JPH07122688B2 - Optical element with carrier - Google Patents
Optical element with carrierInfo
- Publication number
- JPH07122688B2 JPH07122688B2 JP61134381A JP13438186A JPH07122688B2 JP H07122688 B2 JPH07122688 B2 JP H07122688B2 JP 61134381 A JP61134381 A JP 61134381A JP 13438186 A JP13438186 A JP 13438186A JP H07122688 B2 JPH07122688 B2 JP H07122688B2
- Authority
- JP
- Japan
- Prior art keywords
- carrier
- optical element
- molding
- glass material
- molded
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B35/00—Transporting of glass products during their manufacture, e.g. hot glass lenses, prisms
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B11/00—Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
- C03B11/06—Construction of plunger or mould
- C03B11/08—Construction of plunger or mould for making solid articles, e.g. lenses
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2215/00—Press-moulding glass
- C03B2215/40—Product characteristics
- C03B2215/46—Lenses, e.g. bi-convex
- C03B2215/47—Bi-concave
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2215/00—Press-moulding glass
- C03B2215/79—Uniting product and product holder during pressing, e.g. lens and lens holder
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Lens Barrels (AREA)
- Joining Of Glass To Other Materials (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、成形可能温度に加熱されたガラス素材に、運
搬機能以外の機能を装備したキャリアを一体的に接合し
たキャリア付き光学素子に関する。Description: TECHNICAL FIELD The present invention relates to an optical element with a carrier in which a glass material heated to a moldable temperature is integrally joined with a carrier equipped with a function other than a carrying function.
〔従来の技術} 最近では、レンズ,プリズム,フィルター等の光学素子
を研磨加工等を施すことなくプレス成形により成形する
成形手段が採用されている。かかる成形手段は、成形可
能状態に加熱軟化処理されたガラス素材を運搬装置と連
動したキャリアを介して成形用上下型間に搬送,停止し
た後に、成形用上下型を介して押圧成形して所望形状の
光学素子を得るものである。[Prior Art] Recently, molding means for molding optical elements such as lenses, prisms, and filters by press molding without performing polishing or the like has been adopted. The molding means conveys the glass material that has been heat-softened to a moldable state between the upper and lower molds for molding through a carrier linked to a transporting device, stops it, and then press-molds it through the upper and lower molds for molding. A shaped optical element is obtained.
ところが、この種の成形手段においては、成形時にキャ
リアが高温のガラス素材と一体的に融着してしまうとい
う問題点があるために、キャリアに運搬機能以外の諸機
能、例えば、成形品組付け時の組付け保持機能又は成形
時の外径規制機能等を兼持させてキャリアと光学素子と
を一体的に成形させてしまうという技術が案出されてい
る。このようにキャリアと一体的に成形される光学素子
は、多機能キャリア付き光学素子と称され、かかる多機
能キャリア付き光学素子の構成は、特開昭60-63743号公
報に開示されている。However, in this type of molding means, there is a problem that the carrier is fused together with the high temperature glass material at the time of molding. A technique has been devised in which the carrier and the optical element are integrally molded by also having a function of holding and assembling at the time or a function of regulating an outer diameter at the time of molding. Such an optical element integrally molded with the carrier is referred to as an optical element with a multifunctional carrier, and the configuration of such an optical element with a multifunctional carrier is disclosed in JP-A-60-63743.
即ち、特開昭60-63743号公報に開示されている技術は、
成形可能温度に加熱された光学素子と、この光学素子の
組付け保持部又は成形時の外径規制部を備えた光学素子
運搬用キャリアとを、プレス成形加工時に一体的に接合
構成することにより、光学素子を組付ける際の作業や光
学素子組付け時の心出し作業を容易化させることができ
るように構成したものである。That is, the technology disclosed in JP-A-60-63743 is
By integrally forming an optical element heated to a moldable temperature and an optical element carrying carrier having an assembly holding portion of this optical element or an outer diameter regulating portion at the time of molding, during press molding The work for assembling the optical element and the centering work for assembling the optical element can be facilitated.
しかしながら、上記従来技術においては、次のような問
題点があった。即ち、加熱軟化処理されたガラス素材を
プレス成形した直後においては、成形された光学素子と
多機能を兼持するキャリアとは十分な結合力で一体的に
結合されているが、成形終了後の冷却工程,取出し工
程,取付け工程及び使用過程において光学素子とキャリ
アとの間に経時変化が生じ、そのために、光学素子とキ
ャリアとの間に経時的にガタが生じたり光学素子がキャ
リアから抜けてしまうという大きな問題点があった。
又、上記従来技術においては、光学素子のガラス素材と
キャリア構成部材との間の熱膨張率には何ら配慮されて
いないため、両素材,部材間の熱膨張率が大きく異なる
場合には、成形後の冷却過程において光学素子の割れや
光学機能面の歪みが発生するという重大な問題点があっ
た。However, the above-mentioned conventional technique has the following problems. That is, immediately after press-molding the glass material that has been subjected to the heat-softening treatment, the molded optical element and the carrier having multiple functions are integrally combined with each other with a sufficient bonding force. During the cooling process, the take-out process, the mounting process and the use process, there is a change with time between the optical element and the carrier, which may cause looseness between the optical element and the carrier over time or the optical element may come off the carrier. There was a big problem that it would end up.
Further, in the above-mentioned prior art, since no consideration is given to the coefficient of thermal expansion between the glass material of the optical element and the carrier constituent member, when the coefficient of thermal expansion between both materials and members is greatly different, molding is performed. There has been a serious problem that the optical element is cracked or the optical functional surface is distorted in the subsequent cooling process.
本発明は、上記従来技術の問題点に鑑みなされたもので
あって、光学素子とキャリアとの間の結合力を確実なも
のとするとともに、割れや歪等を生じさせることなく光
学素子として高性能の機能を発揮させうるようにしたキ
ャリア付き光学素子を提供することを目的とする。The present invention has been made in view of the above-mentioned problems of the prior art, and assures the coupling force between the optical element and the carrier, as well as a high optical element without causing cracks or distortion. An object of the present invention is to provide an optical element with a carrier capable of exhibiting a function of performance.
本発明は、成形可能温度に加熱されたガラス素材と、成
形後の光学素子の組付け保持部およびガラス素材の成形
時の外径規制部を備えるとともにこの外径規制部に前記
成形後の光学素子との結合を強化する酸化物被膜を設け
た運搬用キャリアとを、プレス成形加工時に一体的に接
合構成したものである。The present invention is provided with a glass material heated to a moldable temperature, an assembly holding portion of an optical element after molding, and an outer diameter restricting portion at the time of molding the glass material, and the outer diameter restricting portion is provided with the optical material after molding. The carrier for transportation provided with an oxide film for strengthening the bond with the element is integrally joined and configured at the time of press molding.
上記構成においては、加熱されたガラス素材の成形時
に、成形後の光学素子とキャリアとが両者の酸化物によ
る相互拡散により互いに強く結合され、光学素子のガタ
や抜けが確実に防止される。そして上記におけるキャリ
アの材質をガラスの熱膨張係数とほぼ同じかやや小さい
材料にて構成すると、光学素子の歪や割れの発生が確実
に防止される。In the above configuration, when the heated glass material is molded, the molded optical element and the carrier are strongly bonded to each other due to mutual diffusion of the oxides of the both, and it is possible to reliably prevent looseness and omission of the optical element. When the material of the carrier in the above is made of a material that is substantially the same as or slightly smaller than the coefficient of thermal expansion of glass, distortion and cracking of the optical element can be reliably prevented.
以下、図面を用いて本発明の実施例について説明する
が、具体的な実施例の説明に先立って、本発明に係る光
学素子をプレス成形するプレス成形装置において第1図
を用いて説明する。Examples of the present invention will be described below with reference to the drawings. Prior to the description of specific examples, a press molding apparatus for press molding an optical element according to the present invention will be described with reference to FIG.
図において1で示すのは上型で、装置本体部の上板2に
固設してある。3で示すのは、上型1と同一線上に対向
配置された下型で、装置本体部に固設された下板4を介
して上型1に対して接離する方向に摺動自在に保持され
ている。上板2と下板4とは、相互間の距離,位置が変
化しないように図示を省略している連結部材で互いに連
結してある。In the figure, reference numeral 1 designates an upper mold, which is fixed to an upper plate 2 of the apparatus main body. Denoted at 3 is a lower mold which is arranged on the same line as the upper mold 1 so as to be slidable in a direction in which the lower mold 4 comes into contact with and separates from the upper mold 1 through a lower plate 4 fixedly provided in the apparatus main body. Is held. The upper plate 2 and the lower plate 4 are connected to each other by a connecting member (not shown) so that the distance and position between them do not change.
5で示すのは、被成形体であるガラス素材6を上下成形
型1,3間の成形ポイントに対して搬出入するための搬送
アームで、ガラス素材6をキャリア7に載置した状態で
成形ポイントに搬出入操作しうるように設定構成してあ
る。8で示すのは、ガラス素材6を成形ポイントに搬入
するに先立ってガラス素材6を成形可能温度(成形可能
状態)に加熱処理するためのヒーターで、このヒーター
8により加熱炉9を構成している。加熱炉9内の温度
は、図示を省略している温度測定装置,温度制御装置に
より所定温度に設定しうるように構成してある。成形室
10の周囲は、石英ガラス製の内壁11にて構成してあり、
成形室10内が高温状態になった場合でも酸化しないよう
に配慮してある。又、成形室10内は、雰囲気ガス供給装
置12と連通接続してあり、雰囲気ガス供給装置12から供
給される酸化防止用の窒素ガス,不活性ガス又は還元性
ガスが充満されるようになっている。Reference numeral 5 denotes a transfer arm for loading and unloading the glass material 6 which is the object to be molded to and from the molding point between the upper and lower molding dies 1 and 3, and the glass material 6 is molded in a state in which it is placed on the carrier 7. It is set and configured so that it can be carried in and out at points. Reference numeral 8 indicates a heater for heating the glass material 6 to a moldable temperature (moldable state) before the glass material 6 is carried into a molding point. The heater 8 constitutes a heating furnace 9. There is. The temperature in the heating furnace 9 can be set to a predetermined temperature by a temperature measuring device and a temperature control device (not shown). Molding room
The periphery of 10 is composed of an inner wall 11 made of quartz glass,
Care is taken not to oxidize even when the temperature inside the molding chamber 10 becomes high. Further, the molding chamber 10 is connected in communication with the atmosphere gas supply device 12, and is filled with the oxidation-preventing nitrogen gas, inert gas, or reducing gas supplied from the atmosphere gas supply device 12. ing.
ガラス素材6を載置支持するキャリア7は、運搬機能以
外の諸機能、即ち、成形品組付けの組付け保持機能,成
形時の外径規制機能を兼持しうるように設定構成されて
おり、加熱炉9内で加熱処理されたガラス素材6が上下
成形型1,3を介してプレス成形される際に、キャリア7
と成形後の光学素子とが一体的に接合(結合)されるよ
うに構成してある。このキャリア7の具体的構成及びキ
ャリア7と光学素子との結合構成については、以下の実
施例に具体的に説明する。The carrier 7 on which the glass material 6 is placed and supported is set and configured so as to have various functions other than the carrying function, that is, a function of assembling and holding a molded product and a function of regulating an outer diameter at the time of molding. When the glass material 6 heat-treated in the heating furnace 9 is press-molded through the upper and lower molds 1 and 3, the carrier 7
The optical element after molding and the optical element after molding are integrally joined. The specific configuration of the carrier 7 and the coupling configuration of the carrier 7 and the optical element will be specifically described in the following examples.
(第1実施例) 第2図a,b、第3図及び第4図は、本発明に係るキャリ
ア付き光学素子20の第1の実施例を示すもので、第2図
a,bはキャリア7の構成を示す平面図及び正断面図、第
3図はキャリア付き光学素子20のプレス成形後の状態を
示す正断面図、第4図はプレス成形されたキャリア付き
光学素子20の組付け状態を示す正断面図である。(First Embodiment) FIGS. 2a, 2b, 3 and 4 show a first embodiment of the optical element 20 with a carrier according to the present invention.
a and b are a plan view and a front sectional view showing the structure of the carrier 7, FIG. 3 is a front sectional view showing the state of the optical element with a carrier 20 after press molding, and FIG. 4 is a press molded optical element with a carrier. FIG. 20 is a front sectional view showing an assembled state of 20.
キャリアは、第2図a,bにて示すごとく、円筒状のキャ
リア本体部7aとフランジ状のキャリア保持用耳部7bとよ
り構成してある。キャリア本体部7a及びキャリア保持用
耳部7bの軸心部には、被加工体であるガラス素材6(第
1図参照)を載置支持するための孔21と支持段部22とが
形設してあり、ガラス素材6は、支持段部22に当接した
状態で孔21内に載置支持されるようになっている。支持
段部22の孔23は、組付け時の光透過用の孔として機能す
るものである。又、孔21の内周面は、酸化物よりなる被
膜が被着構成されるとともに、ガラス素材6成形時の外
径規制部として機能するものである。フランジ状のキャ
リア保持用耳部7bには、組付け用の孔24が4個(4個に
限定されない)等配して穿設してある。組付け用の孔24
は、第4図にて示すごとく、成形後にキャリア7と一体
的に結合された光学素子6aを保持するための保持枠25に
固設されたキャリア係止ピン26と嵌合的に係合しうるよ
うに設定加工されており、孔24とキャリア係止ピン26と
互に係合させて組付けした際には、光学素子6aと保持枠
25の軸心とが自動的に一致するようになっている。キャ
リア7は、ガラス素材6の膨脹係数とほぼ同じか少し小
さい係数を有する材料にて構成してあり、この熱膨張係
数差の許容範囲は光学素子6aの径,形状に依存するもの
である。As shown in FIGS. 2a and 2b, the carrier is composed of a cylindrical carrier body 7a and a flange-shaped carrier holding ear 7b. A hole 21 and a support step 22 for mounting and supporting the glass material 6 (see FIG. 1) which is a workpiece is formed in the shaft center portions of the carrier body 7a and the carrier holding ear 7b. The glass material 6 is placed and supported in the hole 21 while being in contact with the support step portion 22. The hole 23 of the support step portion 22 functions as a hole for transmitting light at the time of assembly. Further, the inner peripheral surface of the hole 21 is coated with an oxide film and functions as an outer diameter restricting portion when the glass material 6 is molded. Four (not limited to four) holes 24 for assembling are provided in the flange-shaped carrier holding ear portion 7b so as to be arranged. Assembly hole 24
As shown in FIG. 4, is engaged with a carrier locking pin 26 fixed to a holding frame 25 for holding the optical element 6a integrally formed with the carrier 7 after molding. The hole 24 and the carrier locking pin 26 are engaged with each other when assembled, and the optical element 6a and the holding frame are
The axis of 25 is automatically aligned. The carrier 7 is made of a material having a coefficient of expansion which is substantially the same as or slightly smaller than the expansion coefficient of the glass material 6, and the allowable range of the difference in thermal expansion coefficient depends on the diameter and shape of the optical element 6a.
キャリアの孔21の内周面下部(下部に限定されない)に
は、前述のように、酸化物よりなる被膜35を被着構成し
てあり、第3図にて示すように、上下成形型1,3を介し
てガラス素材6をプレス成形して光学素子6aを成形した
際に、この被膜35とガラス素材6との結合を介して強固
に結合しうるように構成してある。As described above, a coating film 35 made of an oxide is deposited on the lower part (not limited to the lower part) of the inner peripheral surface of the hole 21 of the carrier, and as shown in FIG. When the glass material 6 is press-molded via the and 3, the optical element 6a is molded, the coating 35 and the glass material 6 can be firmly bonded through the bonding.
即ち、ガラス素材6は大部分が酸化物で構成されている
ので、酸化物被膜35と高温下で接触した際に相互拡散を
起こして互に強固に結合されることを利用して結合固定
させるものである。被膜35は、キャリア7自身を酸化処
理して形成してもよいし、セラミック溶射,蒸着,その
他の方法により形成してもよい。なお、本実施例で使用
した酸化膜は、Fe2O3,SiO2,Al2O3の3種にて形成し
た。That is, since most of the glass material 6 is composed of an oxide, when the glass material 6 is brought into contact with the oxide film 35 at a high temperature, mutual diffusion occurs and the glass material 6 is firmly bonded to each other. It is a thing. The coating film 35 may be formed by oxidizing the carrier 7 itself, or may be formed by ceramic spraying, vapor deposition, or another method. The oxide film used in this example was formed of three kinds of Fe 2 O 3 , SiO 2 , and Al 2 O 3 .
次に、上記構成に基づく作用について説明する。キャリ
ア上に載置されたガラス素材6は、第1図に示すように
搬送アーム5を介して加熱炉9内にて成形可能状態に加
熱軟化処理された後、上下成形型1,3間の成形ポイント
に搬送される。Next, the operation based on the above configuration will be described. The glass material 6 placed on the carrier is heat-softened to a moldable state in the heating furnace 9 via the transfer arm 5 as shown in FIG. It is transported to the molding point.
次に、下型3を上動せしめ、多機能キャリア7上に載置
されたガラス素材6を上下型1,3を介して所定形状の光
学素子6aにプレス成形する。このプレス成形の際には、
ガラス素材6の上下面は上下型1,3の成形面に規制さ
れ、又、外周面はキャリア7の孔21の内周面に規制され
て成形される。又、成形には、孔21の内周面の酸化物被
膜31とガラス素材6の酸化物との相互拡散による結合に
よってキャリア7と光学素子6aとが強固に一体的に結合
されたキャリア付き光学素子20を成形しうる。Next, the lower die 3 is moved upward, and the glass material 6 placed on the multi-functional carrier 7 is press-formed through the upper and lower dies 1 and 3 into an optical element 6a having a predetermined shape. During this press molding,
The upper and lower surfaces of the glass material 6 are regulated by the molding surfaces of the upper and lower molds 1 and 3, and the outer peripheral surface is regulated by the inner peripheral surface of the hole 21 of the carrier 7 for molding. Further, for molding, the optical film with carrier in which the oxide film 31 on the inner peripheral surface of the hole 21 and the oxide of the glass material 6 are combined by mutual diffusion to firmly bond the carrier 7 and the optical element 6a together. The element 20 can be molded.
又、多機能キャリア7の材質をガラスの熱膨張係数とほ
ぼ同じかやや小さい材料にて構成してあるので、成形後
に経時変化が生じた場合であっても光学素子6a面の歪や
割れの発生を確実に防止できる。さらに、第4図にて示
すように多機能キャリア付き光学素子20を保持枠25に保
持させる際には、接着材を用いることなく機械的に組付
け用の孔24と係止ピン26とが係合することにより自動的
に調心されて組付け保持されるので、正確かつ確実な保
持が可能となる。Further, since the material of the multi-functional carrier 7 is made of a material that is almost the same as or slightly smaller than the thermal expansion coefficient of glass, even if a change with time occurs after molding, distortion or cracking of the surface of the optical element 6a does not occur. The occurrence can be reliably prevented. Furthermore, as shown in FIG. 4, when the optical element 20 with a multifunctional carrier is held by the holding frame 25, the hole 24 for mechanical assembly and the locking pin 26 are mechanically assembled without using an adhesive material. Since they are automatically aligned and assembled and held by engaging, accurate and reliable holding is possible.
以上のように、本発明によれば、光学素子とキャリアと
を一体的に接合構成する際に、光学素子とキャリアとを
強固を結合することができ、成形後の後工程や組付け
時、使用時における光学素子のガタや抜けを確実に防止
することができるものである。また、キャリアの材質を
ガラスの熱膨張係数とほぼ同じか小さい係数を有する材
料にて構成すると、光学素子の歪や割れの発生を確実に
防止することができる。As described above, according to the present invention, when the optical element and the carrier are integrally bonded and configured, the optical element and the carrier can be firmly bonded, and the post-process or assembly after molding, It is possible to reliably prevent looseness and omission of the optical element during use. Further, when the material of the carrier is made of a material having a coefficient substantially equal to or smaller than the coefficient of thermal expansion of glass, it is possible to reliably prevent distortion and cracking of the optical element.
第1図は本発明に係るキャリア付き光学素子を成形する
成形装置の概略構成を示す説明図、第2図a,b、第3
図,第4図は本発明に係るキャリア付き光学素子の第1
の実施例を示す説明図である。 1,3……上,下成形型 6……ガラス素材 6a……光学素子 7……キャリア 35……被膜FIG. 1 is an explanatory view showing a schematic configuration of a molding apparatus for molding an optical element with a carrier according to the present invention, FIGS.
FIG. 4 and FIG. 4 show a first optical element with a carrier according to the present invention.
It is an explanatory view showing an example of. 1,3 …… Upper and lower molds 6 …… Glass material 6a …… Optical element 7 …… Carrier 35 …… Coating
Claims (2)
成形後の光学素子の組付け保持部およびガラス素材の成
形時の外径規制部を備えるとともにこの外径規制部に前
記成形後の光学素子との結合を強化する酸化物被膜を設
けた運搬用キャリアとを、プレス成形加工時に一体的に
接合構成したことを特徴とするキャリア付き光学素子。1. A glass material heated to a moldable temperature,
For transportation, which is provided with an assembly holding portion for the molded optical element and an outer diameter regulating portion at the time of molding the glass material, and which is provided with an oxide film for strengthening the coupling with the molded optical element. An optical element with a carrier, characterized in that the carrier and the carrier are integrally joined during press molding.
熱膨張係数とほぼ同じかまたは小さい係数を有する材料
にて構成したことを特徴とする特許請求の範囲第1項記
載のキャリア付き光学素子。2. The optical element with a carrier according to claim 1, wherein the carrier for transportation is made of a material having a coefficient of thermal expansion substantially equal to or smaller than that of the glass material. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61134381A JPH07122688B2 (en) | 1986-06-10 | 1986-06-10 | Optical element with carrier |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61134381A JPH07122688B2 (en) | 1986-06-10 | 1986-06-10 | Optical element with carrier |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62291609A JPS62291609A (en) | 1987-12-18 |
JPH07122688B2 true JPH07122688B2 (en) | 1995-12-25 |
Family
ID=15127061
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61134381A Expired - Fee Related JPH07122688B2 (en) | 1986-06-10 | 1986-06-10 | Optical element with carrier |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07122688B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003107317A (en) | 2001-09-27 | 2003-04-09 | Fuji Photo Optical Co Ltd | Method for manufacturing optical element with lens- barrel |
JP2006301352A (en) * | 2005-04-21 | 2006-11-02 | Moritex Corp | Lens cap |
JP2008256938A (en) * | 2007-04-04 | 2008-10-23 | Olympus Corp | Optical component and method for manufacturing optical component |
JP5312968B2 (en) * | 2009-02-02 | 2013-10-09 | オリンパス株式会社 | Optical component and method of manufacturing optical component |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6063743A (en) * | 1983-09-16 | 1985-04-12 | Olympus Optical Co Ltd | Optical element with multifunctional carrier |
JPS60129220A (en) * | 1983-12-19 | 1985-07-10 | Matsushita Electric Ind Co Ltd | Molding method of lens |
-
1986
- 1986-06-10 JP JP61134381A patent/JPH07122688B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6063743A (en) * | 1983-09-16 | 1985-04-12 | Olympus Optical Co Ltd | Optical element with multifunctional carrier |
JPS60129220A (en) * | 1983-12-19 | 1985-07-10 | Matsushita Electric Ind Co Ltd | Molding method of lens |
Also Published As
Publication number | Publication date |
---|---|
JPS62291609A (en) | 1987-12-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR20010020595A (en) | Glass Panel, Its Manufacturing Method and Spacer Used in the Panel | |
US20060162384A1 (en) | Press mold and method of manufacturing optical element | |
JPH07122688B2 (en) | Optical element with carrier | |
JP2003104739A (en) | Mold for forming optical element with lens barrel | |
JP3353958B2 (en) | Optical element manufacturing method | |
JPH0443853B2 (en) | ||
JP2621956B2 (en) | Optical element molding method | |
JPH0756707B2 (en) | Manufacturing method of lens with carrier | |
JP2006273661A (en) | Glass molding apparatus, tool for holding glass blank and glass molding method | |
JP3049103B2 (en) | Optical element molding equipment | |
JP2814717B2 (en) | Optical element molding method | |
JP2718451B2 (en) | Optical glass parts molding method | |
JPS6296329A (en) | Production of optical element | |
JP2790261B2 (en) | Die structure for press forming optical elements | |
JPH02102136A (en) | Mold for molding optical element and production thereof | |
JP3209722B2 (en) | Method for molding optical element and optical element | |
JPH03279226A (en) | Positioning method for carrying member in glass lens molding | |
JPS6360114A (en) | Method for molding optical element | |
JP3130621B2 (en) | Optical element molding method | |
JPH06144852A (en) | Apparatus for forming optical element and method for forming optical element | |
JP3176708B2 (en) | Glass material holding and conveying jig | |
JPH0699159B2 (en) | Optical element molding method | |
JP3220515B2 (en) | Optical element molding method | |
JP2520429Y2 (en) | Mold for optical element | |
JP3096321B2 (en) | Glass lens molding method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |