JPS62291609A - Optical element with multifunction carrier - Google Patents
Optical element with multifunction carrierInfo
- Publication number
- JPS62291609A JPS62291609A JP13438186A JP13438186A JPS62291609A JP S62291609 A JPS62291609 A JP S62291609A JP 13438186 A JP13438186 A JP 13438186A JP 13438186 A JP13438186 A JP 13438186A JP S62291609 A JPS62291609 A JP S62291609A
- Authority
- JP
- Japan
- Prior art keywords
- optical element
- carrier
- glass material
- molding
- forming
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 67
- 239000000463 material Substances 0.000 claims abstract description 41
- 239000011521 glass Substances 0.000 claims abstract description 39
- 230000001105 regulatory effect Effects 0.000 claims abstract description 10
- 230000003014 reinforcing effect Effects 0.000 claims abstract description 4
- 238000000465 moulding Methods 0.000 claims description 44
- 238000010438 heat treatment Methods 0.000 abstract description 6
- 230000008878 coupling Effects 0.000 abstract description 3
- 238000010168 coupling process Methods 0.000 abstract description 3
- 238000005859 coupling reaction Methods 0.000 abstract description 3
- 230000008859 change Effects 0.000 abstract description 2
- 238000000034 method Methods 0.000 description 11
- 230000008569 process Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 230000002093 peripheral effect Effects 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 238000001816 cooling Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000013307 optical fiber Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 210000005069 ears Anatomy 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 230000003864 performance function Effects 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 230000002747 voluntary effect Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B35/00—Transporting of glass products during their manufacture, e.g. hot glass lenses, prisms
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B11/00—Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
- C03B11/06—Construction of plunger or mould
- C03B11/08—Construction of plunger or mould for making solid articles, e.g. lenses
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2215/00—Press-moulding glass
- C03B2215/40—Product characteristics
- C03B2215/46—Lenses, e.g. bi-convex
- C03B2215/47—Bi-concave
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2215/00—Press-moulding glass
- C03B2215/79—Uniting product and product holder during pressing, e.g. lens and lens holder
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Lens Barrels (AREA)
- Joining Of Glass To Other Materials (AREA)
Abstract
Description
【発明の詳細な説明】
3、発明の詳細な説明
[産業上の利用分野]
本発明は、成形可能温度に加熱されたガラス素材に、
MMIi*能以外の機能を装備したキャリアを一体的に
接合した多機能キャリア付き光学素子に関する。[Detailed Description of the Invention] 3. Detailed Description of the Invention [Field of Industrial Application] The present invention provides a method for forming a glass material heated to a moldable temperature.
The present invention relates to an optical element with a multifunctional carrier in which a carrier equipped with functions other than MMIi* is integrally bonded.
[従来の技術]
最近では、レンズ、プリズム、フィルター等の光学素子
を研磨加工等を施すことなくプレス成形により成形する
成形手段が採用されている。かかる成形手段は、成形可
能状態に加熱軟化処理されたガラス素材を運搬装置と連
動したキャリアを介して成形用上下型間に搬送、停止し
た後に、成形用上下型を介して押圧成形して所望形状の
光学素子を得るものである。[Prior Art] Recently, a molding method has been adopted in which optical elements such as lenses, prisms, and filters are molded by press molding without polishing or the like. In such a forming means, a glass material that has been heated and softened to a moldable state is transported between upper and lower molding molds via a carrier linked to a transporting device, and after being stopped, the glass material is press-formed through the upper and lower molding molds to obtain the desired shape. This is to obtain a shaped optical element.
ところが、この種の成形手段においては、成形時にキャ
リアが高温のガラス素材と一体的に融着してしまうとい
う問題点があるために、キャリアに運搬機能以外の諸機
能1例えば、成形品組付は時の組付は保持機能又は成形
時の外径規制機能等を兼持させてキャリアと光学素子と
を一体的に成形させてしまうという技術が案出されてい
る。このようにキャリアと一体的に成形される光学素子
は、多機fiキャリア付き光学素子と称され、かかる多
機能キャリア付き光学素子の構成は、特開昭60−63
743号公報に開示されている。However, this type of molding means has the problem that the carrier is integrally fused with the high-temperature glass material during molding, so the carrier has various functions other than the transportation function. During assembly, a technique has been devised in which the carrier and the optical element are integrally molded to have a holding function or an outer diameter regulating function during molding. An optical element that is molded integrally with a carrier in this way is called an optical element with a multifunctional fi carrier.
It is disclosed in Publication No. 743.
即ち、特開昭60−83743号公報に開示されている
技術は、成形可能温度に加熱された光学素子と、この光
学素子の組付は保持部又は成形時の外径規制部を備えた
光学素子運搬用キャリアとを、プレス成形加工時に一体
的に接合構成することにより、光学素子を組付ける際の
作業や光学素子組付は時の心出し作業を容易化させるこ
とができるように構成したものである。That is, the technology disclosed in Japanese Patent Application Laid-Open No. 60-83743 involves an optical element heated to a moldable temperature and an optical element equipped with a holding part or an outer diameter regulating part during molding. By integrally joining the carrier for carrying the element during the press molding process, it is configured to facilitate the work when assembling the optical element and the centering work when assembling the optical element. It is something.
[発明が解決しようとする問題点]
しかしながら、上記従来技術においては次のような問題
点があった。即ち、加熱軟化処理されたガラス素材をプ
レス成形した直後においては、成形された光学素子と多
機源を兼持するキャリアとは十分な結合力で一体的に結
合されているが、成形終了後の冷却工程、取出し工程2
組付は工程及び使用過程において光学素子とキャリアと
の間に経時変化が生じ、そのために、光学素子とキャリ
アとの間に経時的にガタが生じたり光学素子がキャリア
から抜けてしまうという大きな問題点があった。又、上
記従来技術においては、光学素子のガラス素材とキャリ
ア構成部材との間の熱膨張率には何ら配慮されていない
ため1画素材1部材間の熱膨張率が大きく異なる場合に
は、成形後の冷却過程において光学素子の割れや光学機
能面の歪が発生するという重大な問題点があった。[Problems to be Solved by the Invention] However, the above prior art has the following problems. In other words, immediately after press-molding a heat-softened glass material, the molded optical element and the multifunctional carrier are integrally bonded with sufficient bonding force, but after the molding is completed, cooling process, removal process 2
During the assembly process and usage process, changes occur between the optical element and the carrier over time, and this causes major problems such as looseness occurring between the optical element and the carrier over time or the optical element falling out from the carrier. There was a point. In addition, in the above conventional technology, no consideration is given to the coefficient of thermal expansion between the glass material of the optical element and the carrier component, so if the coefficient of thermal expansion between one image material and one member differs greatly, the molding There was a serious problem that cracks in the optical element and distortion of the optical functional surface occurred during the subsequent cooling process.
本発明は、上記従来技術の問題点に鑑みなされたもので
あって、光学素子と多機能キャリアとの間の結合力を確
実なものとするとともに、割れや歪等を生じさせること
なく光学素子として高性能の機能を発揮させうるように
した多機能キャリア付き光学素子を提供することを目的
とする。The present invention has been made in view of the problems of the prior art described above, and it is possible to ensure the bonding force between an optical element and a multifunctional carrier, and to provide an optical element without causing cracks or distortions. An object of the present invention is to provide an optical element with a multifunctional carrier that can exhibit high performance functions.
[問題点を解決するための手段]
本発明は、成形可能温度に加熱されたガラス素材と、成
形後の光学素子の組付は保持部又は成形時の外径・規制
部を備えるとともに前記成形後の光学素子との結合強化
部を設けた運搬用キャリアとを、プレス成形加工時に一
体的に接合構成したものである。[Means for Solving the Problems] The present invention provides a method for assembling a glass material heated to a moldable temperature and an optical element after molding by providing a holding portion or an outer diameter/regulating portion during molding, and the molding. A transportation carrier provided with a portion for reinforcing the bond with the subsequent optical element is integrally joined during press molding.
[作用]
上記構成においては、加熱されたガラス素子の成形時に
、成形後の光学素子とキャリアとが結合強化部を介して
互いに強く結合され、光学素子のガタや抜けが確実に防
止される。[Function] In the above configuration, when the heated glass element is molded, the optical element after molding and the carrier are strongly bonded to each other via the bond reinforcing portion, and the optical element is reliably prevented from wobbling or falling out.
[実施例]
以下、図面を用いて本発明の実施例について説明するが
、具体的な諸実施例の説明に先立って、本発明に係る光
学素子をプレス成形するプレス成形装置について第1図
を用いて説明する。[Example] Examples of the present invention will be described below with reference to the drawings, but before explaining the specific examples, FIG. I will explain using
図において1で示すのは上型で、装置本体部の上板2に
固設しである。3で示すのは、上型lと同一軸線上に対
向配置された下型で、装置本体部に固設された下板4を
介して上型1に対してta離する方向に摺動自在に保持
されている。上板2と下板4とは、相互間の距離1位置
が変化しないように図示を省略している連結部材で互い
に連結しである。In the figure, reference numeral 1 indicates an upper mold, which is fixedly mounted on the upper plate 2 of the main body of the apparatus. 3 is a lower mold which is disposed opposite to the upper mold 1 on the same axis, and is slidable in a direction away from the upper mold 1 via a lower plate 4 fixed to the main body of the device. is maintained. The upper plate 2 and the lower plate 4 are connected to each other by a connecting member (not shown) so that the distance 1 position between them does not change.
5で示すのは、被成形体であるガラス素材6を上下成形
型1.3間の成形ポイントに対して搬出入するための搬
送アームで、ガラス素材6をキャリア7に載置した状態
で成形ポイントに搬出入操作しうるように設定構成しで
ある。8で示すのは、ガラス素材6を成形ポイントに搬
入するに先立ってガラス素材6を成形可能温度(成形可
能状態)に加熱処理するためのヒーターで、このヒータ
ー8により加熱炉9を構成している。加熱炉9内の温度
は、図示を省略している温度測定装置、温度制御装置に
より所定温度に設定しうるように構成しである。成形室
10の周囲は石英ガラス製の内壁11にて構成してあり
、成形室10内が高温状態になった場合でも酸化しない
ように配慮しである。又、成形室lO内は、雰囲気ガス
供給装置12と連通接続してあり、雰囲気ガス供給装置
12から供給される酸化防止用の窒素ガス。Reference numeral 5 denotes a transport arm for transporting the glass material 6, which is the object to be molded, into and out of the molding point between the upper and lower molds 1.3, and the glass material 6 placed on the carrier 7 is molded. It is configured so that it can be carried in and out of the point. Reference numeral 8 denotes a heater for heating the glass material 6 to a moldable temperature (a moldable state) before transporting the glass material 6 to a molding point, and this heater 8 constitutes a heating furnace 9. There is. The temperature inside the heating furnace 9 can be set to a predetermined temperature using a temperature measuring device and a temperature controlling device, which are not shown. The molding chamber 10 is surrounded by an inner wall 11 made of quartz glass to prevent oxidation even when the inside of the molding chamber 10 reaches a high temperature. The inside of the molding chamber IO is connected to an atmospheric gas supply device 12, and nitrogen gas for oxidation prevention is supplied from the atmospheric gas supply device 12.
不活性ガス又は還元性ガスが充満されるようになってい
る。It is filled with inert gas or reducing gas.
ガラス素材6を蔵置支持するキャリア7は、運搬機能以
外の諸機能、即ち、成形品組付は時の組付は保持機能、
成形時の外径規制機能を兼持しうるように設定構成され
ており、加熱炉9内で加熱処理されたガラス素材6が上
下成形型1.3を介してプレス成形される際に、キャリ
ア7と成形後の光学素子とが一体的に接合(結合)され
るように構成しである。この多a濠キャリア7の具体的
構成及び多機能キャリア7と光学素子の結合構成につい
ては、以下の各実施例にて具体的に説明する。The carrier 7 that stores and supports the glass material 6 has various functions other than the transportation function, namely, a holding function during assembly of molded products, a holding function,
It is configured so that it can also have an outer diameter regulating function during molding, and when the glass material 6 heat-treated in the heating furnace 9 is press-formed via the upper and lower molds 1.3, the carrier 7 and the molded optical element are integrally joined (coupled). The specific structure of the multi-a-moat carrier 7 and the coupling structure of the multi-functional carrier 7 and the optical element will be specifically explained in each embodiment below.
(第1実施例)
第2図a、b、第3図及び第4図は、本発明に係る多4
Mbf=キャリア付き光学素子20の第1の実施例を示
すもので、第2図a、bは多機能キャリア7の構成を示
す平面図及び正断面図、第3図は多機能キャリア付き光
学素子20のプレス成形状態を示す正断面図、第4図は
プレス成形された多機能キャリア付き光学素子20の組
付は状態を示す正断面図である。(First embodiment) FIGS.
Mbf=shows the first embodiment of the optical element 20 with a carrier, FIGS. 2a and 2b are a plan view and a front sectional view showing the configuration of the multifunctional carrier 7, and FIG. FIG. 4 is a front sectional view showing the press-molded optical element 20 with a multifunctional carrier in an assembled state.
多機能キャリアは、第2図a、bにて示すごとく、円筒
状のキャリア本体部7aとフランジ状のキャリア保持用
耳部7bとより構成しである。As shown in FIGS. 2a and 2b, the multifunctional carrier is composed of a cylindrical carrier body 7a and a flange-shaped carrier holding ear 7b.
キャリア本体部7a及びキャリア保持用耳部7bの軸心
部には、被加工体であるガラス素材6(第1図参照)を
載置支持するための孔21と支持段部22とが形設して
あり、ガラス素材6は、支持段部22に当接した状態で
孔21内にa置支持されるようになっている。支持段部
22の孔23は1組付は時の光透過用の孔として機能す
るものである。又、孔21の内周面は、ガラス素材6成
形時の外径規制部として機能するもである。フランジ状
のキャリア保持用耳!l!B7bには、m付は用の孔2
4が4個(4個に限定されない)等配して穿設しである
0組付は用の孔24は、第4図にて示すごとく、成形後
に多機能キャリア7と一体的に接合された光学素子6a
を保持するための保持枠25に固設されたキャリア係止
ピン26と嵌合的に係合しうるように設定加工されてお
り、孔24とキャリア係止ビン26と互に係合させて組
付けした際には、光学素子6aと保持枠25の軸心とが
自動的に一致するようになっている。多機能キャリア7
は、ガラス素材6の膨張係数とほぼ同じか少し小さい係
数を有する材料にて構成してあり、この熱膨張係数差の
許容範囲は光学素子6aの径、形状に依存するものであ
る。A hole 21 and a support step 22 for placing and supporting a glass material 6 (see FIG. 1), which is a workpiece, are formed at the axial center of the carrier main body part 7a and the carrier holding ear part 7b. The glass material 6 is supported in the hole 21 at a position a while in contact with the support step 22. The hole 23 of the support step portion 22 functions as a hole for transmitting light when assembled. Further, the inner circumferential surface of the hole 21 functions as an outer diameter regulating portion during molding of the glass material 6. Flange-shaped carrier holding ears! l! B7b has hole 2 with m.
As shown in FIG. 4, four (not limited to four) equally spaced holes 24 for assembly are integrally joined to the multifunctional carrier 7 after molding. optical element 6a
The hole 24 and the carrier locking pin 26 are engaged with each other. When assembled, the axes of the optical element 6a and the holding frame 25 are automatically aligned. Multifunctional carrier 7
is made of a material having a coefficient of expansion that is approximately the same as or slightly smaller than that of the glass material 6, and the allowable range of this difference in coefficient of thermal expansion depends on the diameter and shape of the optical element 6a.
多機能キャリアの孔21の内周面下部(下部に限定され
ない)には、断面半円形状(半円形状に限定されない)
の凹部27が周回り方向に形設してあり、第3図にて示
すように、上下成形型1゜3を介してガラス素材6をプ
レス成形して光学素子6aを成形する際に、ガラス素材
6の外周面の一部が四部27内方向に突出(膨出)して
アンカ一部(結合部)28が形成されるように構成しで
ある。即ち、キャリア7側の凹部27とこの凹部27内
に膨出するアンカ一部28との協働により、キャリア7
と光学素子6aとの結合を強力化しうるように設定構成
しである。又、四部27は、ガラス素材6成形時のガラ
ス素材6の重量バラツキを吸収し肉厚調整を行なう機能
も兼持するものである。The lower part (not limited to the lower part) of the inner peripheral surface of the hole 21 of the multifunctional carrier has a semicircular cross section (not limited to the semicircular shape).
A concave portion 27 is formed in the circumferential direction, and as shown in FIG. A portion of the outer circumferential surface of the material 6 protrudes (bulges) inward from the four portions 27 to form an anchor portion (joint portion) 28. That is, the carrier 7
The configuration is such that the coupling between the optical element 6a and the optical element 6a can be strengthened. Further, the four portions 27 also have the function of absorbing variations in the weight of the glass material 6 during molding of the glass material 6 and adjusting the wall thickness.
次に、上記構成に基づく作用について説明する。多機能
キャリア付に載置されたガラス素材6は、第1fflに
示すように搬送アーム5を介して加熱炉9内にて成形可
能状態に加熱軟化処理された後、上下成形型1.3間の
成形ポイントに搬送法に、下型3を上動せしめ、第3図
にて示すように多機能キャリア7上に載置されたガラス
素材6を上下型1.3を介して所定形状の光学素子6a
にプレス成形する。このプレス成形の際には、ガラス素
材6の上下面は上下型1.3の成形面に規制され、又、
外周面は多機能キャリア7の孔21の内周面に規制され
て成形される。又、成形時には、ガラス素材6の外周部
の一部は凹部27内にも膨出変形(流動変形)してアン
カ一部28を形成するので、このアンカ一部28と凹部
27との結合を介して、多機能キャリア7と光学素子6
aとが強固に一体的に結合された多機能キャリア付き光
学素子20を成形しうる。又、凹部27を十分大きく形
成しておき、ガラス素材6の重量のバラツキをアンカ一
部28の形状の大小により吸収しうるように設定すれば
、肉厚バラツキの少ない光学素子6aを成形しうる。又
、多機能キャリア7の材質をガラスの熱膨張係数とほぼ
同じかやや小さい材料にて構成しであるので、成形後に
経時変化が生じた場合であっても光学未子6a面の歪や
割れの発生を確実に防止できる。Next, the operation based on the above configuration will be explained. As shown in the first ffl, the glass material 6 placed on the multi-functional carrier is heated and softened in the heating furnace 9 to a moldable state through the transfer arm 5, and then transferred between the upper and lower molds 1.3. As shown in FIG. 3, the lower mold 3 is moved upward to the molding point, and the glass material 6 placed on the multifunctional carrier 7 is molded into a predetermined shape of optical fibers through the upper and lower molds 1.3. Element 6a
Press mold into. During this press molding, the upper and lower surfaces of the glass material 6 are regulated by the molding surfaces of the upper and lower molds 1.3, and
The outer peripheral surface is regulated by the inner peripheral surface of the hole 21 of the multifunctional carrier 7 and is molded. Furthermore, during molding, a part of the outer periphery of the glass material 6 bulges and deforms into the recess 27 (fluid deformation) to form an anchor part 28, so it is difficult to connect the anchor part 28 and the recess 27. Through the multifunctional carrier 7 and the optical element 6
It is possible to form an optical element 20 with a multifunctional carrier, in which a and a are firmly and integrally combined. Furthermore, if the recess 27 is formed sufficiently large so that variations in the weight of the glass material 6 can be absorbed by the size of the shape of the anchor portion 28, it is possible to mold the optical element 6a with less variation in wall thickness. . In addition, since the multifunctional carrier 7 is made of a material with a thermal expansion coefficient that is almost the same as or slightly smaller than that of glass, even if changes occur over time after molding, the optical fiber 6a surface will not be distorted or cracked. can be reliably prevented from occurring.
さらに、第4図にて示すように多機能キャリア付き光学
素子20を保持枠25に保持させる際には、接着材を用
いることなく機械的に組付は用の孔24と係止ピン26
とが係合することにより自動的に調心されて組付は保持
されるので、正確かつ確実な保持が可能となる。Furthermore, as shown in FIG. 4, when the optical element 20 with a multifunctional carrier is held in the holding frame 25, it can be assembled mechanically using the holes 24 and the locking pins 26 without using an adhesive.
Since the assembly is automatically aligned and maintained by engaging the two, accurate and reliable holding is possible.
(第2実施例)
第5図a、bで示すのは、本発明に係る多機能キャリア
付き光学素子20の第2の実施例を示すものであり、第
5図aは成形前の状態を、第5図すは成形後の状態を示
すものである0本実施例の特徴は、多機能キャリア7の
孔21を下方に向うに従って徐々に拡大するようにテー
パー状に形設し、下部の大径部を第2図すにおける凹部
27として構成した点である。その他の構成は、第1実
施例と同様である。(Second Example) FIGS. 5a and 5b show a second example of the optical element 20 with a multifunctional carrier according to the present invention, and FIG. 5a shows the state before molding. , FIG. 5 shows the state after molding. The feature of this embodiment is that the hole 21 of the multifunctional carrier 7 is formed in a tapered shape so as to gradually expand downward. This is because the large diameter portion is configured as a recess 27 in FIG. The other configurations are the same as in the first embodiment.
上記構成においては、ガラス素材6のプレス成形時に、
ガラス素材6の一部が凹部27方向に膨張してアンカ一
部を28を形成し、このアンカ一部28を介して光学素
子6aと多機能キャリア7とが強固に結合されるもので
あり、第1実施例と同様の作用、効果を奏しうるもので
ある。In the above configuration, during press molding of the glass material 6,
A part of the glass material 6 expands in the direction of the recess 27 to form an anchor part 28, and the optical element 6a and the multifunctional carrier 7 are firmly connected via this anchor part 28. This embodiment can provide the same functions and effects as the first embodiment.
(第3実施例)
第6図a、bは、本発明に係る多機能キャリア付き光学
素子20の第3の実施例を示すものであり、第6図aは
成形前の状態を、第6図すは成形後の状態を示すもので
ある0本実施例の特徴は。(Third Example) FIGS. 6a and 6b show a third example of the optical element 20 with a multifunctional carrier according to the present invention, and FIG. 6a shows the state before molding. The figure shows the state after molding.Characteristics of this example.
孔21の内周面に9jAtIii状の多数の凹部(粗面
)27を形成することにより、成形時のアンカ一部28
を形設しうるように構成した点である。なお、本実施例
においては、キャリア保持用耳部7bを本体部7aに設
けであるが、これに限定されないのは勿論である。By forming a large number of concave portions (rough surface) 27 in the shape of 9jAtIii on the inner peripheral surface of the hole 21, the anchor portion 28 during molding is formed.
The point is that it is structured so that it can be formed. In this embodiment, the carrier holding ear portion 7b is provided on the main body portion 7a, but it is needless to say that the present invention is not limited to this.
上記構成においても、第1実施例と同様の作用、効果を
奏しうるちのである。The above configuration also provides the same functions and effects as the first embodiment.
(第4実施例)
第7図a、bは1本発明に係る多機能キャリア付き光学
素子20の第4の実施例を示すものである。即ち、第7
図aで示すものは、組付は用の孔24をキャリア本体部
7a側に設け、保持枠25側に貫設した孔30とからピ
ン31を挿入して孔24に係合させることにより、多機
能キャリア付き光学素子20を保持枠25に固定保持し
うるように構成したものである。なお、孔24は適宜深
さに設ければよい、又、第7図すにて示すものは、多機
能キャリア付き光学素子20におけるキャリア7の外周
面に、保持枠25内周面のねじ部32と螺合するねじ部
33を刻設し、ねじ部32.33を介してキャリア付き
光学素子2oを保持枠25に固定保持しうるように構成
したものである。34で示すのは1回動操作用のカニ目
孔である。その他の構成は、第1実施例のものと同様で
ある。(Fourth Embodiment) FIGS. 7a and 7b show a fourth embodiment of an optical element 20 with a multifunctional carrier according to the present invention. That is, the seventh
The assembly shown in FIG. It is configured such that an optical element 20 with a multifunctional carrier can be fixedly held on a holding frame 25. Note that the hole 24 may be provided at an appropriate depth, and the hole 24 shown in FIG. A threaded portion 33 which is screwed into the carrier 32 is formed so that the carrier-equipped optical element 2o can be fixedly held on the holding frame 25 via the threaded portion 32,33. Reference numeral 34 indicates a crab eye hole for one-turn operation. The other configurations are similar to those of the first embodiment.
上記構成によれば、キャリア保持用耳部に孔24を設け
ることなく多機能キャリア付き光学素子20を保持枠2
5に保持しうるものでる。その他の作用、効果は、第1
実施例と同様であるので、その説明を省略する。According to the above configuration, the optical element 20 with a multifunctional carrier is held in the holding frame 2 without providing the hole 24 in the carrier holding ear.
There are things that can be maintained at 5. Other actions and effects are as follows.
Since this is the same as the embodiment, the explanation thereof will be omitted.
(第5実施例)
第8図は、本発明に係る多機能キャリア付き光学素子2
0の第5の実施例を示すものである0本実施例の特徴は
、多機能キャリア7の孔21の内周面に酸化物よりなる
被膜35を被着構成し、この被膜35とガラス素材6と
の結合を介して強固に結合しうるように構成した点であ
る。即ち、ガラス素材6は大部分が酸化物で構成されて
いるので、酸化物被膜35と高温化で接触した際に相互
拡散を起して互に強固に結合されることを利用して結合
固定させるものである。被膜35は、キャリア7自身を
酸化処理して形成してもよいし、セラミック溶射、蒸着
、その他の方法により形成してもよい。なお、本実施例
で使用した酸化膜は。(Fifth Example) FIG. 8 shows an optical element 2 with a multifunctional carrier according to the present invention.
The feature of this embodiment is that a coating 35 made of an oxide is adhered to the inner circumferential surface of the hole 21 of the multifunctional carrier 7, and this coating 35 and the glass material This point is that it is configured so that it can be firmly connected through the connection with 6. That is, since the glass material 6 is mostly composed of oxide, when it comes into contact with the oxide film 35 at high temperature, mutual diffusion occurs and the glass material 6 is firmly bonded to each other. It is something that makes you The coating 35 may be formed by oxidizing the carrier 7 itself, or may be formed by ceramic spraying, vapor deposition, or other methods. The oxide film used in this example is as follows.
Fl!203. SiO+、 An 203の3種にて
形成した。Fl! 203. It was formed using three types: SiO+ and An 203.
上記構成によれば、酸化物被膜35とガラス素材6との
互の給部が第1実施例におけるアンカ一部28を構成す
るので、光学素子6aと多機能キャリア7と強固に結合
することができ、第1実施例と同様の作用、効果を奏す
ることができるものである。According to the above configuration, since the mutual feed portion of the oxide film 35 and the glass material 6 constitute the anchor part 28 in the first embodiment, it is possible to firmly connect the optical element 6a and the multifunctional carrier 7. This embodiment can provide the same functions and effects as the first embodiment.
[発明の効果]
以上のように、本発明によれば、光学素子と多機部キャ
リアとを一体的に接合構成する際に、光学素子と多機能
キャリアとを強固に結合することができ、成形後の後工
程や組付は時、使用時における光学素子のガタや抜けを
確実に防止することができるものである。[Effects of the Invention] As described above, according to the present invention, when the optical element and the multi-functional carrier are integrally joined together, the optical element and the multi-functional carrier can be firmly connected, Post-processing and assembly after molding can reliably prevent the optical element from wobbling or coming off during use.
第1図は本発明に係る多機能キャリア付き光学素子を成
形する成形装置の概略構成を示す説明図、第2図a、b
、第3図、第4図は本発明に係る多機能キャリア付き光
学素子の第1の実施例を示す説明図、第5図a、bは本
発明に係る多機能キャリア付き光学素子の第2の実施例
を示す説明図、第6図a、bは本発明に係る多機能キャ
リア付き光学素子の第3の実施例を示す説明図、第7図
a、bは本発明に係る多機能キャリア付き光学素子の第
4の実施例を示す説明図、第8図は本発明に係る多機能
キャリア付き光学素子の第5の実施例を示す説明図であ
る。
1.3・・・上、下成形型
6・・・ガラス素材
6a・・・光学素子
7・・・多m涜キャリア
27・・・凹部
第1図
1、上成形型
3、下成形型
6、ガラス素材
7、多機能キャリア
n、凹 部
第3図
第4図
第7 図(a) 第7図(b)第8図
n
手続補正書(自発)
1、事件の表示
昭和61年特許願第134381号
2、発明の名称
多機能キャリア付き光学素子
3、補正をする者
事件との関係 特 許 出 願 人
任 所 東京都渋谷区幡ケ谷2丁目43番2号名 称
(037)オリンパス光学工業株式会社代表者 下山
敏部
4、代 理 人
住 所 東京都港区浜松町2丁目2番15号浜松町ダ
イヤハイツ706号
氏 名(8942)弁理士 奈良 武燻伜5、補正の対
象
6、補正の内容
(1)明細書第8頁第4行目に記載する「機能するもで
」を「機能するもので」と補正する。
(り 明細書第14頁第8行目に記載する「高温化」を
「高温下」と補正する。FIG. 1 is an explanatory diagram showing a schematic configuration of a molding apparatus for molding an optical element with a multifunctional carrier according to the present invention, and FIGS. 2a and b
, FIGS. 3 and 4 are explanatory diagrams showing a first embodiment of the optical element with a multifunctional carrier according to the present invention, and FIGS. FIGS. 6a and 6b are explanatory diagrams showing a third embodiment of the optical element with a multifunctional carrier according to the present invention. FIGS. 7a and b are explanatory diagrams showing a third embodiment of the optical element with a multifunctional carrier according to the present invention. FIG. 8 is an explanatory diagram showing a fourth embodiment of the optical element with a multifunctional carrier according to the present invention. 1.3...Upper and lower molds 6...Glass material 6a...Optical element 7...Multiple carrier 27...Concavity Fig. 1, upper mold 3, lower mold 6 , Glass material 7, Multifunctional carrier n, Recessed part Fig. 3 Fig. 4 Fig. 7 Fig. 7 (a) Fig. 7 (b) Fig. 8 n Procedural amendment (voluntary) 1. Indication of case 1985 patent application No. 134381 2, Name of the invention Optical element with multifunctional carrier 3, Relationship to the person making the correction case Patent application Person 2-43-2 Hatagaya, Shibuya-ku, Tokyo Name Title (037) Olympus Optical Industry Co., Ltd. Representative: Toshibe Shimoyama 4, Agent Address: 706 Hamamatsucho Dia Heights, 2-2-15 Hamamatsucho, Minato-ku, Tokyo Name (8942) Patent attorney: Nara Takekino 5, Subject of amendment 6, Contents of the amendment (1) "Items that function" written on page 8, line 4 of the specification are amended to read "things that function." (The phrase “high temperature” written on page 14, line 8 of the specification is amended to read “under high temperature.”)
Claims (1)
素子の組付け保持部又は成形時の外径規制部を備えると
ともに前記成形後の光学素子との結合強化部を設けた運
搬用キャリアとを、プレス成形加工時に一体的に接合構
成したことを特徴とする多機能キャリア付き光学素子。A carrier for transporting a glass material heated to a moldable temperature and having an assembly holding part for an optical element after molding or an outer diameter regulating part during molding, and a part for reinforcing the bond with the optical element after molding. An optical element with a multifunctional carrier, characterized in that these are integrally joined during press molding.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61134381A JPH07122688B2 (en) | 1986-06-10 | 1986-06-10 | Optical element with carrier |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61134381A JPH07122688B2 (en) | 1986-06-10 | 1986-06-10 | Optical element with carrier |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62291609A true JPS62291609A (en) | 1987-12-18 |
JPH07122688B2 JPH07122688B2 (en) | 1995-12-25 |
Family
ID=15127061
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61134381A Expired - Fee Related JPH07122688B2 (en) | 1986-06-10 | 1986-06-10 | Optical element with carrier |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07122688B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6986267B2 (en) | 2001-09-27 | 2006-01-17 | Fujinon Corporation | Method of manufacturing optical element with lens-barrel |
JP2006301352A (en) * | 2005-04-21 | 2006-11-02 | Moritex Corp | Lens cap |
JP2008256938A (en) * | 2007-04-04 | 2008-10-23 | Olympus Corp | Optical component and method for manufacturing optical component |
JP2010176088A (en) * | 2009-02-02 | 2010-08-12 | Olympus Corp | Optical component, molding die, and method of manufacturing the optical component |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6063743A (en) * | 1983-09-16 | 1985-04-12 | Olympus Optical Co Ltd | Optical element with multifunctional carrier |
JPS60129220A (en) * | 1983-12-19 | 1985-07-10 | Matsushita Electric Ind Co Ltd | Molding method of lens |
-
1986
- 1986-06-10 JP JP61134381A patent/JPH07122688B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6063743A (en) * | 1983-09-16 | 1985-04-12 | Olympus Optical Co Ltd | Optical element with multifunctional carrier |
JPS60129220A (en) * | 1983-12-19 | 1985-07-10 | Matsushita Electric Ind Co Ltd | Molding method of lens |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6986267B2 (en) | 2001-09-27 | 2006-01-17 | Fujinon Corporation | Method of manufacturing optical element with lens-barrel |
JP2006301352A (en) * | 2005-04-21 | 2006-11-02 | Moritex Corp | Lens cap |
JP2008256938A (en) * | 2007-04-04 | 2008-10-23 | Olympus Corp | Optical component and method for manufacturing optical component |
JP2010176088A (en) * | 2009-02-02 | 2010-08-12 | Olympus Corp | Optical component, molding die, and method of manufacturing the optical component |
Also Published As
Publication number | Publication date |
---|---|
JPH07122688B2 (en) | 1995-12-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI279598B (en) | Optical component and method of manufacturing the same | |
TW200533975A (en) | Optical component with holder and manufacturing method thereof | |
JPH0627353A (en) | Photoelectric conversion connector and its manufacture | |
AU1433401A (en) | Seal and method of making same for gas laser | |
US7309167B2 (en) | High energy fiber terminations and methods | |
JP4064976B2 (en) | Optical lens molding equipment | |
JPS62291609A (en) | Optical element with multifunction carrier | |
JP2003104739A (en) | Mold for forming optical element with lens barrel | |
JP5112120B2 (en) | Optical element manufacturing method and mold assembly for manufacturing the same | |
JPS61266320A (en) | Method for holding optical glass material in press molding method for optical parts | |
JP4795551B2 (en) | Cap for optical semiconductor device and optical semiconductor device using the same | |
JPS6340733A (en) | Optical element fitted with multifunctional carrier | |
JPH0743575A (en) | Production of optical fiber with mirror frame | |
JPS62113727A (en) | Forming of optical element | |
JP2002284538A (en) | Method for supporting glass preform and supporting pin for the same | |
JPH0536371B2 (en) | ||
JPS6063743A (en) | Optical element with multifunctional carrier | |
JPH07159656A (en) | Package for optical semiconductor module | |
JPS63241505A (en) | Semiconductor laser diode package | |
JP3164394B2 (en) | Optical element molding apparatus, optical element molding method, and glass lens | |
JPH04168402A (en) | Optical semiconductor module | |
JPH0348188Y2 (en) | ||
JPH0699159B2 (en) | Optical element molding method | |
JP3220515B2 (en) | Optical element molding method | |
JPS6256326A (en) | Method and device for molding optical element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |