux distribution form is:
It has been confirmed through experiments and analysis that it has a unique relationship with the subcriticality, and in Japanese Unexamined Patent Application Publication No. 1-250898, the "subcritical axial spontaneous neutron flux distribution method" was proposed.

【0008】[0008]

【発明が解決しようとする課題】本発明者等が提案した
前記2つの方法を用いることにより、体系の未臨界度を
評価することが可能となるが、これら両方法を実施する
際の具体的な中性子検出器の燃料集合体軸方向配置方法
については、未だ明らかにされておらず、この点が問題
となる。
The use of the above two methods proposed by the present inventors makes it possible to evaluate the subcriticality of a system. A method of disposing a neutron detector in the axial direction of the fuel assembly has not yet been clarified, and this is a problem.

【0009】本発明は、このような点を考慮してなされ
たものであり、使用済燃料を対象とし、その組成の軸方
向分布に対して適切に中性子検出器を配置することによ
り、質の異なる2つの方法で非破壊的に実効増倍率を求
め、測定結果の信頼度を向上することのできる実効増倍
率測定方法を提供することを目的とする。
The present invention has been made in view of the above points, and is intended for spent fuel. By appropriately disposing a neutron detector with respect to the axial distribution of the composition, quality of the spent fuel can be improved. It is an object of the present invention to provide an effective multiplication factor measuring method capable of non-destructively determining the effective multiplication factor by two different methods and improving the reliability of the measurement result.

【0010】[0010]

【課題を解決するための手段】本発明は、前記目的を達
成する手段として、使用済燃料集合体を1体づつ装荷す
る使用済燃料集合体の装荷体系の実効増倍率測定方法に
おいて、実効増倍率の変化に伴う中性子束の軸方向相対
分布形の変化が小さい該体系の軸方向中央部に中性子検
出器を配置して、基準の装荷ステップと当該ステップと
の間の中性子計数率の比から該体系の略平均的な実効増
倍率を求める自発中性子増倍法と、前記軸方向中央部に
配置した中性子検出器の中性子計数率と、実効増倍率の
変化に伴う中性子束の軸方向相対分布形の変化が生じる
軸方向端部に配置した中性子検出器の中性子計数率との
比から、予め作成した校正曲線を用いて該体系の実効増
倍率を評価する未臨界軸方向自発中性子束分布形法と、
の組合せからなる、ことを特徴とする。
According to the present invention, there is provided a method for measuring an effective multiplication factor of a loading system of a spent fuel assembly in which the spent fuel assemblies are loaded one by one. A neutron detector is arranged at the axial center of the system where the change in the relative distribution of neutron fluxes in the axial direction with the change in magnification is small, and the ratio of the neutron counting rate between the reference loading step and the step is determined. A spontaneous neutron multiplication method for obtaining a substantially average effective multiplication factor of the system, a neutron counting rate of a neutron detector arranged in the central portion in the axial direction, and an axial relative distribution of neutron flux with a change in the effective multiplication factor A subcritical axial spontaneous neutron flux distribution type that evaluates the effective multiplication factor of the system using a calibration curve prepared in advance from the ratio of the neutron detector and the neutron detector arranged at the axial end where the shape change occurs Law and
Characterized by the combination of

【0011】[0011]

【作用】本発明に係る使用済燃料貯蔵体系未臨界度評価
用中性子検出器配置方法においては、中性子検出器が、
使用済燃料集合体の軸方向中央近傍位置と、軸方向上端
近傍位置または下端近傍位置の少なくともいずれか一方
とに配置され、これらの中性子検出器により、使用済燃
料集合体内に蓄積している中性子放出核種に基づく自発
中性子が測定される。
In the method for arranging a neutron detector for subcriticality evaluation of a spent fuel storage system according to the present invention, the neutron detector comprises:
The neutrons that are disposed near the axial center of the spent fuel assembly and / or near the upper end or the lower end near the axial direction, and are accumulated in the spent fuel assembly by these neutron detectors. Spontaneous neutrons based on emitted nuclides are measured.

【0012】ところで、使用済燃料集合体の軸方向上端
近傍位置および下端近傍位置は、上端面あるいは下端面
への中性子漏洩が顕著な位置であり、一方使用済燃料集
合体の軸方向中央近傍位置は、増倍特性が使用済燃料集
合体の略平均値となる位置である。したがって、これら
の位置からの中性子束の測定値を用いた相対標準偏差の
値は、未臨界度による変化が最も大きくなり、高精度な
未臨界度評価が可能となる。
By the way, the positions near the upper end and the lower end in the axial direction of the spent fuel assembly are positions where neutron leakage to the upper end surface or the lower end surface is remarkable, while the position near the axial center of the spent fuel assembly is located. Is a position where the multiplication characteristic is approximately the average value of the spent fuel assembly. Therefore, the value of the relative standard deviation using the measured value of the neutron flux from these positions has the largest change due to the subcriticality, and the subcriticality evaluation can be performed with high accuracy.

【0013】[0013]

【実施例】以下、本発明を、沸騰水型原子炉(BWR)
の使用済燃料集合体(SFA)を貯蔵体系に貯蔵する場
合を例に採って説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to a boiling water reactor (BWR).
The case where the spent fuel assembly (SFA) is stored in a storage system will be described as an example.

【0014】本発明は、使用済燃料集合体を1体づつ装
荷する使用済燃料集合体の装荷体系の実効増倍率測定方
法であって、自発中性子増倍法と未臨界軸方向自発中性
子束分布形法との組合せからなる方法である。
The present invention relates to a method for measuring the effective multiplication factor of a loading system of a spent fuel assembly in which the spent fuel assemblies are loaded one by one, comprising a spontaneous neutron multiplication method and a subcritical axial spontaneous neutron flux distribution. This is a method that is combined with the shape method.

【0015】なお、前記2方法を正確に実施するために
は、計算機による補正計算が必要であるが、その方法に
ついては、既に前記出願において開示しているので、説
明を容易にするため、以下近似的な説明のみを行なう。
In order to accurately execute the above two methods, correction calculation by a computer is necessary. Since the method is already disclosed in the above-mentioned application, it will be described below in order to facilitate the explanation. Only an approximate explanation will be given.

【0016】無限大均一体系あるいは1点体系において
中性子源(強度S)が与えられた場合の未臨界中性子束
(φ)は、中性子実効増倍率(keff :以下kと略す)
との間に、比例係数αを介して次式の関係にあることは
よく知られている。
When a neutron source (intensity S) is given in an infinite homogeneous system or a one-point system, the subcritical neutron flux (φ) is an effective neutron multiplication factor (k eff : hereinafter abbreviated as k).
It is well known that there is a relationship between

【0017】 φ=αS/(1−k) ………(1) このkの値は、炉物理学の従来の一般的な常識では、体
系の場所によらず一定と考えられてきたが、例えばBW
R SFAを水中に1体置いた場合、上端近傍で放出さ
れた中性子の子孫が、下端近傍で発見される確率が殆ん
どないことは、炉物理学関係者には容易に理解できる。
したがって、上端と下端とは、中性子的に一体には結合
されておらず、1つのkの値で全体を定義することは、
数学的にはできても物理的にはあまり意味がないといえ
る。体系が臨界に近付くにつれて、一体に結合される傾
向が現われる。したがって、前記式1は、局所的にkを
定義したものといえる。
Φ = αS / (1−k) (1) The value of k has been considered to be constant regardless of the location of the system in the conventional general common sense of reactor physics. For example, BW
It is easily understood by those involved in reactor physics that, when one RSFA is placed in water, there is little probability that neutron progeny emitted near the upper end will be found near the lower end.
Therefore, the upper and lower ends are not neutronically coupled together, and defining the whole with one k value means
It can be said that although it can be done mathematically, it is not physically significant. As the system approaches criticality, it tends to become united. Therefore, it can be said that Equation 1 locally defines k.

【0018】本発明においては、前記式1を基本的原理
として利用するのが「自発中性子増倍法」であり、一方
臨界に近付くにつれて一体的に結合される傾向が現わ
れ、臨界時に達成されるであろう中性子束分布形(ここ
では軸方向相対分布形の意味)に未臨界軸方向中性子束
分布形が近付く現象を利用するのが「未臨界軸方向自発
中性子束分布形法」である。
In the present invention, the "spontaneous neutron multiplication method" uses the above formula 1 as a basic principle. On the other hand, as the criticality is approached, there is a tendency that they are integrally coupled, and this is achieved at the criticality. The “subcritical axial spontaneous neutron flux distribution method” utilizes the phenomenon in which the subcritical axial neutron flux distribution pattern approaches the neutron flux distribution pattern (in this case, the meaning of the axial relative distribution pattern).

【0019】図1は、前記未臨界軸方向自発中性子束分
布形法(以下、分布形法と略す)の原理を示したもので
ある。燃料集合体(FA)は、簡単のため、ここでは軸
方向に一様な組成であるものとする。このため、無限増
倍率(k)は軸方向に一様である。またFA内に内在
する自発中性子源強度も、軸方向に一様である。
FIG. 1 shows the principle of the subcritical axial spontaneous neutron flux distribution method (hereinafter abbreviated as distribution method). The fuel assembly (FA) is assumed to have a uniform composition in the axial direction here for simplicity. Accordingly, the infinite multiplication factor (k ∞) is uniform in the axial direction. The spontaneous neutron source intensity in the FA is also uniform in the axial direction.

【0020】FAは、実機FAと同じ約3.6mで、全
長を24等分割し、下端部から上端部に向かって、ノー
ド1,2,…,24と名付ける。1ノードはこの際約1
5cmとなる。
The FA is about 3.6 m, which is the same as the actual FA, and is divided into 24 equal parts in length, and is named nodes 1, 2,..., 24 from the lower end toward the upper end. One node is about 1
5cm.

【0021】体系が、もし臨界であれば、図1(A),
(B),(C)に破線イで示すように、分布形がCOS
形となるが、未臨界度が深い場合には、COS分布形
が、両端部を除きつぶされた形となる。体系が臨界に近
付く(未臨界度が浅くなる)につれて、中性子束分布形
は、図1(A),(B),(C)に実線ロ、ハ、ニで示
すように変化し、未臨界度が浅くなるとCOS分布形に
近付き、図1(A),(B)に示すような、中央部分の
平坦な部分は消えていく。
If the system is critical, FIG. 1 (A),
(B) and (C) show that the distribution type is COS
When the subcriticality is deep, the COS distribution shape becomes a shape crushed except for both ends. As the system approaches criticality (subcriticality becomes shallower), the neutron flux distribution changes as shown by solid lines b, c, and d in FIGS. 1A, 1B, and 1C. As the degree becomes shallower, it approaches the COS distribution shape, and the flat portion at the center as shown in FIGS. 1A and 1B disappears.

【0022】この分布形をモニタして未臨界度をモニタ
する方法としては、図1(A)に示すように、符号
1 ,d3 ,d5 の位置に中性子検出器を配置する。そ
して、符号d1 とd3 (あるいは符号d5 とd3 )の位
置の中性子計数率の比をとると、未臨界度との相関が得
られる。また、多数の中性子検出器を配置し、各検出器
で得られるそれぞれの計数率相互間の相対標準偏差を求
めても、未臨界度との相関性を求めることができる。
[0022] As a method for monitoring the subcriticality monitors the distribution shape, as shown in FIG. 1 (A), placing the neutron detector to the position of the code d 1, d 3, d 5 . Then, when the ratio of the neutron count rates at the positions of the codes d 1 and d 3 (or the codes d 5 and d 3 ) is obtained, a correlation with the subcriticality is obtained. Further, even when a large number of neutron detectors are arranged and the relative standard deviation between the respective counting rates obtained by each detector is obtained, the correlation with the subcriticality can be obtained.

【0023】図2は、実際のBWRのSFAの諸特性を
模式的に示したものである。なお、近年のBWR用燃料
は、種々の思想の下に、軸方向に変化を持たせた設計が
行なわれる例が比較的多いが、ここでは説明を容易にす
るため、軸方向は一様な設計になっている燃料がSFA
となった例について示している。ただし、軸方向に分布
を持たせた設計であっても、SFAとなってしまえば図
2の例から大幅な変化は通常ないことが多い。
FIG. 2 schematically shows various characteristics of the SFA of the actual BWR. It should be noted that, in recent years, BWR fuels are often designed with a change in the axial direction under various ideas, but here, the axial direction is uniform in order to facilitate the description. Designed fuel is SFA
The example shown in FIG. However, even in the case of a design having a distribution in the axial direction, there is usually no significant change from the example of FIG.

【0024】図2(A)は、軸方向燃焼度(BU)の相
対分布を示す。上下端は、炉心からの中性子の軸方向漏
れのため低下しているが、その他の部分は概略平坦であ
る。これは、平坦になるように運転が行なわれたり、あ
るいは燃料設計が行なわれるためである。
FIG. 2A shows the relative distribution of the axial burnup (BU). The upper and lower ends are lowered due to axial leakage of neutrons from the core, but the other parts are generally flat. This is because the operation is performed so as to be flat or the fuel is designed.

【0025】図2(B)は、冷却材ボイド割合の分布を
示す。ノード3あたりからボイドが発生し始め、高さ中
央付近で40〜50%、上端付近で70〜75%となる
ことが多い。上方では、ボイド率が高いためPuの生成
割合が高く、 235Uや 239Puの燃焼は遅れがちとな
る。
FIG. 2B shows the distribution of the coolant void ratio. Voids begin to be generated around the node 3 and often become 40 to 50% near the center of the height and 70 to 75% near the upper end. Above, the rate of Pu generation is high due to the high void fraction, and the combustion of 235 U and 239 Pu tends to be delayed.

【0026】図2(C)は、核分裂核種(フィッサイ
ル:Fis)濃度の軸方向相対分布形を示す。上下端で
は、燃焼が遅れる結果、残存フィッサイル濃度が高く、
ノード4〜5近傍の燃焼度が高い部分で濃度が低い。上
端を除く上半では、燃焼度は比較的高いものの、ボイド
割合が高くPuの生成割合が高いため、残存フィッサイ
ル濃度は、上方に向かうにつれて増々増大している。
FIG. 2 (C) shows the axial relative distribution of fission nuclide (Fissil) concentration. At the upper and lower ends, as a result of delayed combustion, the residual fissail concentration is high,
The concentration is low in the high burn-up portion near the nodes 4 and 5. In the upper half except for the upper end, although the burnup is relatively high, the void fraction is high and the Pu generation rate is high, so that the residual fissail concentration is increasing further upward.

【0027】図2(D)は、kとkeff との関係を示
したもので、基本的には、図2(C)の曲線と類似の曲
線を描くことになる。kは、設計計算では、核分裂を
伴なう局所的な中性子発生率と吸収率との比として定義
されている。図2(D)において、破線がkで、実線
が局所的に定義した中性子実効増倍率kである(k=k
eff )。
FIG. 2D shows the relationship between k and k eff, and basically draws a curve similar to the curve of FIG. 2C. k is defined in the design calculation as the ratio between the local neutron generation rate with fission and the absorption rate. In FIG. 2 (D), the at broken line k ∞, the solid line is effective neutron multiplication factor k defined locally (k = k
eff ).

【0028】未臨界度が著しく深いBWR SFAで
は、中性子の実効的な移動距離(子孫中性子まで含め
る)は短いので、上下端付近での端面からの中性子漏れ
の効果は、端面近傍に限定されており、端面近傍だけが
eff の低下を生じている。端面付近では、中性子の漏
れは、半径方向と端面とで生じるので漏れる確率が高
く、端面から若干、例えば20〜30cm以上離れると、
端面からの中性子の漏れの影響はほぼ消滅し、半径方向
のみの漏れしか効かなくなる。なお、図2には示してい
ないが、未臨界度が浅くなると、端面からの中性子の漏
れの影響は比較的遠方まで及ぶようになる。
In a BWR SFA having a remarkably deep subcriticality, since the effective neutron travel distance (including the descendant neutrons) is short, the effect of neutron leakage from the end face near the upper and lower ends is limited to the vicinity of the end face. Therefore , only the vicinity of the end face causes a decrease in k eff . Near the end face, the neutron leakage occurs in the radial direction and the end face, so the probability of leakage is high, and if it is slightly away from the end face, for example, 20 to 30 cm or more,
The effect of neutron leakage from the end face almost disappears, and only leakage in the radial direction is effective. Although not shown in FIG. 2, when the subcriticality becomes shallow, the influence of neutron leakage from the end face extends to a relatively long distance.

