JPS61139795A - Nondestructive measuring method of spent fuel - Google Patents

Nondestructive measuring method of spent fuel

Info

Publication number
JPS61139795A
JPS61139795A JP59262220A JP26222084A JPS61139795A JP S61139795 A JPS61139795 A JP S61139795A JP 59262220 A JP59262220 A JP 59262220A JP 26222084 A JP26222084 A JP 26222084A JP S61139795 A JPS61139795 A JP S61139795A
Authority
JP
Japan
Prior art keywords
spent fuel
fuel
burnup
neutron
neutrons
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59262220A
Other languages
Japanese (ja)
Other versions
JPH045356B2 (en
Inventor
二口 政信
精 植田
関口 善之
清野 赳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Nippon Atomic Industry Group Co Ltd
Tokyo Electric Power Co Holdings Inc
Original Assignee
Toshiba Corp
Tokyo Electric Power Co Inc
Nippon Atomic Industry Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Electric Power Co Inc, Nippon Atomic Industry Group Co Ltd filed Critical Toshiba Corp
Priority to JP59262220A priority Critical patent/JPS61139795A/en
Publication of JPS61139795A publication Critical patent/JPS61139795A/en
Publication of JPH045356B2 publication Critical patent/JPH045356B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [発明の技術分野1 本発明は非破壊測定により使用済燃料の核特性の評価を
行なう使用済燃料の非破壊測定方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention 1] The present invention relates to a method for non-destructive measurement of spent fuel for evaluating the nuclear properties of spent fuel by non-destructive measurement.

[発明の技術的背景とその問題点] 一般に、原子炉から取り出された使用済燃料は、一定期
間燃料貯蔵プールに貯蔵され半減期の短い放射能の減衰
をさせた後、輸送容器に収納され再処理工場または長期
貯蔵m設に運ばれる。
[Technical background of the invention and its problems] Generally, spent fuel taken out from a nuclear reactor is stored in a fuel storage pool for a certain period of time to attenuate its radioactivity, which has a short half-life, and then is stored in a transport container. Transported to reprocessing plants or long-term storage facilities.

このような使用済燃料が原子力発電所から搬出される時
には、初期濃縮度、燃焼度等のデータが再処理工場ある
いは長期貯蔵施設等の使用済燃料の受入れ側へ渡される
When such spent fuel is transported from a nuclear power plant, data such as initial enrichment and burnup are passed to the spent fuel receiving side, such as a reprocessing plant or long-term storage facility.

原子力発電所等の使用済燃料の発送者側は、極力誤りの
ないように搬出作業を行なうが、使用済燃料の受入れ側
では貯蔵や処理の諸工程を通じて確実に未臨界性を保つ
ため、使用済燃料の初期濃縮度、燃焼度等について独自
の測定を行なうなど ′して誤りがないことを再確認し
なけれ−ばならない。
Shippers of spent fuel from nuclear power plants, etc., carry out the removal work to be as error-free as possible, but those who receive the spent fuel must ensure that subcriticality is maintained throughout the storage and processing processes. It is necessary to reconfirm that there are no errors by conducting independent measurements of the initial enrichment, burnup, etc. of the spent fuel.

このような使用済燃料の核特性を評価する方法として、
従来いわゆるフランス方式(M、DARROLJZET
、et  at、IAEA−260/201982)と
西独方式(H,WUERZ、IAEA−260/301
982およびG、5CHULZE、ESARDA−2,
P396 1980)の2つの方法が知られている。
As a method to evaluate the nuclear properties of such spent fuel,
Conventionally, the so-called French method (M, DARROLJZET
, et at, IAEA-260/201982) and the West German system (H, WUERZ, IAEA-260/301)
982 and G, 5CHULZE, ESARDA-2,
P396 1980) are known.

フランス方式は、使用済燃料から放出されるガンマ線の
スペクトルを測定するガンマ線スペクトル測定法(GS
法)を用いて燃焼度と冷却時間を測定し、使用済燃料か
ら放出される自発中性子を測定するパッシブ中性子測定
法(PN法)によりプルトニウム濃度を評価する方法で
ある。
The French method uses gamma ray spectrometry (GS), which measures the spectrum of gamma rays emitted from spent fuel.
This method evaluates the plutonium concentration by measuring the burnup and cooling time using a passive neutron measurement method (PN method), which measures spontaneous neutrons emitted from spent fuel.

しかしながら、このフランス方式では、ウラン燃料の場
合燃焼度が低く冷却時間が短い場合には、パッシブ中性
子測定法を使用することができず、またガンマ線スペク
トル測定法を用いているため、原子炉運転の詳細な履歴
を必要とするという欠点がある。
However, in this French method, passive neutron measurement cannot be used when uranium fuel has a low burnup and cooling time is short, and gamma ray spectroscopy is used, so reactor operation It has the disadvantage of requiring a detailed history.

西独方式は、前述したパッシブ中性子測定法と使用済燃
料の側面または内部に中性子源を配置し、この中性子源
から放出される中性子により増倍された中性子を測定す
るアクティブ中性子測定法(AN法)とを用いて燃焼度
、プルトニウム濃度、核分裂核種濃度、初期濃縮度、中
性子増倍率等を評価する方法である。
The West German method consists of the above-mentioned passive neutron measurement method and the active neutron measurement method (AN method), which places a neutron source on the side or inside the spent fuel and measures the neutrons multiplied by the neutrons emitted from this neutron source. This is a method to evaluate burnup, plutonium concentration, fission nuclide concentration, initial enrichment, neutron multiplication factor, etc. using

しかしながら、この西独方式では、ウラン燃料の場合冷
却時間が短いとパッシブ中性子測定法を使用することが
できず、また冷却時間の評価を行なうことができないと
いう欠点がある。
However, this West German method has the disadvantage that passive neutron measurement cannot be used for uranium fuel if the cooling time is short, and the cooling time cannot be evaluated.

なお、冷却時間が短い時にパッシブ中性子測定法を用い
て測定する方法として、本発明者等の発明した特開昭5
3−22993号に開示される方法があるが、この方法
は冷却時間の異なる2回の中性子測定により測定する方
法であるため、2〜3力月以上隔てて2回のパッシブ中
性子測定法を実施する必要があり作業性が悪いという問
題がある。
In addition, as a method for measuring using passive neutron measurement when the cooling time is short, the present inventors have proposed
There is a method disclosed in No. 3-22993, but this method involves measuring neutrons twice with different cooling times, so passive neutron measurements are performed twice at least 2 to 3 months apart. There is a problem of poor workability.

[発明の目的] 本発明はかかる従来の事情に対処してなされたもので、
使用済燃料の冷却時間に拘わらず使用済燃料を確実に非
破壊測定することのできる使用済燃料の非破壊測定方法
を提供しようとするものである。
[Object of the invention] The present invention has been made in response to such conventional circumstances,
The object of the present invention is to provide a method for non-destructively measuring spent fuel that can reliably measure spent fuel non-destructively regardless of the cooling time of the spent fuel.

[発明の概要] すなわち本発明は、使用済燃料から放出されるガンマ線
のスペクトルを測定するガンマ線スペクトル測定法と、
使用済燃料から放出される自発中性子を測定するパッシ
ブ中性子測定法と、使用済燃料の側面または内部に中性
子源を配置しこの中性子源かq放出される中性子により
増倍された中性子を測定するアクティブ中性子測定法と
を用いてなり、前記ガンマ線スペクトル測定法により前
記使用済燃料の燃焼度と冷却時間を求め、前記冷却時間
が予め定められた一定値以上のときに、前記パッシブ中
性子測定法により燃焼度とプルトニウム濃度を導出し、
これにより前記使用済燃料の初期濃縮度を求め、一方前
記ガンマ線スペクトル測定法で求められた前記冷却時間
が前記予め定められた一定値以下のときに前記アクティ
ブ中性子測定法により増倍中性子を測定し、この増倍中
性子から核分裂性核種濃度または無限増倍率の少なくと
も一方を導出し前記使用済燃料の初期濃縮度を求めるこ
とを特徴とする使用済燃料の非破壊測定方法である。
[Summary of the Invention] That is, the present invention provides a gamma ray spectrometry method for measuring the spectrum of gamma rays emitted from spent fuel;
There is a passive neutron measurement method that measures spontaneous neutrons emitted from spent fuel, and an active method that places a neutron source on the side or inside the spent fuel and measures the neutrons multiplied by the neutrons emitted from this neutron source. The burn-up and cooling time of the spent fuel are determined using the gamma ray spectrometry method, and when the cooling time is equal to or greater than a predetermined value, the burn-up is determined using the passive neutron measurement method. Deriving the degree and plutonium concentration,
Thereby, the initial enrichment of the spent fuel is determined, and when the cooling time determined by the gamma ray spectrometry is equal to or less than the predetermined value, multiplied neutrons are measured by the active neutron measurement method. This is a method for non-destructive measurement of spent fuel, characterized in that the initial enrichment of the spent fuel is determined by deriving at least one of the fissile nuclide concentration or the infinite multiplication factor from the multiplied neutrons.

[発明の実施例1 以下本発明方法の詳細を一実施例について説明する。[Embodiment 1 of the invention The details of the method of the present invention will be explained below with reference to one embodiment.

なお、この実施例では使用済燃料の発送石側から燃料集
合体平均の初期濃縮度(εi)、燃焼度(BU)、照射
終了年月日等のデータとともに使用済燃料が受入れ側に
送られてきた場合が想定されている。
In this example, the spent fuel is sent from the spent fuel shipping side to the receiving side along with data such as the fuel assembly average initial enrichment (εi), burnup (BU), and irradiation end date. This is assumed to be the case.

第1図は本発明の使用済燃料の非破壊測定方法の一実施
例を示すフローチャートである。図に示ずように、この
実施例では、まずガンマ線スペクトル測定法により概略
の冷却時間(Tc )と燃焼度(BU)とが求められる
。このガンマ線スペク゛  トル測定法では例えば第2
図ないし第4図に示すように、ホトビーク計数率比C6
134/C8137、Pr 144/Cs 137を用
いた較正曲線が用いられる。
FIG. 1 is a flowchart showing an embodiment of the method for non-destructive measurement of spent fuel according to the present invention. As shown in the figure, in this example, the approximate cooling time (Tc) and burnup (BU) are first determined by gamma ray spectroscopy. In this gamma ray spectrum measurement method, for example, the second
As shown in Figure 4, the photobeak count rate ratio C6
A calibration curve using Pr 134/C8137, Pr 144/Cs 137 is used.

このようにして得られた冷却時間(Tc )の値が2〜
2.5年以上で、燃焼度(BU)の値が10〜15GW
d /を以上であればパッシブ中性子測定法を適用する
ことができる。
The value of the cooling time (Tc) obtained in this way is 2~
Over 2.5 years, burnup (BU) value is 10-15GW
Passive neutron measurement can be applied if d/ is greater than or equal to d.

なお、Rh106から放出されるガンマ線ホトピークの
大きさをモニタすることにより、使用済燃料がウラン燃
料であるかプルトニウム燃料であるかを判断することが
できる。また、プルトニウム燃料の場合には燃焼度(B
U)の値が低くてもパッシブ中性子測定法を適用するこ
とができる。
Note that by monitoring the magnitude of the gamma ray photopeak emitted from Rh106, it is possible to determine whether the spent fuel is uranium fuel or plutonium fuel. In addition, in the case of plutonium fuel, the burnup (B
Even if the value of U) is low, the passive neutron measurement method can be applied.

通常の受入れ使用済燃料では、この条件を満足するため
、発送側から送られてきたデータと照合することにより
大きな誤りのないことを確認することができる。
Normally received spent fuel satisfies this condition, so by comparing it with the data sent from the shipping side, it is possible to confirm that there are no major errors.

パッシブ中性子測定法では、実測値との比較により妥当
性をある程度確認されている計算コードによりCm24
2の寄与分を除いた中性子発生率S O4、またはCu
+244からの中性子発生率S略と燃焼度(BU)、P
u全核種合計濃度(Pu)等との相関曲線を、燃料集合
体平均の初期濃縮度(ε1)をパラメータとして第5図
に示すように予め作成しておき、これらが較正曲線とし
て用いられる。
In the passive neutron measurement method, Cm24 is calculated using a calculation code whose validity has been confirmed to some extent by comparison with actual measured values.
Neutron generation rate SO4 excluding the contribution of 2, or Cu
Neutron generation rate S and burnup (BU) from +244, P
A correlation curve with the total concentration of all nuclides (Pu), etc. is created in advance as shown in FIG. 5 using the fuel assembly average initial enrichment (ε1) as a parameter, and these are used as a calibration curve.

すなわち多数の燃料に対し与えられた燃料集合体平均の
初期濃縮度(εi)を用い、パッシブ中性子測定法によ
る中性子発生率から燃焼度(BU)が求められ、発送者
のデータと比較される。また、1体ずつ燃焼度(BU)
比が求められ、多数の燃料に対する比の平均値が作成さ
れる。そして例えば15%以上の著しい差があるものは
除外される。
That is, using the fuel assembly average initial enrichment (εi) given to a large number of fuels, the burnup (BU) is determined from the neutron generation rate by the passive neutron measurement method and compared with the sender's data. Also, burnup (BU) for each body
The ratio is determined and an average value of the ratio is created for a number of fuels. For example, those with a significant difference of 15% or more are excluded.

この平均値は予め計算で求められた較正曲線のバイアス
値として用いられ、これにより較正曲線が修正される。
This average value is used as a bias value for the calibration curve calculated in advance, and the calibration curve is thereby corrected.

なお、発電所側の燃料の燃焼管理では、1体1体の燃料
集合体の燃焼度(BU)を正確に求めることは困難であ
るが、多数の燃料集合体合計の出力は電気出力を通して
正確に求められるため、前述のように多数の燃料集合体
に対して求めた比の平均値は非常に信頼性の高いもので
ある。
Although it is difficult to accurately determine the burnup (BU) of each fuel assembly in fuel combustion management at the power plant, the total output of many fuel assemblies can be determined accurately through electrical output. Therefore, the average value of the ratio determined for a large number of fuel assemblies as described above is extremely reliable.

このようにしてパッシブ中性子測定法の燃焼度(BU)
に関する修正された較正曲線によりそれぞれの燃料集合
体の燃焼度(BU)が求められ、ガンマ線スペクトル測
定法で求められたC3137のホトビーク計数値から燃
焼度(BU)を決定する比例係数が求められる。
In this way, the burnup (BU) of passive neutron measurement method
The burnup (BU) of each fuel assembly is determined using the modified calibration curve for the fuel assembly, and the proportionality coefficient that determines the burnup (BU) is determined from the C3137 photobeak count determined by gamma ray spectrometry.

なお、ホトビーク計数値は燃焼度(BU)に比例するが
、ガンマ線スペクトル測定法によりその比例係数を求め
ることは非常に面倒である。また、Pu全核種合計濃度
(Pu )はガンマ線スペクトル測定法およびパッシブ
中性子測定法のいずれの方法によっても得ることができ
るため、得られた結果を総合比較して、より信頼度の高
いものとすることができる。
Note that although the photobeak count value is proportional to the burnup (BU), it is extremely troublesome to determine the proportionality coefficient by gamma ray spectroscopy. In addition, since the total concentration of all Pu nuclides (Pu ) can be obtained by both gamma ray spectrometry and passive neutron measurement, the obtained results should be comprehensively compared to obtain higher reliability. be able to.

燃料集合体1一体1体の燃料集合体平均の初期濃縮度(
ε1)は、ガンマ゛線スペクトル測定法により求められ
た燃焼度(BU)とパッシブ中性子測定法により求めら
れた燃焼度(BU)とが一致する燃料集合体平均の初期
濃縮度(εI)として両者の比較から決定される。燃料
集合体平均の初期濃縮度(εi)の種類は通常非常に限
られているため、容易に識別決定することができる。
The average initial enrichment of the fuel assembly for each fuel assembly (
ε1) is the fuel assembly average initial enrichment (εI) at which the burnup (BU) determined by gamma-ray spectrometry and the burnup (BU) determined by passive neutron measurement coincide. determined from a comparison of Since the types of fuel assembly average initial enrichment (εi) are usually very limited, they can be easily identified and determined.

燃料集合体1体1体の核分裂性核種濃度(1” 1sS
)は、計算で求めた核分裂性核種濃度(Fils)と燃
焼度(BU)との関係、または核分裂性核種濃度(Fi
ss)とpu全核種合計濃度(Pu)との相関曲線を用
いて決定することができる。この核分裂性核種濃度(F
iss)としては、全体濃度、ウラン235+11度、
プルトニウム23911度、プルトニウム241m度等
のいずれでもよい。
Concentration of fissile nuclides in one fuel assembly (1” 1sS
) is the relationship between the calculated fissile nuclide concentration (Fils) and the burnup (BU), or the fissile nuclide concentration (Fils).
ss) and the total concentration of all nuclides (Pu). This fissile nuclide concentration (F
iss), the total concentration is uranium 235+11 degrees,
Either plutonium 23911 degrees, plutonium 241 m degrees, etc. may be used.

冷却時間(Tc )が2年以下の場合、または燃焼度(
BU)が10〜15GWd /を以下(ただしプルトニ
ウム燃料を除く)のときにはパッシブ中性子測定法の適
用が困難となる。そこで、この場合にはアクティブ中性
子測定法が用いられる。
If the cooling time (Tc) is less than 2 years or the burnup (
When the BU) is less than 10 to 15 GWd/(excluding plutonium fuel), it becomes difficult to apply the passive neutron measurement method. Therefore, in this case, active neutron measurement is used.

このアクティブ中性子測定法は燃料集合体の側面あるい
は内面に中性子源を配置し、燃料集合体の側面あるいは
内面で中性子源配置に伴う増倍中性子束φを測定する方
法である。
This active neutron measurement method is a method in which a neutron source is placed on the side or inner surface of a fuel assembly, and the multiplied neutron flux φ due to the arrangement of the neutron source is measured on the side or inner surface of the fuel assembly.

この増倍中性子束φは、第6図に示すように燃料集合体
の核分裂性核種濃度(Fiss)または実効増倍率(k
eff)と極めて密接な相関関係があり、この特性を利
用して核分裂性核種濃度(Fiss)または実効増倍率
(kerf)を求めることができる。
This multiplied neutron flux φ is determined by the fissile nuclide concentration (Fiss) of the fuel assembly or the effective multiplication factor (k
There is an extremely close correlation with the fissile nuclide concentration (Fiss) or the effective multiplication factor (kerf) using this characteristic.

このアクティブ中性子測定法は冷却時間(Tc )に無
関係に適用できるが、パッシブ中性子測定法よりやや実
施が面倒であるため、実際上はパッシブ中性子測定法の
信頼度が低下する場合、あるいは重要度の高い場合に適
用するのが望ましい。
Although this active neutron measurement method can be applied regardless of the cooling time (Tc), it is slightly more troublesome to implement than the passive neutron measurement method, so it is not recommended in practice when the reliability of the passive neutron measurement method decreases or when the importance of the passive neutron measurement method decreases. It is preferable to apply it when it is high.

このアクティブ中性子測定法では組成が既知の標準燃料
集合体を用い測定により予め較正曲線を作成することが
できる。
In this active neutron measurement method, a calibration curve can be created in advance by measurements using a standard fuel assembly whose composition is known.

すなわち、まず測定された増倍中性子束φに基づいて実
効増倍率(ken)および核分裂性核種濃度(Fiss
)が決定される。この実効増倍率(kefr)に基づい
ての計算により無限増倍率(k出)が決定される。
That is, first, based on the measured multiplied neutron flux φ, the effective multiplication factor (ken) and the fissile nuclide concentration (Fiss
) is determined. The infinite multiplication factor (k output) is determined by calculation based on this effective multiplication factor (kefr).

なお、計算により予め増倍中性子束φに対する  ゛燃
焼度(BU)の相関関係が燃料集合体平均の初期濃縮度
(ε1)をパラメータとする較正曲線として、第8図に
示すように作成されており、このアクティブ中性子測定
法で求められた無限増倍率(koo)、、と、ガンマ線
スペクトル測定法で求められた燃焼度(8U)とを用い
て燃料集合体平均の初期濃縮度(ε1)が決定される。
Furthermore, through calculations, the correlation between the burnup (BU) and the multiplied neutron flux φ was created in advance as a calibration curve with the fuel assembly average initial enrichment (ε1) as a parameter, as shown in Figure 8. Using the infinite multiplication factor (koo) obtained by this active neutron measurement method and the burnup (8U) obtained by gamma ray spectrometry, the average initial enrichment (ε1) of the fuel assembly is calculated. It is determined.

核分裂性核種濃度(Fiss)、すなわちウラン235
、プルトニウム239およびプルトニウム241の合計
濃度はアクティブ中性子測定法により直接水めることが
できるが、各核種の濃度は予め計算で求めた例えば、第
7図に示す較正曲線が利用される。また、pu全核種合
計濃度(Pu)も計算で予め求められたpu全核種合計
濃度(PU)と核分裂性核種濃度(1:iss>との燃
料集合体平均の初期濃縮度(εl)をパラメータとした
較正曲線により決定される。
Fissile nuclide concentration (Fiss), i.e. uranium-235
Although the total concentration of plutonium 239 and plutonium 241 can be determined directly by active neutron measurement, the concentration of each nuclide is calculated using a calibration curve shown in FIG. 7, for example. In addition, the total concentration of all PU nuclides (Pu) is calculated using the fuel assembly average initial enrichment (εl) between the total concentration of all PU nuclides (PU) and the fissile nuclide concentration (1:iss>), which are calculated in advance. determined by the calibration curve.

以上述べたようにして使用済燃料の非破壊測定が終了す
る。この後、各種データを総合し発送者からのデータと
比較することにより、受入れ側の使用済燃料の管理を安
全確実なものとすることができる。
As described above, the non-destructive measurement of spent fuel is completed. Thereafter, by integrating various data and comparing it with the data from the sender, it is possible to ensure the safe and reliable management of spent fuel on the receiving side.

[発明の効果コ 以上述べたように本発明の使用済燃料の非破壊測定方法
によれば、ガンマ線スペクトル測定法、パッシブ中性子
測定法およびアクティブ中性子測定法とを組合せること
により、使用済燃料の冷却時間の大小に関係なく使用済
燃料の非破壊測定を確実に行なうことができる。
[Effects of the Invention] As described above, according to the method for non-destructive measurement of spent fuel of the present invention, spent fuel can be measured by combining gamma ray spectrometry, passive neutron measurement and active neutron measurement. Non-destructive measurement of spent fuel can be reliably performed regardless of the magnitude of the cooling time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の使用済燃料の非破壊測定方法の一実施
例を示すフローチャート、第2図ないし第8図は本発明
で用いられる各種相関曲線の概念を示すグラフである。 代理人弁理士   須 山 佐 − 第1図 第2図    第3図 第4図    第5図 第6図    第7図 第8図
FIG. 1 is a flowchart showing an embodiment of the method for non-destructive measurement of spent fuel according to the present invention, and FIGS. 2 to 8 are graphs showing the concepts of various correlation curves used in the present invention. Representative Patent Attorney Satoshi Suyama - Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8

Claims (1)

【特許請求の範囲】[Claims] (1)使用済燃料から放出されるガンマ線のスペクトル
を測定するガンマ線スペクトル測定法と、使用済燃料か
ら放出される自発中性子を測定するパッシブ中性子測定
法と、使用済燃料の側面または内部に中性子源を配置し
この中性子源から放出される中性子により増倍された中
性子を測定するアクティブ中性子測定法とを用いてなり
、前記ガンマ線スペクトル測定法により前記使用済燃料
の燃焼度と冷却時間を求め、前記冷却時間が予め定めら
れた一定値以上のときに、前記パッシブ中性子測定法に
より燃焼度とプルトニウム濃度を導出し、前記使用済燃
料の初期濃縮度を求め、一方前記ガンマ線スペクトル測
定法で求められた前記冷却時間が前記予め定められた一
定値以下のときに前記アクティブ中性子測定法により増
倍中性子を測定し、この増倍中性子から核分裂性核種濃
度または無限増倍率の少なくとも一方を導出し前記使用
済燃料の初期濃縮度を求めることを特徴とする使用済燃
料の非破壊測定方法。
(1) Gamma ray spectrometry method that measures the spectrum of gamma rays emitted from spent fuel, passive neutron measurement method that measures spontaneous neutrons emitted from spent fuel, and neutron source on the side or inside of spent fuel. The active neutron measurement method measures the neutrons multiplied by the neutrons emitted from the neutron source, the burnup and cooling time of the spent fuel are determined by the gamma ray spectrometry method, When the cooling time exceeds a predetermined value, the burnup and plutonium concentration are derived by the passive neutron measurement method to determine the initial enrichment of the spent fuel, while the gamma ray spectrometry method determines the burnup and plutonium concentration. When the cooling time is equal to or less than the predetermined certain value, multiplied neutrons are measured by the active neutron measurement method, and at least one of the fissile nuclide concentration or the infinite multiplication factor is derived from the multiplied neutrons, and the used A method for non-destructive measurement of spent fuel, characterized by determining the initial enrichment of the fuel.
JP59262220A 1984-12-12 1984-12-12 Nondestructive measuring method of spent fuel Granted JPS61139795A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59262220A JPS61139795A (en) 1984-12-12 1984-12-12 Nondestructive measuring method of spent fuel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59262220A JPS61139795A (en) 1984-12-12 1984-12-12 Nondestructive measuring method of spent fuel

Publications (2)

Publication Number Publication Date
JPS61139795A true JPS61139795A (en) 1986-06-27
JPH045356B2 JPH045356B2 (en) 1992-01-31

Family

ID=17372744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59262220A Granted JPS61139795A (en) 1984-12-12 1984-12-12 Nondestructive measuring method of spent fuel

Country Status (1)

Country Link
JP (1) JPS61139795A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10598230B2 (en) 2017-09-29 2020-03-24 L'oreal Drive shaft coupling
US11278099B2 (en) 2017-09-29 2022-03-22 L'oreal Formula delivery appliance
US11291284B2 (en) 2017-09-29 2022-04-05 L'oreal Formula delivery head
US11470940B2 (en) 2017-09-29 2022-10-18 L'oreal Formula delivery device
US11534263B2 (en) 2021-02-26 2022-12-27 L'oreal Formulation delivery systems, devices, and methods
US11712099B2 (en) 2021-02-26 2023-08-01 L'oreal Reusable cartridge systems, devices, and methods

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10598230B2 (en) 2017-09-29 2020-03-24 L'oreal Drive shaft coupling
US11278099B2 (en) 2017-09-29 2022-03-22 L'oreal Formula delivery appliance
US11291284B2 (en) 2017-09-29 2022-04-05 L'oreal Formula delivery head
US11470940B2 (en) 2017-09-29 2022-10-18 L'oreal Formula delivery device
US11534263B2 (en) 2021-02-26 2022-12-27 L'oreal Formulation delivery systems, devices, and methods
US11712099B2 (en) 2021-02-26 2023-08-01 L'oreal Reusable cartridge systems, devices, and methods

Also Published As

Publication number Publication date
JPH045356B2 (en) 1992-01-31

Similar Documents

Publication Publication Date Title
JP4761829B2 (en) Axial void ratio distribution measuring method and fuel assembly neutron multiplication factor evaluation method before storage device storage
JPS61139795A (en) Nondestructive measuring method of spent fuel
JP3708599B2 (en) Subcriticality evaluation method when storing spent fuel assemblies
JP2542883B2 (en) Effective multiplication factor measurement method for subcritical systems loaded with irradiation fuel
Sagara et al. Feasibility study of passive gamma spectrometry of molten core material from Fukushima Daiichi Nuclear Power Station unit 1, 2, and 3 cores for special nuclear material accountancy–low-volatile FP and special nuclear material inventory analysis and fundamental characteristics of gamma-rays from fuel debris: Fukushima NPP Accident Related
JP3628111B2 (en) Nondestructive burnup evaluation method for reactor fuel
JP3103361B2 (en) Measurement method of burnup of nuclear fuel
JP2003043183A (en) Heating rate measuring method of irradiated fuel
JPH0453398B2 (en)
JP3651716B2 (en) Nondestructive burnup evaluation method for reactor fuel
JPS6316298A (en) Nondestructive measuring method of spent nuclear fuel aggregate
JP3026455B2 (en) Burnup measurement method for irradiated fuel assemblies
JPH0426718B2 (en)
Anilkumar et al. Estimation of 235 U concentration in some depleted uranium samples by high resolution gamma-ray spectrometry using 185 keV and 1001 keV gamma-energies of 235 U and 234m Pa
JPS6315197A (en) Nondestructive measuring method of spent nuclear fuel aggregate
Larsen et al. The Yield of Short-Lived Gamma-Ray Emitting Nuclides from Fast-and Thermal-Neutron Fission
JPS61262690A (en) Nondestructive measurement method of spent fuel aggregate
JPH01199195A (en) Effective multiplication factor measuring method of irradiation fuel charged subcritical system
JPS62294997A (en) Method of measuring non-criticality
Fast et al. Evaluation and Parameter Analysis of Burn up Calculations for the Assessment of Radioactive Waste–13187
JPS62293194A (en) Method of monitoring non-criticality
Smith et al. Spent Fuel Fissile Mass Verification at the ANL-West Radioactive Scrap and Waste Facility
Heeb Uncertainties in source term calculations generated by the ORIGEN2 computer code for Hanford Production Reactors
Antúnez Conversion Ratio Measurement in Uranium-fueled, Light-water-moderated, Superheater Lattices
Hsue et al. Design of a new portable fork detector for research reactor spent fuel

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term