JPS62293786A - Semiconductor photodetector device - Google Patents

Semiconductor photodetector device

Info

Publication number
JPS62293786A
JPS62293786A JP61136197A JP13619786A JPS62293786A JP S62293786 A JPS62293786 A JP S62293786A JP 61136197 A JP61136197 A JP 61136197A JP 13619786 A JP13619786 A JP 13619786A JP S62293786 A JPS62293786 A JP S62293786A
Authority
JP
Japan
Prior art keywords
light absorbing
absorbing layer
resistance
layer
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61136197A
Other languages
Japanese (ja)
Inventor
Masato Kondo
真人 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP61136197A priority Critical patent/JPS62293786A/en
Publication of JPS62293786A publication Critical patent/JPS62293786A/en
Pending legal-status Critical Current

Links

Landscapes

  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To improve a gain by preventing the extinction of carriers produced in a light absorbing layer caused by surface recombination by forming a high- resistance window layer having a wider band gap than that of a high-resistance In1-xGAxAsyP1-y (0<=x, y<=1) light absorbing layer on this light absorbing layer. CONSTITUTION:P-type conductive regions 3A and 4A are formed by Zn oozed into a semiconductor when electrodes 3 and 4 consisting of an Au Zn alloy are formed by evaporation and alloying heat treatment. These regions 3A and 4A penetrate a high-resistance InP window layer 6 and reach an InxGa1-xAsyP1-y light absorbing layer 5. The high-resistance InP window layer 6 has a wider band gap than that of the In1-xGaxAsyP1-y (0<=x, y<=1) light absorbing layer 5. Accordingly, among the incident lights through a surface S, the lights having a wavelength of the band gap of InP or longer than that are not absorbed by the window layer 6, but are absorbed by the light absorbing layer 5 and distribute to a gain. Thus, it can be effectively prevented that the carriers generated in the light absorbing layer by the incidence of the light extinguish by surface recombination, and accordingly, a gain is improved.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〔概要〕 本発明は、半導体受光装置に於いて、高抵抗のI nl
−XG ax A !iy P l−y  (0≦x、
  y≦1)光吸収層上にそれより禁制帯幅が広い高抵
抗の窓層を形成することに依り、光吸収層内にて発生し
たキャリヤが表面再結合で消滅することを防止して利得
を向上できるようにした。
[Detailed Description of the Invention] 3. Detailed Description of the Invention [Summary] The present invention provides a semiconductor light-receiving device in which high-resistance I nl
-XG ax A! iy P l-y (0≦x,
y≦1) By forming a high-resistance window layer with a wider forbidden band width on the light absorption layer, carriers generated in the light absorption layer are prevented from disappearing due to surface recombination, thereby increasing gain. We made it possible to improve.

〔産業上の利用分野〕[Industrial application field]

本発明は、光導電型受光素子(photo  cond
uctive  detector)と呼ばれる半導体
受光装置の改良に関する。
The present invention relates to a photoconductive type light receiving element (photocond).
This invention relates to an improvement of a semiconductor light receiving device called an active detector.

〔従来の技術〕[Conventional technology]

第4図は波長1 〔μm)帯の光通信に用いられる光導
電型受光素子の従来例を表す要部切断側面図である。
FIG. 4 is a cross-sectional side view of a main part of a conventional example of a photoconductive type light receiving element used for optical communication in the wavelength band of 1 [μm].

図に於いて、1はFeを添加した半絶縁性InP基板、
2は同じ<Feが添加され且つ半絶縁性InP基板1と
格子整合した高抵抗(抵抗率が例えば103 〔Ω・c
m〕オーダ)の1 no、53Gao、4?As光吸収
層、3及び4はAu−Zn合金からなる電極、eは電子
、hは正孔、hνは光をそれぞれ示している。
In the figure, 1 is a semi-insulating InP substrate doped with Fe;
2 is the same < Fe-doped high resistance (resistivity is, for example, 103 [Ω・c
m] order) 1 no, 53 Gao, 4? As light absorbing layer, 3 and 4 are electrodes made of Au-Zn alloy, e is an electron, h is a hole, and hv is light, respectively.

この受光素子では、電極3及び4間に図示の極性で電圧
を印加した状態に於いて上面から光hνが入射すると、
光吸収層2に於ける禁制帯幅に相当する波長1.65(
μm〕以下の光はそこで吸収され、その吸収された光に
依り、光吸収層2内に電子・正孔対が生成され、前記印
加された電圧に基づく電界で、電子eは電極3に、また
、正孔hは電極4にそれぞれ走行し、外部回路には電流
が流れる。
In this light receiving element, when light hν is incident from the top surface while a voltage is applied between the electrodes 3 and 4 with the polarity shown,
The wavelength 1.65 (corresponding to the forbidden band width in the light absorption layer 2)
μm] or less is absorbed there, and the absorbed light generates electron-hole pairs in the light absorption layer 2, and in the electric field based on the applied voltage, the electrons e are transferred to the electrode 3. Further, the holes h travel to the electrodes 4, and a current flows in the external circuit.

〔発明が解決′しようとする問題点〕[Problems that the invention attempts to solve]

前記光導電型受光素子では、光吸収層2の表面は大気中
に露出された構造になっている為、入射された光hνに
依って励起されたキャリヤが表面再結合で消滅し易く、
充分な利得が得られない欠点がある。
In the photoconductive type light-receiving element, the surface of the light absorption layer 2 is exposed to the atmosphere, so carriers excited by the incident light hν are easily annihilated by surface recombination.
The disadvantage is that sufficient gain cannot be obtained.

本発明は、この種の半導体受光装置の構造に極めて簡単
な改変を加えることに依り、利得を大きく向上させるも
のである。
The present invention greatly improves the gain by making extremely simple modifications to the structure of this type of semiconductor photodetector.

〔問題点を解決するための手段〕[Means for solving problems]

本発明に依る半導体受光装置に於いては、高抵抗のIn
、−XGag As、PI−y  (0≦x、y≦1)
光吸収層(例えばIn1−x Qa、As、P+−y(
0≦x、  y≦1)光吸収層5)と、その上に形成さ
れ該光吸収層に於ける禁制帯幅よりも広いそれを有する
高抵抗の化合物半導体結晶からなる窓層(例えば高抵抗
のInP窓層6或いは高抵抗のAitx In、−XA
s窓層7)とを備えてなる構成になっている。
In the semiconductor photodetector according to the present invention, high resistance In
, -XGag As, PI-y (0≦x, y≦1)
Light absorption layer (e.g. In1-x Qa, As, P+-y (
0≦x, y≦1) a light absorption layer 5) and a window layer (for example, a high resistance InP window layer 6 or high resistance Aitx In, -XA
s window layer 7).

〔作用〕[Effect]

前記手段を採ることに依り、光が入射して光吸収層内で
発生されたキャリヤが表面再結合で消滅することは有効
に防止され、従って、利得は向上する。
By adopting the above-mentioned means, it is effectively prevented that carriers generated in the light absorption layer upon incident light are annihilated by surface recombination, and therefore the gain is improved.

〔実施例〕〔Example〕

第1図は本発明に於ける第1の実施例の要部切断側面図
を表し、第4図に於いて用いた記号と同記号は同部分を
表すか或いは同じ意味を持つものとする。
FIG. 1 shows a cutaway side view of essential parts of a first embodiment of the present invention, and the same symbols as those used in FIG. 4 represent the same parts or have the same meanings.

図に於いて、5は半絶縁性1nP基板1と同様にFeが
添加され且つそれに格子整合した高抵抗のI nz G
a+−x AsyP+−y (0≦x、 y≦1)光吸
収層、6は高抵抗1nP窓層、3A及び4Aはp型導電
領域をそれぞれ示している。尚、p型導電領域3A及び
4Aは、蒸着法及び合金化熱処理にてAu −Zn合金
からなる電極3及び4を形成した際、Znが半導体中に
滲み出して形成されるものであって、高抵抗1nP (
或いはA11nAs)窓N6を突き抜け、I nz G
 a I−x A Syp+−y光吸収層5にまで達す
るようにする。
In the figure, 5 is a high-resistance InzG layer doped with Fe and lattice matched to the semi-insulating 1nP substrate 1.
a+-x AsyP+-y (0≦x, y≦1) light absorption layer, 6 is a high resistance 1nP window layer, 3A and 4A are p-type conductive regions, respectively. The p-type conductive regions 3A and 4A are formed when Zn oozes into the semiconductor when the electrodes 3 and 4 made of Au-Zn alloy are formed by vapor deposition and alloying heat treatment. High resistance 1nP (
Or A11nAs) Pass through window N6 and I nz G
a I-x A Syp+-y so as to reach the light absorption layer 5.

本実施例で用いている高抵抗の光吸収層5は、液相エピ
タキシャル成長(liquid  phase  ep
itaxy:LPE)法を適用し、また、Feなど遷移
金属を添加することに依り、抵抗率が103 〔Ω・0
〕程度であるものが容易に得られる。また、高抵抗の窓
層6は、LPE法或いは有機金属化学気相堆積(met
alorganics  chemical  vap
or  daposition:MOCVD)法を適用
し、また、Fe或いはコバルト(Go)などの遷移金属
を添加することに依り、抵抗率が10’ −10”〔Ω
・cm)のものが容易に得られる。
The high-resistance light absorption layer 5 used in this example is formed by liquid phase epitaxial growth (liquid phase epitaxial growth).
By applying the LPE method and adding transition metals such as Fe, the resistivity was increased to 103 [Ω・0
] can be easily obtained. Further, the high-resistance window layer 6 is formed by LPE method or organometallic chemical vapor deposition (met).
organics chemical vap
By applying the MOCVD method and adding transition metals such as Fe or cobalt (Go), the resistivity can be increased to 10'-10'' [Ω
・cm) can be easily obtained.

第2図は第1図について説明した実施例に於けるエネル
ギ・バンド・ダイヤグラムを表し、第1図に於いて用い
た記号と同記号は同部分を示すか或いは同じ意味を持つ
ものとする。
FIG. 2 shows an energy band diagram in the embodiment described with respect to FIG. 1, and symbols used in FIG. 1 indicate the same parts or have the same meanings.

図に於いて、Ecは伝導帯の底、EFはフェルミ・レベ
ル、Evは価電子帯の頂、EGI、 Eat。
In the figure, Ec is the bottom of the conduction band, EF is the Fermi level, Ev is the top of the valence band, EGI, Eat.

EGIはエネルギ・バンド・ギャップ、Sは表面をそれ
ぞれ示している。
EGI represents the energy band gap, and S represents the surface.

ここで、 Eas: 1.35 (eV) Eag: 0.75〜1.35 (eV)EG3:  
1. 35  (eV) 光hνの波長:0.92(μm〕以上 である。
Here, Eas: 1.35 (eV) Eag: 0.75 to 1.35 (eV) EG3:
1. 35 (eV) Wavelength of light hν: 0.92 (μm) or more.

さて、表面Sから入射した光hνのうち、波長がInP
の禁制帯幅に相当する0、92(μm〕以上のものは、
窓層6で吸収されることはなく、光吸収N5で吸収され
、利得に寄与する。
Now, of the light hν incident from the surface S, the wavelength is InP
0.92 (μm) or more, which corresponds to the forbidden band width of
The light is not absorbed by the window layer 6, but is absorbed by the optical absorption layer N5, contributing to the gain.

本実施例では、光吸収層5の上面が窓層6で覆われてい
る為、光吸収層5で生成されたキャリヤが表面再結合で
消滅するようなことはなく、従って、その利得は向上す
る。
In this example, since the upper surface of the light absorption layer 5 is covered with the window layer 6, the carriers generated in the light absorption layer 5 will not disappear due to surface recombination, and therefore the gain will be improved. do.

第3図は本発明に於ける第2の実施例の要部切断側面図
を表し、第1図及び第2図に於いて用いた記号と同記号
は同部分を表すか或いは同じ意味を持つものとする。
FIG. 3 shows a cutaway side view of the main parts of the second embodiment of the present invention, and the same symbols as those used in FIGS. 1 and 2 represent the same parts or have the same meanings. shall be taken as a thing.

本実施例が第1図及び第2図に関して説明した実施例と
相違する点は、窓層が高抵抗のInPではなく、高抵抗
のAβxln+−、A9からなっていて、I n X 
G a +−+c A S y P l−yからなる光
吸収層5及び半絶縁性InPからなる基板1と格子整合
させる為にx=0.47としていることであり、従って
、本実施例に於いては、窓層を記号7で指示しである。
This embodiment is different from the embodiments described with reference to FIGS. 1 and 2 in that the window layer is not made of high resistance InP but is made of high resistance Aβxln+-, A9, and
In order to achieve lattice matching with the light absorption layer 5 made of G a +-+c A S y P ly and the substrate 1 made of semi-insulating InP, x = 0.47. In this case, the window layer is designated by the symbol 7.

本実施例で用いている高抵抗の窓層7は、LPE法或い
はMOCVD法を適用し、また、Feなど遷移金属を添
加することで得られる。
The high-resistance window layer 7 used in this embodiment is obtained by applying the LPE method or MOCVD method and by adding a transition metal such as Fe.

本実施例に於いて、高抵抗の窓層7を構成している材料
であるAAo、471no、s:+A3の禁制帯幅は1
.46 [eV)であり、従って、波長が0゜85〔μ
m3以上の光は窓層7では吸収されず、光吸収層5にて
吸収されることになる。
In this example, the forbidden band width of AAo, 471no, s:+A3, which is the material constituting the high-resistance window layer 7, is 1.
.. 46 [eV), therefore, the wavelength is 0°85 [μ
Light of m3 or more is not absorbed by the window layer 7, but is absorbed by the light absorption layer 5.

〔発明の効果〕〔Effect of the invention〕

本発明に依る半導体受光装置に於いては、高抵抗のI 
nl−、QaXA Sy P I−y  (0≦x、y
≦1)光吸収層上にそれより禁制帯幅が広い高抵抗の窓
層を形成した構成になっている。
In the semiconductor photodetector according to the present invention, a high resistance I
nl-, QaXA Sy P I-y (0≦x, y
≦1) A high-resistance window layer with a wider forbidden band width is formed on the light absorption layer.

前記構成を採ることに依り、光が入射して光吸収層内で
発生されたキャリヤが表面再結合で消滅することは有効
に防止され、従って、利得は向上する。
By employing the above structure, carriers generated in the light absorption layer upon incident light are effectively prevented from disappearing due to surface recombination, and therefore the gain is improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に於ける第1の実施例の要部切断側面図
、第2図は第1図に見られる実施例に於けるエネルギ・
バンド・ダイヤグラム、第3図は本発明に於ける第2の
実施例の要部切断側面図、第4図は従来例の要部切断側
面図をそれぞれ表している。 図に於いて、lはFeを添加した半絶縁性inP基板、
3及び4はAu−Zn合金からなる電極、5は半絶縁性
InP基板1と同様にFeが添加され且つそれに格子整
合した高抵抗のIn、Ga、−8ASII P+−y 
 (0≦x、  y≦1)光吸収層、6は高抵抗InP
窓層、eは電子、hは正孔、hνは光をそれぞれ示して
いる。 実施例の要部切断側面図 第1図 6:窓層     5:光吸収層      に幕板第
2図 実施例の要部切断側面図 第3図 従来例の要部切断側面図 第4図
FIG. 1 is a cross-sectional side view of essential parts of a first embodiment of the present invention, and FIG. 2 is a diagram showing energy consumption in the embodiment shown in FIG.
FIG. 3 is a band diagram showing a cutaway side view of the main part of the second embodiment of the present invention, and FIG. 4 is a cutaway side view of the main part of the conventional example. In the figure, l is a semi-insulating inP substrate doped with Fe;
3 and 4 are electrodes made of an Au-Zn alloy, and 5 is a high-resistance In, Ga, -8ASII P+-y to which Fe is added and lattice matched to the semi-insulating InP substrate 1.
(0≦x, y≦1) light absorption layer, 6 is high resistance InP
In the window layer, e represents an electron, h represents a hole, and hν represents light. Cutaway side view of the main parts of the embodiment Fig. 1 Figure 6: Window layer 5: Light absorption layer and curtain plate Fig. 2 Cutaway side view of the main parts of the embodiment Fig. 3 Cutaway side view of the main parts of the conventional example Fig. 4

Claims (1)

【特許請求の範囲】 高抵抗のIn_1_−_xGa_xAs_yP_1_−
_y(0≦x、y≦1)光吸収層と、 その上に形成され該光吸収層に於ける禁制帯幅よりも広
いそれを有する高抵抗の化合物半導体結晶からなる窓層
と を備えてなることを特徴とする半導体受光装置。
[Claims] High resistance In_1_-_xGa_xAs_yP_1_-
_y (0≦x, y≦1) light absorption layer; and a window layer formed on the light absorption layer and made of a high-resistance compound semiconductor crystal having a forbidden band width wider than the forbidden band width of the light absorption layer. A semiconductor light receiving device characterized by:
JP61136197A 1986-06-13 1986-06-13 Semiconductor photodetector device Pending JPS62293786A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61136197A JPS62293786A (en) 1986-06-13 1986-06-13 Semiconductor photodetector device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61136197A JPS62293786A (en) 1986-06-13 1986-06-13 Semiconductor photodetector device

Publications (1)

Publication Number Publication Date
JPS62293786A true JPS62293786A (en) 1987-12-21

Family

ID=15169609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61136197A Pending JPS62293786A (en) 1986-06-13 1986-06-13 Semiconductor photodetector device

Country Status (1)

Country Link
JP (1) JPS62293786A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02100379A (en) * 1988-10-07 1990-04-12 Hikari Keisoku Gijutsu Kaihatsu Kk Photo-detector
US4999695A (en) * 1988-08-05 1991-03-12 Mitsubishi Denki Kabushiki Kaisha MSM type semiconductor light responsive element
US5115294A (en) * 1989-06-29 1992-05-19 At&T Bell Laboratories Optoelectronic integrated circuit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4999695A (en) * 1988-08-05 1991-03-12 Mitsubishi Denki Kabushiki Kaisha MSM type semiconductor light responsive element
JPH02100379A (en) * 1988-10-07 1990-04-12 Hikari Keisoku Gijutsu Kaihatsu Kk Photo-detector
US5115294A (en) * 1989-06-29 1992-05-19 At&T Bell Laboratories Optoelectronic integrated circuit

Similar Documents

Publication Publication Date Title
JPH0728047B2 (en) Phototransistor
JPH0821727B2 (en) Avalanche photodiode
JPH07111339A (en) Surface emission type semiconductor light emitting device
JPS62293786A (en) Semiconductor photodetector device
JPS6028273A (en) Semiconductor device
JPS5812378A (en) High speed photoelectric detecting element and method of producing same
JPH04286373A (en) Infrared detecting device
JPS6285477A (en) Photosemiconductor device
JPH01144687A (en) Semiconductor photodetector
JPH01194476A (en) Semiconductor photodetector
JPS6034088A (en) Optical semiconductor element
JP2527791B2 (en) MSM type semiconductor light receiving element
JP2557881B2 (en) Heterojunction field effect transistor
JPH0712103B2 (en) Semiconductor laser device
JPS62130572A (en) Semiconductor light emitting device
JPS62281478A (en) Photodetector
JPS62188384A (en) Semiconductor laminate structure
JP2754652B2 (en) Avalanche photodiode
JPH0653613A (en) Semiconductor element
JPS5474686A (en) Visible semiconductor laser and its manufacture
JP2773227B2 (en) Photo conductor
JPH02137375A (en) Photoconduction-type photodetector
JPS60130871A (en) Ingaas photodetector
JPH0152909B2 (en)
JP2663118B2 (en) Semiconductor light emitting device