【0029】図2(E)は、一次中性子、すなわちSF
Aに蓄積された超ウラン核種からの中性子放出率(S)
の相対分布形を、燃焼度(BU)の相対分布形と対比し
て示す。Sは、BU分布形と似ているが、SFAの軸方
向下方ではBU分布形よりも下側にあり、上方では上側
になる。これは、ボイド割合が高いほど同一燃焼度の場
合のS分布形の値が高くなるのが主な理由である。
FIG. 2E shows primary neutrons, that is, SFs.
Neutron emission rate from transuranium nuclides accumulated in A (S)
Are shown in comparison with the relative distribution of burnup (BU). S is similar to the BU distribution type, but is lower than the BU distribution type below the SFA in the axial direction, and is upper above the SFA. This is mainly because the higher the void ratio, the higher the value of the S distribution type in the case of the same burnup.

【0030】図2(F)は、主に図2(D)のkeff
線と図2(E)のS曲線とによって前記式1で支配され
たSFAに内在する自発中性子源(一次中性子源)に基
づく自発中性子束の軸方向分布形を示す。この分布形
は、図2(D)のkeff 曲線が図2(E)のS曲線によ
って強調されたような形状を提している。
FIG. 2 (F) shows a spontaneous neutron source (primary neutron source) inherent in the SFA governed by the above equation 1 mainly by the k eff curve of FIG. 2 (D) and the S curve of FIG. 2 (E). 3) shows the axial distribution of the spontaneous neutron flux based on ()). This distribution shape has a shape such that the k eff curve in FIG. 2D is emphasized by the S curve in FIG. 2E.

【0031】なお、SFA1体を水中に配置して一次中
性子放出率Sや増倍率keff を定量する方法は、本発明
者等の研究や海外の研究者等によって既に確立され、実
用段階に入っている。そして、図2の(B)を除く
(A)〜(F)の定量が可能となっている。ただし、複
数のSFAからなる体系で、これらを求める方法は開発
されていない。
The method of quantifying the primary neutron emission rate S and the multiplication factor k eff by placing one SFA in water has already been established by the present inventors and overseas researchers, and has entered the practical stage. ing. Then, quantification of (A) to (F) except for (B) of FIG. 2 is possible. However, a method for obtaining these in a system including a plurality of SFAs has not been developed.

【0032】図3は、BWR SFA貯蔵体系の自発中
性子に基づく軸方向中性子束分布を図式的に示したもの
である。
FIG. 3 schematically illustrates the axial neutron flux distribution based on spontaneous neutrons in the BWR SFA storage system.

【0033】図3(A)は、図2(F)、すなわちBW
R SFA1体時の軸方向分布形を示す。比較のため、
この曲線イを、図3(B)、(C)においても破線で示
している。体系への燃料(SFA)装荷量が多くなる
と、中性子増倍率が大きくなるため、式1に基づく中性
子束の増大と図1に基づく分布形形状の変化とが現われ
てくる。その経過を、図3(A)、(B)、(C)に曲
線イ、ロ、ハで示している。なお、曲線の比較を容易に
するため、SFA体数増加に伴なうSの比例的増加の分
は除いて、すなわち同じ中性子源強度の場合に対して示
している。
FIG. 3A is a view showing FIG. 2F, that is, BW
The axial distribution pattern of one RSFA is shown. For comparison,
This curve A is also shown by a broken line in FIGS. 3B and 3C. When the fuel (SFA) loading on the system increases, the neutron multiplication factor increases, so that an increase in the neutron flux based on Equation 1 and a change in the distribution shape based on FIG. 1 appear. The progress is shown by curves A, B and C in FIGS. 3 (A), 3 (B) and 3 (C). In order to facilitate the comparison of the curves, the graph is shown except for the proportional increase in S accompanying the increase in the number of SFA bodies, that is, the case of the same neutron source intensity.

【0034】図4は、中性子束あるいは測定点間の中性
子束の比を、測定位置の場所依存の中性子実効増倍率k
eff による変化を、keff =0.7における値で規格化
して示したものである。なお、以下に示す測定点d1
5 は、図3に示す測定点d1 〜d5 に対応している。
FIG. 4 shows the neutron flux or the ratio of the neutron flux between the measurement points to the neutron effective multiplication factor k depending on the location of the measurement position.
The change due to eff is shown as normalized by the value at k eff = 0.7. The measurement points d 1 ~ shown below
d 5 corresponds to the measurement point d 1 to d 5 shown in FIG.

【0035】図4(A)に示す曲線イは、図1における
曲線形状の変化を、測定点d3 の中性子束に対する測定
点d1 またはd5 の中性子束の比を相対変化として示し
ている。燃料貯蔵体系では、通常keff 値が0.8〜
0.9の間でモニタできる必要があり、曲線がその間で
充分変化していることから、モニタの基本的条件は有し
ていることが判る。
A curve A shown in FIG. 4A indicates a change in the curve shape in FIG. 1 and a ratio of the neutron flux at the measurement point d 1 or d 5 to the neutron flux at the measurement point d 3 as a relative change. . In fuel storage systems, k eff values are typically between 0.8 and
Since it is necessary to be able to monitor between 0.9 and the curve has changed sufficiently between them, it can be seen that the basic condition of the monitor is possessed.

【0036】図4(B)に示す曲線ロは、BWR SF
Aのように、測定点d2 ,d4 でkeff の値に差が生じ
る際に利用できる特性であり、もし両測定点d2 ,d4
間で差が生じなければ、曲線ロは平坦な直線となってし
まう。加圧水型原子炉(PWR)のSFAでは、ほぼ平
坦になる場合と、挿入制御棒の影響で図4(B)の曲線
ロのように変化する場合とが予想される。
The curve (b) shown in FIG.
This characteristic can be used when there is a difference in the value of k eff between the measurement points d 2 and d 4 as shown in A. If both measurement points d 2 and d 4
If there is no difference between the curves, the curve b becomes a flat straight line. In the SFA of a pressurized water reactor (PWR), it is expected that the case will be almost flat and the case will change as shown by the curve B in FIG. 4B due to the influence of the insertion control rod.

【0037】図4(B)に示す曲線ハは、式1において
eff 値が変化するにつれて変化する中性子束変化特性
を示している。この形の曲線ハは、測定点d2 ,d3
4 いずれでも現われる。測定点d1 ,d5 では類似の
曲線は現われるものの、図1に示す形状変化の効果が比
較的顕著に現われ易いため、測定点d1 ,d5 は式1の
適用にはあまり好都合ではない。
A curve C shown in FIG. 4B shows a neutron flux change characteristic that changes as the k eff value changes in the equation (1). The curve c of this shape is obtained by measuring points d 2 , d 3 ,
d 4 appear either. Although similar curves appear at the measurement points d 1 and d 5 , the effects of the shape change shown in FIG. 1 tend to appear relatively remarkably, so that the measurement points d 1 and d 5 are not very convenient for applying the formula 1. .

【0038】図4(A)に示す曲線イは、解析式により
表現することはかなり困難であり、数値計算により曲線
イを求め、中性子束比の測定値からkeffを評価するこ
とになる。ここで得られるkeff 値は、図2のように軸
方向でkeff 値が変化する体系では、局所的な値として
定義することは困難であり、概略SFAの平均的値と考
えられる。一方、図4(B)に示す曲線ロ、ハは、式1
を用いて中性子束の測定値から局所的なkeff値の評価
が可能である。
It is quite difficult to express the curve A shown in FIG. 4 (A) by an analytical expression. The curve A is obtained by numerical calculation, and k eff is evaluated from the measured value of the neutron flux ratio. The k eff value obtained here is difficult to define as a local value in a system in which the k eff value changes in the axial direction as shown in FIG. 2, and is considered to be an approximate SFA average value. On the other hand, the curves b and c shown in FIG.
Can be used to estimate the local k eff value from the measured neutron flux.

【0039】空間を隔てた複数点における中性子束の測
定値から、その相対標準偏差を求めてみると、未臨界度
と相関関係があることが判っている。この際、その相対
標準偏差の値の未臨界度による変化を大きくするため、
未臨界度による分布形の変化が、なるべく大きい点を測
定点として選定する必要がある。このためには、両端近
傍の測定点d1 ,d5 のうちの少なくともいずれか一方
と、中間の測定点d3 とは最小限選定する必要があり、
できれば測定点d2 ,d4 も含めることが望ましい。
When the relative standard deviation is obtained from the measured values of the neutron flux at a plurality of points separated by space, it is known that there is a correlation with the subcriticality. At this time, in order to increase the change of the value of the relative standard deviation due to the subcriticality,
It is necessary to select a point where the change in the distribution form due to the subcriticality is as large as possible as a measurement point. For this purpose, it is necessary to select at least one of the measurement points d 1 and d 5 near both ends and the intermediate measurement point d 3 at a minimum.
If possible, it is desirable to include the measurement points d 2 and d 4 .

【0040】図5は、BWR SFAを収納するための
キャスク用燃料バスケットの一例を示すもので、従来の
バスケットと異なる点は、中性子検出器挿入穴を、外筒
の内側でSFAを挿入しない半欠け状の格子目部に設け
ている点である。
FIG. 5 shows an example of a cask fuel basket for accommodating a BWR SFA. The difference from the conventional basket is that the neutron detector insertion hole is provided with a half in which the SFA is not inserted inside the outer cylinder. This is a point provided in the notched lattice portion.

【0041】すなわち、このキャスク用燃料バスケット
は、図5に示すように、円筒状の外筒10を備えてお
り、この外筒10内には、格子材11で仕切られた格子
目状のSFA収納空間12が設けられている。前記外筒
10内にはまた、SFAを収納しない半欠け状の格子目
部に、中性子検出器挿入穴13が例えば4箇所に設けら
れている。
That is, as shown in FIG. 5, the cask fuel basket includes a cylindrical outer cylinder 10 in which a grid-like SFA partitioned by a lattice material 11 is provided. A storage space 12 is provided. In the outer cylinder 10, neutron detector insertion holes 13 are provided at, for example, four places in a semi-notched lattice portion that does not store the SFA.

【0042】なお、検出器挿入位置は、本発明に係る方
法を実施する限りでは、図5に示す位置に限定する必要
はないが、SFA装荷中途段階で、検出器の水平方向位
置を変える必要がない点において有利である。
Note that the detector insertion position need not be limited to the position shown in FIG. 5 as long as the method according to the present invention is carried out, but it is necessary to change the horizontal position of the detector during the SFA loading stage. Is advantageous in that there is no

【0043】軸方向中性子検出器位置は、前述のように
測定点d1 〜d5 のうちの少なくとも2点が選ばれる。
As described above, at least two of the measurement points d 1 to d 5 are selected as the axial neutron detector positions.

【0044】いま、上下端近傍の測定点d1 ,d5 を除
く点で中性子束を測定する場合(自発中性子増倍法)を
考えると、前述のように式1が成立する。基準体系を
A、未臨界度を評価すべき体系をBとして区別すると、
次式が得られる。
Now, when the neutron flux is measured at points other than the measurement points d 1 and d 5 near the upper and lower ends (spontaneous neutron multiplication method), Equation 1 is established as described above. Distinguishing the reference system as A and the system to evaluate the subcriticality as B,
The following equation is obtained.

【0045】 φA =αA A /(1−kA ) ………(2) φB =αB B /(1−kB ) ………(3) 未臨界度は、ρA =1/kA −1,ρB =1/kB −1
で定義されるため、式2と式3との比は、
[0045] φ A = α A S A / (1-k A) ......... (2) φ B = α B S B / (1-k B) ......... (3) subcriticality, [rho A = 1 / k A -1, ρ B = 1 / k B -1
Thus, the ratio between Equation 2 and Equation 3 is

【0046】[0046]

【数1】 で表わすことができる。(Equation 1) Can be represented by

【0047】いま、AをSFA1体の体系とすると、ρ
A 従ってkA を測定する方法は既に開発済みであり、測
定できる。φB /φA は測定できる量であり、(αB
αA )は与えられた体系に対する計算で求められる。S
A の値も測定手法は既に開発されている。対象とするB
体系に含まれる複数のSFAのSの和、すなわちS
B は、1体ずつの測定値の和として求められる。したが
って、式4の未知量はkB のみとなり、φB /φA の測
定からkB を求めることができる。この方法を1体、2
体、3体、……と順次繰返していけば、各装荷段階での
eff 値を評価することができる。
Now, if A is a system of one SFA, ρ
How to measure the A thus k A is already developed, it can be measured. φ B / φ A is a measurable quantity, (α B /
α A ) is obtained by calculation for a given system. S
A measurement method for the value of A has already been developed. Target B
Sum of S of a plurality of SFAs included in the system, that is, S
B is obtained as the sum of the measured values of each body. Therefore, the only unknown quantity in Equation 4 is k B, and k B can be determined from the measurement of φ B / φ A. One of these methods, two
By sequentially repeating the body, three bodies,..., The k eff value at each loading stage can be evaluated.

【0048】測定点d4 ,d2 における中性子束比は、
式4の比として求められる。測定点d1 ,d5 と測定点
3 との中性子束比を解析的に表現することは容易でな
く、したがって、与えられた体系に対して計算で校正曲
線を作っておき、中性子束比測定値から増倍率を求める
ことになる。
The neutron flux ratio at the measurement points d 4 and d 2 is:
It is obtained as the ratio of Equation 4. It is not easy to analytically express the neutron flux ratio between the measurement points d 1 and d 5 and the measurement point d 3. Therefore, a calibration curve is prepared by calculation for a given system, and the neutron flux ratio is calculated. The multiplication factor is determined from the measured value.

【0049】また、測定点d1 〜d5 のように、空間を
隔ててしかも中性子束分布形の変化が特徴的な位置にお
ける複数点の中性子束の測定値からその相対標準偏差を
求め、予め計算等で求められた校正曲線から体系の中性
子増倍率を評価することができる。
Further, relative standard deviations are obtained from measured values of neutron fluxes at a plurality of points at positions where a change in the neutron flux distribution is characteristic, such as at measurement points d 1 to d 5 , separated by space. The neutron multiplication factor of the system can be evaluated from the calibration curve obtained by calculation or the like.

【0050】なお、前記実施例では、主としてBWR
SFAの貯蔵について説明したが、PWR等他の炉型の
SFAの貯蔵にも同様に適用することができる。
In the above embodiment, mainly the BWR
Although the storage of SFA has been described, the present invention can be similarly applied to storage of other furnace-type SFA such as PWR.

【0051】[0051]

【発明の効果】以上説明したように本発明は、実効増倍
率の変化に伴う中性子束の軸方向相対分布形の変化が小
さい該体系の軸方向中央部に中性子検出器を配置して、
基準の装荷ステップと当該ステップとの間の中性子計数
率の比から該体系の略平均的な実効増倍率を求める自発
中性子増倍法と、前記軸方向中央部に配置した中性子検
出器の中性子計数率と、実効増倍率の変化に伴う中性子
束の軸方向相対分布形の変化が生じる軸方向端部に配置
した中性子検出器の中性子計数率との比から、予め作成
した校正曲線を用いて該体系の実効増倍率を評価する未
臨界軸方向自発中性子束分布形法とを組合せて実効増倍
率を測定するようにしたので、質の異なる2つの方法で
非破壊的に実効増倍率を求めることができ、測定方法の
違いによる系統的な差異の有無を確認することができる
ので、測定で得られる実効増倍率の信頼度を向上させる
ことができる。そしてこれにより、本発明によれば、使
用済燃料集合体を体系に収納する各段階での未臨界度を
評価することができ、体系の未臨界度を一定値以上に保
持することができるとともに不必要な過度の裕度を排除
することができ、限られた空間内により多くの使用済燃
料集合体を貯蔵することができ、さらに、貯蔵設備のコ
ストアップの原因となっている過度の中性子吸収材を排
除でき、経済的な貯蔵が可能となる。
As described above, according to the present invention, the neutron detector is arranged at the axial center of the system where the change in the axial relative distribution of the neutron flux is small with the change in the effective multiplication factor.
A spontaneous neutron multiplication method for obtaining a substantially average effective multiplication factor of the system from a ratio of a neutron counting rate between a reference loading step and the step, and a neutron counting method for a neutron detector arranged at the central portion in the axial direction. Using a calibration curve prepared in advance from the ratio of the neutron detector arranged at the axial end where the relative distribution of the neutron flux in the axial direction changes with the change in the effective multiplication factor. Since the effective multiplication factor is measured in combination with the subcritical axial spontaneous neutron flux distribution method for evaluating the effective multiplication factor of the system, the non-destructive calculation of the effective multiplication factor using two methods of different quality is required. It is possible to confirm the presence or absence of a systematic difference due to the difference in the measurement method, so that the reliability of the effective multiplication factor obtained in the measurement can be improved. Thus, according to the present invention, the subcriticality at each stage of storing the spent fuel assembly in the system can be evaluated, and the subcriticality of the system can be maintained at a certain value or more. Unnecessary excess margins can be eliminated, more spent fuel assemblies can be stored in confined spaces, and excessive neutrons causing increased cost of storage facilities Absorbents can be eliminated and economical storage is possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】未臨界軸方向自発中性子束分布形法の原理を示
すグラフであり、(A)は未臨界度が深い場合の分布
形、(B)は未臨界度が稍浅い場合の分布形、(C)は
未臨界度が浅い場合の分布形をそれぞれ示す。
1A and 1B are graphs showing the principle of a subcritical axial spontaneous neutron flux distribution method, wherein FIG. 1A shows a distribution form when the subcriticality is deep, and FIG. 1B shows a distribution form when the subcriticality is slightly shallow. , (C) respectively show distribution shapes when the subcriticality is shallow.

【図2】BWR SFAの軸方向諸特性分布を示すグラ
フであり、(A)は燃焼度、(B)はボイド割合、
(C)は核分裂核種、(D)はkeff および
、(E)は一次中性子、(F)は中性子束の特性
分布をそれぞれ示す。
FIG. 2 is a graph showing distributions of various characteristics in the axial direction of a BWR SFA, where (A) is a burnup, (B) is a void ratio,
(C) shows a fission nuclide, (D) shows k eff and k , (E) shows primary neutrons, and (F) shows a neutron flux characteristic distribution.

【図3】BWR SFA貯蔵体系の軸方向中性子束分布
を示すグラフであり、(A)はBWR SFA1体時の
軸方向分布形、(B)はSFAの体数を稍増加させた時
の軸方向分布形、(B)はSFAの体数をさらに増加さ
せた時の軸方向分布形をそれぞれ示す。
FIG. 3 is a graph showing the axial neutron flux distribution of the BWR SFA storage system, where (A) is the axial distribution pattern of one BWR SFA, and (B) is the axis when the number of SFA is slightly increased. (B) shows the axial distribution when the number of SFAs is further increased.

【図4】中性子増倍率による中性子束および中性子束比
の変化を示すグラフであり、(A)はφ(d1 )または
φ(d5 )とφ(d3)との比の相対変化、(B)はφ
(d4 )とφ(d2 )との比の相対変化およびφ
(d3 )の相対変化をそれぞれ示す。
FIG. 4 is a graph showing a change in a neutron flux and a neutron flux ratio depending on a neutron multiplication factor, wherein (A) shows a relative change in φ (d 1 ) or a ratio of φ (d 5 ) to φ (d 3 ); (B) is φ
Relative change in the ratio between (d 4 ) and φ (d 2 ) and φ
The relative change of (d 3 ) is shown.

【図5】BWR SFAを収納するためのキャスク用燃
料バスケットの一例を示す構成図である。
FIG. 5 is a configuration diagram showing an example of a cask fuel basket for storing a BWR SFA.

【符号の説明】[Explanation of symbols]

10 外筒 11 格子材 12 SFA収納空間 13 中性子検出器挿入穴 d1 ,d2 ,d3 ,d4 ,d5 測定点10 outer tube 11 grid member 12 SFA receiving space 13 neutron detector insertion hole d 1, d 2, d 3 , d 4, d 5 measurement points

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平1−250898(JP,A) 特開 平1−169398(JP,A) Makoto UEDA et a l,”Subcriticality Measurement Method Employing Intrins ic Neutron Sourc e.”J.of Nucl.Sci.a nd Tech.,27[12]p.1102− 1114(1990) (58)調査した分野(Int.Cl.7,DB名) G21C 17/06 G21C 19/40 JICSTファイル(JOIS)────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A 1-250898 (JP, A) JP-A 1-169398 (JP, A) Makoto UEDA et al, “Subcriticality Measurement Methodology Enrollment Neuroscience "J. of Nucl. Sci. and Tech. , 27 [12] p. 1102-1114 (1990) (58) Fields investigated (Int. Cl. 7 , DB name) G21C 17/06 G21C 19/40 JICST file (JOIS)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】使用済燃料集合体を1体づつ装荷する使用
済燃料集合体の装荷体系の実効増倍率測定方法におい
て、 実効増倍率の変化に伴う中性子束の軸方向相対分布形の
変化が小さい該体系の軸方向中央部に中性子検出器を配
置して、基準の装荷ステップと当該ステップとの間の中
性子計数率の比から該体系の略平均的な実効増倍率を求
める自発中性子増倍法と、 前記軸方向中央部に配置した中性子検出器の中性子計数
率と、実効増倍率の変化に伴う中性子束の軸方向相対分
布形の変化が生じる軸方向端部に配置した中性子検出器
の中性子計数率との比から、予め作成した校正曲線を用
いて該体系の実効増倍率を評価する未臨界軸方向自発中
性子束分布形法と、の組合せからなる実効増倍率測定方
法。
1. A method for measuring an effective multiplication factor of a loading system of a spent fuel assembly in which the spent fuel assemblies are loaded one by one, wherein a change in a relative distribution of neutron fluxes in the axial direction accompanying a change in the effective multiplication factor is determined. A neutron detector is arranged at the axial center of the small system, and a spontaneous neutron multiplication for obtaining a substantially average effective multiplication factor of the system from a ratio of a neutron counting rate between a reference loading step and the step. The neutron counting rate of the neutron detector arranged at the axial center and the neutron detector arranged at the axial end where the change in the axial relative distribution of the neutron flux with the change of the effective multiplication factor occurs. A method for measuring an effective multiplication factor comprising a combination of a subcritical axial spontaneous neutron flux distribution method for evaluating an effective multiplication factor of the system from a ratio with a neutron counting rate using a calibration curve prepared in advance.
JP3249397A 1991-09-27 1991-09-27 Measurement method of effective multiplication factor of spent fuel assembly loading system Expired - Fee Related JP3041101B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3249397A JP3041101B2 (en) 1991-09-27 1991-09-27 Measurement method of effective multiplication factor of spent fuel assembly loading system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3249397A JP3041101B2 (en) 1991-09-27 1991-09-27 Measurement method of effective multiplication factor of spent fuel assembly loading system

Publications (2)

Publication Number Publication Date
JPH0587977A JPH0587977A (en) 1993-04-09
JP3041101B2 true JP3041101B2 (en) 2000-05-15

Family

ID=17192383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3249397A Expired - Fee Related JP3041101B2 (en) 1991-09-27 1991-09-27 Measurement method of effective multiplication factor of spent fuel assembly loading system

Country Status (1)

Country Link
JP (1) JP3041101B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH088393A (en) * 1994-06-23 1996-01-12 Fujitsu Ltd Semiconductor device
JP4601838B2 (en) * 2001-02-08 2010-12-22 株式会社東芝 Burnup evaluation method and apparatus
JP4864588B2 (en) * 2006-08-03 2012-02-01 株式会社東芝 Method of loading irradiated fuel into subcritical neutron multiplication system and calculating effective multiplication factor of irradiated fuel
WO2014091955A1 (en) * 2012-12-14 2014-06-19 日本電気株式会社 Control rod monitoring system and control rod monitoring method
JP6262090B2 (en) * 2014-07-24 2018-01-17 日立Geニュークリア・エナジー株式会社 Subcritical state estimation method and subcritical state estimation system
CN106782687B (en) * 2015-11-20 2023-11-28 国家电投集团科学技术研究院有限公司 Method of detector placement for a core containing 193 cartridge fuel assemblies
CN111933320A (en) * 2020-08-12 2020-11-13 上海核工程研究设计院有限公司 Method for performing on-pile test verification of neutron detector by using standard detector
CN114722646B (en) * 2022-06-10 2022-08-26 西安交通大学 Method for optimizing three-dimensional measuring point arrangement of self-powered detector based on Kriging model

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Makoto UEDA et al,"Subcriticality Measurement Method Employing Intrinsic Neutron Source."J.of Nucl.Sci.and Tech.,27[12]p.1102−1114(1990)

Also Published As

Publication number Publication date
JPH0587977A (en) 1993-04-09

Similar Documents

Publication Publication Date Title
JP5546174B2 (en) Radioactivity concentration evaluation method and evaluation program for radioactive waste, and radioactivity concentration evaluation apparatus
JP2006322727A (en) Measuring method of axial-direction void fraction distribution, and fuel assembly neutron multiplication factor evaluation method before storage in storing device
JP3041101B2 (en) Measurement method of effective multiplication factor of spent fuel assembly loading system
JP5752467B2 (en) Reactor fuel non-destructive burnup evaluation method and apparatus
JP2542883B2 (en) Effective multiplication factor measurement method for subcritical systems loaded with irradiation fuel
JP3708599B2 (en) Subcriticality evaluation method when storing spent fuel assemblies
JP3115092B2 (en) Effective gain measurement method and neutron detector placement method
JP3628111B2 (en) Nondestructive burnup evaluation method for reactor fuel
Jansson et al. Gamma-ray spectroscopy measurements of decay heat in spent nuclear fuel
JPH045356B2 (en)
JPH0426718B2 (en)
JP3026455B2 (en) Burnup measurement method for irradiated fuel assemblies
Husnayani et al. Kr-85m activity as burnup measurement indicator in a pebble bed reactor based on ORIGEN2. 1 Computer Simulation
JP3651716B2 (en) Nondestructive burnup evaluation method for reactor fuel
JPH01199195A (en) Effective multiplication factor measuring method of irradiation fuel charged subcritical system
Oeda et al. Calibration of burnup monitor installed in Rokkasho Reprocessing Plant
JP2006138795A (en) Neutron detector sensitivity calibration method and evaluation method for sub-criticality of fuel container system
JPH0453397B2 (en)
JPH0317115B2 (en)
JP3026463B2 (en) Neutron effective multiplication factor measurement method when storing irradiated fuel
JP3431381B2 (en) Method for storing spent fuel assembly cask and method for measuring subcriticality of cask storage system
JPH0453398B2 (en)
Pan et al. Estimation of burnup in Taiwan research reactor fuel pins by using nondestructive techniques
JP4664645B2 (en) Method for measuring neutron emission rate of irradiated fuel assemblies
JPH03215797A (en) Method for monitoring subcriticalness of nuclear reactor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080303

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090303

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees