JPS62291226A - Bidirectional optical communicating system - Google Patents

Bidirectional optical communicating system

Info

Publication number
JPS62291226A
JPS62291226A JP61133658A JP13365886A JPS62291226A JP S62291226 A JPS62291226 A JP S62291226A JP 61133658 A JP61133658 A JP 61133658A JP 13365886 A JP13365886 A JP 13365886A JP S62291226 A JPS62291226 A JP S62291226A
Authority
JP
Japan
Prior art keywords
optical
wavelength
station
signal
switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61133658A
Other languages
Japanese (ja)
Inventor
Katsuyuki Imoto
克之 井本
Hirohisa Sano
博久 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61133658A priority Critical patent/JPS62291226A/en
Publication of JPS62291226A publication Critical patent/JPS62291226A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To decrease the number of parts of a device and to achieve a low power consumption by using a semiconductor laser as a light source for transmitting information and a wavelength selecting type light amplifying element. CONSTITUTION:Switches 18-1 and 18-2 are connected to a1 and a2 sides, information signals 19-1 and 19-2 are sent through a modulating circuit to semiconductor lasers 12-1 and 22-2, converted to the light signal of wavelengths lambda1 and lambda2 and inputted to a 1X2 port type light star coupler 14-1. The output of the coupler 14-1 is transmitted through an optical fiber 15 to a B station side. At the B station, a light signal is supplied through a star coupler 14-2 equal to an A station to semiconductor lasers 12-3 and 12-4. At such a time, respective semiconductor lasers 12-3 and 12-4 are connected to current supplying parts 21-3 and 21-4 and operated as the wavelength selecting type amplifying element of the wavelength lambda1, and the wavelength lambda2. By the reverse connection of the switch of respective stations, the transmission from the B station to the A station is executed.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〔産業上の利用分野〕 本発明は一本の光ファイバ内を複数の波長の光信号を双
方向に伝送させる双方向通信方式に関する。
Detailed Description of the Invention 3. Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a bidirectional communication system for bidirectionally transmitting optical signals of a plurality of wavelengths within a single optical fiber.

〔従来の技術〕[Conventional technology]

光7アイパ通信における波長多重伝送技術は経済性を高
める上で、また相互情報伝送をはかる上でも、さらには
機能全拡張させていく上でも極めて重要である。上記波
長多重伝送において、光合分波器はキーデバイスである
Wavelength multiplexing transmission technology in optical 7-aipa communications is extremely important for improving economic efficiency, for mutual information transmission, and for fully expanding functionality. In the wavelength division multiplexing transmission described above, the optical multiplexer/demultiplexer is a key device.

従来、光合分波器には、干渉膜フィルタや回折格子等の
受動素子で構成したもの(柳井、光通信ハンドブック、
朝倉書店刊、p324〜p331゜1982)の他に、
最近、半導体レーザダイオードのゲイン分布を分波機能
として利用する能動形の光合分波器の構成法が提案され
ている(″レーザダイオードを用いた光合分波器の提案
”、昭和60年電子通信学会半導体・材料部門全大、A
365、pi−180)。
Conventionally, optical multiplexers/demultiplexers are composed of passive elements such as interference film filters and diffraction gratings (Yanai, Optical Communication Handbook,
Asakura Shoten, p324-p331゜1982), as well as
Recently, a method for configuring an active type optical multiplexer/demultiplexer that utilizes the gain distribution of a semiconductor laser diode as a demultiplexing function has been proposed ("Proposal of an optical multiplexer/demultiplexer using a laser diode", 1985 Electronic Communication Academic Society Semiconductor and Materials Division National University, A
365, pi-180).

上記能動形の光合分波器の構成図を第2図に示す。1〜
3は発振仮長がそれぞれ0.88. 1.3゜1.55
μmの半導体レーザでア〕、これらのレーザ出力光は人
、出力ボートが共に3の3×3ボートを光スターカプラ
に入力され1合流された後。
FIG. 2 shows a configuration diagram of the active type optical multiplexer/demultiplexer. 1~
3 has an oscillation temporary length of 0.88. 1.3°1.55
With a μm semiconductor laser, these laser output lights are input into an optical star coupler (3 x 3 boats) and combined into one.

出カポ−)11−1.11−2.11−3に上記合流信
号がほぼ34分されて出力される。そしてそれぞれ中心
波長の異なるレーザダイオードアンプ5. 6. 7に
入射する。5のレーザダイオードアンプは中心波長が0
.88μmであるので、このアンプ5がオン状態では0
.88μmの波長が増幅されて出力され、光受信部8で
受信される。1.3μm、1.55μmの波長の光信号
は吸収されて出力されない。同様に、レーザダイオード
アンプ6は中心波長が1.3μmであるので、光受信部
9には1.3μmの光信号が受信される。さらにレーザ
ダイオードアンプ7は中心波長2i、ssμmに設定し
であるので、155μmの光信号が光受信部10で受信
される。以上のように、光スターカプラ4でそれぞれの
波長の光信号を合流1分岐し、所望中心波長のレーザダ
イオードアンプにより。
The above combined signal is divided into approximately 34 minutes and outputted to the output capo 11-1, 11-2, 11-3. and 5. laser diode amplifiers each having a different center wavelength. 6. 7. The center wavelength of laser diode amplifier 5 is 0.
.. Since it is 88 μm, when this amplifier 5 is on, it is 0.
.. The wavelength of 88 μm is amplified and output, and is received by the optical receiver 8. Optical signals with wavelengths of 1.3 μm and 1.55 μm are absorbed and not output. Similarly, since the center wavelength of the laser diode amplifier 6 is 1.3 μm, the optical receiver 9 receives an optical signal of 1.3 μm. Further, since the laser diode amplifier 7 has a center wavelength of 2i and is set to ss μm, an optical signal of 155 μm is received by the optical receiver 10. As described above, the optical star coupler 4 combines and splits the optical signals of each wavelength into one branch, and the laser diode amplifier of the desired center wavelength is used.

所望波長の光信号を選択し、分波する方式である。This method selects an optical signal of a desired wavelength and demultiplexes it.

波長間隔が十分に離れた光信号の分波用として極めて有
効な方式である。
This is an extremely effective method for demultiplexing optical signals whose wavelengths are sufficiently far apart.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで第2図の構成の光合分波器は片方向通信用のも
のであり、双方向通信を考えると、送信側にもレーザダ
イオードアンプと光受信部が必要となり、°また受信側
にも半導体レーザが必要となる。すなわち、能動素子の
数が非常に多くなシ。
By the way, the optical multiplexer/demultiplexer with the configuration shown in Figure 2 is for one-way communication, and considering two-way communication, a laser diode amplifier and an optical receiver are required on the transmitting side, and a semiconductor is also required on the receiving side. A laser is required. In other words, the number of active elements is very large.

光 現状のコストを考えた場合、受動素子唇(分波器のコス
トよりも高くなるという問題点がある。また、能動素子
全駆動するための電気回路も必要となシ、全体の消歎電
力も高くなるという問題点もある。
Considering the current cost of optical fibers, there is a problem that the cost of passive elements is higher than that of a duplexer.Also, an electric circuit is required to drive all active elements, and the overall power dissipation is low. There is also the problem that the cost is also high.

本発明の目的は1部品点数が少なく、簡易構成。The purpose of the present invention is to have a simple configuration with a small number of parts.

低コスト、低消費電力の双方向光通信方式を提供するこ
とにある。
The objective is to provide a low-cost, low-power consumption bidirectional optical communication system.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は次のような構成にすることによって達成され
る。すなわち、1本の光ファイバを用いて少なくとも1
波長の光信号を上り、下シ方向に双方向伝送を行う方式
において、上り、下シ側共に1波長当り半導体レーザと
光受信部をそなえ。
The above object is achieved by the following configuration. That is, at least one
In a system that bidirectionally transmits optical signals of different wavelengths from upstream to downstream, both the upstream and downstream sides are equipped with a semiconductor laser and an optical receiver for each wavelength.

該半導体レーザを、情報信号伝送用光源として。The semiconductor laser is used as a light source for information signal transmission.

または波長選択型光増幅素子として光信号を光受信部へ
の伝達用として、電気スイッチにより切換えて駆動する
Alternatively, a wavelength-selective optical amplification element is used to transmit an optical signal to an optical receiver, and is switched and driven by an electric switch.

〔作用〕[Effect]

本発明の双方向光通信方式は、半導体レーザが発掘用光
源としての機能と、波長選択型増幅素子としての機能を
もっていることに着目し、上記両機能を併用するように
新しい方式を発明したものである。すなわち、ある時は
所望波長λ工の光源として情報信号を光に変換して伝送
させ、ある時は伝送されてきた光信号の中から上記所望
波長λ1の光信号t−選択的に増幅して光受信部に送シ
込むように、半導体レーザの、駆動をスイッチによ)切
換えて操作するようにしたものである。したかって、各
々の局は1波長双方向通信の場合でちれば半導体レーザ
と光受信部、電気スイッチ、変調回路、電流供給部から
なる簡単な構成でよい。
The bidirectional optical communication system of the present invention focuses on the fact that a semiconductor laser has a function as an excavation light source and a wavelength-selective amplification element, and has invented a new system that combines both of the above functions. It is. That is, at times, the information signal is converted into light and transmitted as a light source with the desired wavelength λ, and at other times, the optical signal t with the desired wavelength λ1 is selectively amplified from among the transmitted optical signals. The semiconductor laser is operated by switching its driving mode (using a switch) so as to transmit light to the light receiving section. Therefore, in the case of one-wavelength bidirectional communication, each station may have a simple configuration consisting of a semiconductor laser, a light receiving section, an electric switch, a modulation circuit, and a current supply section.

〔実施例〕〔Example〕

第1図に本発明の双方向光通信方式の実施例を示す。こ
れは局AとBとの間を2波長の光信号を双方向伝送させ
るシステムの実施例である。12−1.12−3は発振
中心波長がλ1の半導体レーザである。12−2.12
−4は発振中心波長がλ=の半導体レーザである。そし
て、λ凰とλ2の波長間隔は大きくとっである。たとえ
ば1.2μmと1.55μm%あるいは1.3μmと1
.55μmのようにでちる。これらの半導体レーザ12
−1〜12−4はあるときは情報信号19−1゜19−
2. 19−3. 19−4t−伝送するための光源と
して動作し、ある時は伝送されてきた所望の発振中心波
長の光信号を選択的に通過させ、光受信部(13−1,
13−2,13−3,13−4)で受信させる波長選択
型光増幅素子として動作するように構成されている。
FIG. 1 shows an embodiment of the bidirectional optical communication system of the present invention. This is an embodiment of a system in which two-wavelength optical signals are transmitted bidirectionally between stations A and B. 12-1 and 12-3 are semiconductor lasers whose oscillation center wavelength is λ1. 12-2.12
-4 is a semiconductor laser whose oscillation center wavelength is λ=. The wavelength interval between λ凰 and λ2 is set to be large. For example, 1.2μm and 1.55μm% or 1.3μm and 1
.. It appears as 55μm. These semiconductor lasers 12
-1 to 12-4 are information signals 19-1゜19-
2. 19-3. 19-4t- Operates as a light source for transmission, and at times selectively passes the transmitted optical signal with a desired oscillation center wavelength, and operates as an optical receiver (13-1,
13-2, 13-3, 13-4) is configured to operate as a wavelength-selective optical amplification element.

まず同人側から局B側へのt7報伝送方法について述べ
る。スイッチ18−1 :ax ’A1Cm続し。
First, the method of transmitting t7 information from the coterie side to the station B side will be described. Switch 18-1: ax 'A1Cm continuation.

・「g報信号19−1を変調回路を通して半導体レーザ
12−1に送シ込み、光信号(波長λ1)に変換して伝
送路22−1.lX2ボート型光スターカプラ14−1
i通して光ファイバ15内を伝送させ1局B側へ送る。
・The g-report signal 19-1 is sent to the semiconductor laser 12-1 through the modulation circuit, converted to an optical signal (wavelength λ1), and transmitted to the transmission line 22-1.lX2 boat type optical star coupler 14-1.
The signal is transmitted through the optical fiber 15 and sent to the 1st station B side.

またスイッチ18−2もal側に接αし、清報信号19
−2を波長λ暑に変換して同・誠に局B側に伝送する。
The switch 18-2 is also connected to the AL side, and the alarm signal 19
-2 to the wavelength λ heat and transmits it to the station B side.

局B側では上記反長λ1.λ2の光1j号を含んだ光信
号が1×2ボート!光スターカプラ14−2により光伝
送a2z−3と22−4へ2分岐される。そして半導体
レーザ12−3.12−4へ入力さノする。ここで、ス
イッチ18−3kbs側に、スイッチ18−4をb4側
に接続しておくと、半導体レーザ12−3.12−4に
は電流供給部21−3,21−4より庄人屯流が供給さ
れる。
On the station B side, the above anti-length λ1. 1x2 optical signals including light 1j of λ2! The optical star coupler 14-2 branches the optical transmission into two, a2z-3 and 22-4. Then, it is input to the semiconductor lasers 12-3 and 12-4. Here, if the switch 18-3 is connected to the kbs side and the switch 18-4 is connected to the b4 side, the semiconductor laser 12-3, 12-4 receives a current from the current supply parts 21-3 and 21-4. is supplied.

そして上記半導体レーザ12−3.12−4へそれぞれ
の発振中心波長とほぼ等しい光信号が入力されると、そ
の光信号が選択的に光増幅される。。
When an optical signal approximately equal to the oscillation center wavelength of each of the semiconductor lasers 12-3 and 12-4 is input, the optical signal is selectively amplified. .

このような光増唱現1は、たとえば「エレクトロニクス
レターズ(EleCtrOniC3Letters、 
24t h )1984年5月、Vow、20./i 
11.p438〜p439Jに述べられている。したが
って、半導体レーザ12−3へ入力された波長λ!、λ
2の光信号のうち、波長λlの光は号が」択的シて増幅
され、光伝送路23−31&:通って光受信部13−3
で受信される。そして光信号から電気・百合に変換され
、端末16−3に送られて情報信号19−1がとりださ
れる。同様に、半導体レーザ12−4へ入力した波長λ
1.λ2の光信号のうち。
Such light augmentation version 1 is, for example, "Electronics Letters (EleCtrOniC3Letters,
24th) May 1984, Vow, 20. /i
11. It is described on p438-p439J. Therefore, the wavelength λ! input to the semiconductor laser 12-3! ,λ
Among the optical signals of 2, the light with wavelength λl is selectively amplified and passes through the optical transmission line 23-31 &: to the optical receiver 13-3.
received at The optical signal is then converted into electricity and sent to the terminal 16-3, where the information signal 19-1 is extracted. Similarly, the wavelength λ input to the semiconductor laser 12-4
1. Of the optical signals of λ2.

λ2の光信号が]1択的に増幅され、光伝送路23−4
.光受信部13−4を11して端末16−4で情報信号
19−2がとりだされる。なお、光受信部13−3.1
3−4の出力信号に含まれている回線交換制御信号はス
イッチ制御部17−3゜17−4へ送シ込まれている。
The optical signal of λ2 is selectively amplified and sent to the optical transmission line 23-4.
.. An information signal 19-2 is taken out at the terminal 16-4 through the optical receiver 13-4. Note that the optical receiver 13-3.1
The circuit switching control signal included in the output signal of 3-4 is sent to the switch control units 17-3 and 17-4.

そして、これらスイッチ制御部17−3.17−4の出
力信号知よりスイッチ18−3.18−4が制御される
。すなわち、同人側からの信号伝送が終了し、逆に局B
側から局A側へ信号を伝送させたい時にはスイッチ18
−3をa3側に、スイッチ18−4をへに切換、を接続
する信号をスイッチ制御部17−3゜17−4が出す。
The switches 18-3 and 18-4 are controlled based on the output signals of these switch control sections 17-3 and 17-4. In other words, the signal transmission from the doujin side ends, and conversely, the signal transmission from station B ends.
When you want to transmit a signal from the station A side to the station A side, switch 18
The switch control units 17-3 and 17-4 output signals for connecting the switch 18-3 to the a3 side and the switch 18-4 to the a3 side.

次に局B側から局A側へ情報信号を伝送する場合につい
て説明する。スイッチ18−3はb3がらa3へ、スイ
ッチ18−4はb4からa4’Ic切り換え、それぞれ
情報信号19−3.19−4を半導体レーザ12−3.
12−4にょシ光信号に変換してlX2ボート型光スタ
ーカプラ14−2で合流し、光ファイバ15内を伝送さ
せる。
Next, the case where an information signal is transmitted from the station B side to the station A side will be explained. The switch 18-3 switches from b3 to a3, the switch 18-4 switches from b4 to a4'Ic, and the information signals 19-3, 19-4 are respectively sent to the semiconductor lasers 12-3.
12-4 is converted into an optical signal, combined at an 1X2 boat type optical star coupler 14-2, and transmitted through the optical fiber 15.

局A側では、1×2ポート型光スターカプラ14−1に
より上記合流信号が2分岐され、光伝送路22−1.2
2−2内を伝送し、半導体レーザ12−1.12−2に
人力される。半導体レーザ12−1では波長λ1.λ鵞
の光信号のつち。
On the station A side, the above-mentioned combined signal is branched into two by a 1x2 port type optical star coupler 14-1, and the optical transmission line 22-1.2 is split into two.
2-2, and is manually input to the semiconductor laser 12-1.12-2. In the semiconductor laser 12-1, the wavelength λ1. Lambda goose's light signal hammer.

波長λ1の光信号を選択的に通し、光受信部13−1へ
導く。ここで、光受信部13−1は上記光信号を電気信
号に変換し、スイッチ制御部17−1へ局B側から情報
が送られてきたことを示す。
The optical signal having the wavelength λ1 is selectively passed through and guided to the optical receiving section 13-1. Here, the optical receiver 13-1 converts the optical signal into an electrical signal, indicating that information has been sent from the station B side to the switch controller 17-1.

スイッチ制御部17−1では上記指示により、スイッチ
18−1eatからす、へ切換えるように信号を出す。
In response to the above instruction, the switch control section 17-1 issues a signal to switch to the switch 18-1eat (glass).

なおスイッチts−iのalからbIへの切換えは上記
のごとく相手側から送られてきた回線交換制匈信号によ
り自動的に行ってもよく。
Note that the switching of the switch ts-i from al to bI may be performed automatically by a line switching control signal sent from the other party as described above.

あるいは手動で行なってもよい。Alternatively, it may be done manually.

スイッチ18−1がalからblに切換わると。When the switch 18-1 changes from al to bl.

半導体レーザ12−1には゛4流供給部21−1より圧
入電流が供給され、半導体レーザ12−1に人力した光
信号のうち、波長λlの光信号を選択的に増幅し、光受
信部13−1へ光伝送p!23−1を通して波長λlの
光信号を入力される。光受信部13−1の出力は端末へ
送シ込まれ、情報信号19−3がとシだされる。同様に
、半導体レーザ12−2もIli鑞供給部21−2より
注入電流が供給され、波長λ2の光信号が選択的に増幅
される。そして光受信部13−2で電気信号に変換され
、端末16−2より情報信号19−4が再生される。
A press-fit current is supplied to the semiconductor laser 12-1 from the four-current supply section 21-1, and among the optical signals inputted to the semiconductor laser 12-1, the optical signal with the wavelength λl is selectively amplified, and the optical signal is sent to the optical receiver 13. -1 optical transmission p! An optical signal of wavelength λl is input through 23-1. The output of the optical receiver 13-1 is sent to the terminal, and an information signal 19-3 is output. Similarly, the semiconductor laser 12-2 is also supplied with an injection current from the Ili solder supply section 21-2, and the optical signal of wavelength λ2 is selectively amplified. The optical signal is then converted into an electrical signal by the optical receiver 13-2, and the information signal 19-4 is reproduced from the terminal 16-2.

なお、スイッチ18−1. 18−2. 18−3゜1
8−4の切換え制御は欠のようにして行ってもよい。た
とえば局B側から局A側へ情報を送りたい場合に、情報
信号19−3.19−4へ上記スイッチ切換え制御信号
を含ませて局A側へ伝送させ、このスイッチ切換え制御
信号を光受信部13−1.13−2で検出し、スイッチ
制御部17−1.17−2へ送るようにしてもよい。ま
念、スイッチ18−1t−atからす、へ切換えたい場
合に1局B側から情報信号19−4へスイッチ切換え制
御信号を含ませて伝送し、光受信部13−2でこれを受
信し1点線24−1で示したように、この信号をスイッ
チ制御部17−1へ送るようにしてもよい。同様にスイ
ッチ18−3t’t)sからa3へ切換えたい場合にも
、情報信号19−2へスイッチ切換え制御信号を含ませ
て伝送し、光受信部13−4でこれを受信し、点424
−2のごとく上記スイッチ切換え制御信号をスイッチ制
御部17−3へ送るようにしてもよい。
Note that the switch 18-1. 18-2. 18-3゜1
The switching control of 8-4 may be performed in a non-stop manner. For example, if you want to send information from the station B side to the station A side, the above switch switching control signal is included in the information signal 19-3.19-4 and transmitted to the station A side, and this switch switching control signal is optically received. It may be detected by the section 13-1.13-2 and sent to the switch control section 17-1.17-2. Just in case, if you want to switch to the switch 18-1t-at-glass, transmit the switch switching control signal to the information signal 19-4 from the 1st station B side, and receive it at the optical receiver 13-2. This signal may be sent to the switch control section 17-1 as indicated by a one-dot line 24-1. Similarly, when it is desired to switch from switch 18-3t't)s to a3, a switch switching control signal is included in the information signal 19-2 and transmitted, and the optical receiver 13-4 receives it, and the point 424
-2, the switch switching control signal may be sent to the switch control section 17-3.

さらに屑入側から波長λlの光信号を局B側へ伝送し1
局B側から波長λ2の光信号を局A側へ伝送することも
でき、また局Ag1から波長λズの光信号を局B側へ伝
送し1局B側から波長λlの光信号を局A側へ伝送させ
ることもできる宅とは今までの説明から明らかなことで
ある。
Furthermore, an optical signal of wavelength λl is transmitted from the waste input side to the station B side.
It is also possible to transmit an optical signal with a wavelength λ2 from the station B side to the station A side, or transmit an optical signal with a wavelength λ2 from the station Ag1 to the station B side, and an optical signal with a wavelength λl from the station B side to the station A side. It is clear from the explanation so far that the information can be transmitted to the other side.

本発明は上記実施例に限定されない。まず波長多重数は
1波、3波、あるいはそれ以上でも可能である。1×n
ボー)!光スターカブラには波長依存性のあるものを用
い、これにある程度の分波特性を持たせればより高アイ
ソレーシヨン特性を得ることができる。また、光スター
カプラ14−1.14−2の代わりに簡単な分波特性を
もった分波器(たとえば方向性結合器、 8tIi!型
光結合器。
The invention is not limited to the above embodiments. First, the number of wavelengths multiplexed can be one, three, or more. 1×n
baud)! If a wavelength-dependent optical star coupler is used and it is given a certain degree of demultiplexing characteristics, higher isolation characteristics can be obtained. Also, instead of the optical star coupler 14-1, 14-2, a demultiplexer with simple demultiplexing characteristics (for example, a directional coupler, an 8tIi! type optical coupler) may be used.

など)を用いれば、上記と同様に高アイソレーシヨン特
性を実現することができる。半導体レーザと光受信部と
の間の光伝送路23−1. 23−2゜23−3.23
−4はなくし、半導体レーザと光受信部とを半導体基板
上に一体的に形成させた構成のものでもよい。
etc.), it is possible to achieve high isolation characteristics in the same way as above. Optical transmission line 23-1 between the semiconductor laser and the optical receiver. 23-2゜23-3.23
-4 may be omitted and the semiconductor laser and the optical receiver may be integrally formed on the semiconductor substrate.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、半導体レーザを、ある時は光源として
、ある時は波長選択型増幅素子として使いわけることに
より1部品点数が少ない、簡易構成、低コスト、低消費
a力の双方向光通信方式を提供できるという効果がある
According to the present invention, by using a semiconductor laser at times as a light source and at other times as a wavelength-selective amplification element, two-way optical communication with a simple configuration, low cost, and low power consumption with a small number of parts is achieved. This has the effect of providing a method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実薙例になる双方向光通信方式の構
Fy、e示すブロック図、第2図は従来の能動形の光合
分波器の構成を示すブロック図である。 1〜3.12−1〜12−4・・・半導体レーザ、4゜
14−1.14−2・・・光スターカプラ、5〜7・・
・レーザダイオードアンプ、8〜10.13−1〜13
−4・・・光受信部、11−1〜11−3・・・出力ボ
ート、15・・・光ファイバ、16−1〜16−4・・
・端末、17−1〜17−4・・・スイッチ制御部。 18−1〜18−4・・・スイッチ、19−1〜19−
4・・・情報信号、20−1〜20−4・・・変調回路
。 21−1〜21−4・・・電流供給部、21−1〜22
−4.23−1〜23−4・・・光伝送路。  、。
FIG. 1 is a block diagram showing the structure of a bidirectional optical communication system that is an example of the present invention, and FIG. 2 is a block diagram showing the structure of a conventional active type optical multiplexer/demultiplexer. 1-3.12-1-12-4... Semiconductor laser, 4°14-1.14-2... Optical star coupler, 5-7...
・Laser diode amplifier, 8~10.13-1~13
-4... Optical receiver, 11-1 to 11-3... Output port, 15... Optical fiber, 16-1 to 16-4...
- Terminals, 17-1 to 17-4...Switch control unit. 18-1 to 18-4...switch, 19-1 to 19-
4... Information signal, 20-1 to 20-4... Modulation circuit. 21-1 to 21-4... Current supply section, 21-1 to 22
-4.23-1 to 23-4... Optical transmission line. ,.

Claims (1)

【特許請求の範囲】 1、1本の光ファイバを用いて少なくとも1波長の光信
号を上り、下り方向に双方向伝送を行う方式において、
上り、下り側共に1波長当り半導体レーザと光受信部を
備え、該半導体レーザを、情報信号伝送用光源として、
または波長選択型光増幅素子として光信号を光受信部伝
達用として、電気スイッチにより切換えて駆動するよう
にしたことを特徴とする双方向光通信方式。 2、1本の光ファイバ内を伝送する光信号の波長が2波
以上の場合には、該それぞれの発振中心波長の半導体レ
ーザ出射光を光合波器を用いて合波し光ファイバ内へ伝
送させるようにしたことを特徴とする第1項記載の双方
向光通信方式。 3、電気スイッチの切換え制御を相手局より送られてき
た回線交換制御信号を自局の光受信部で検出し、その検
出信号により行うことを特徴とする第1、2項記載の双
方向光通信方式。
[Claims] 1. A method for bidirectionally transmitting an optical signal of at least one wavelength in the upstream and downstream directions using one optical fiber,
Both the upstream and downstream sides are equipped with a semiconductor laser and an optical receiver for each wavelength, and the semiconductor laser is used as a light source for information signal transmission,
Alternatively, a bidirectional optical communication system characterized in that a wavelength-selective optical amplification element is used to transmit an optical signal to an optical receiver and is switched and driven by an electric switch. 2. If the wavelength of the optical signal transmitted within one optical fiber is two or more waves, the semiconductor laser emitted light of each oscillation center wavelength is combined using an optical multiplexer and transmitted into the optical fiber. 2. The bidirectional optical communication system according to claim 1, characterized in that: 3. The bidirectional optical system according to items 1 and 2, characterized in that the switching control of the electric switch is performed by detecting a circuit switching control signal sent from the other station using the optical receiver of the own station and using the detection signal. Communication method.
JP61133658A 1986-06-11 1986-06-11 Bidirectional optical communicating system Pending JPS62291226A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61133658A JPS62291226A (en) 1986-06-11 1986-06-11 Bidirectional optical communicating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61133658A JPS62291226A (en) 1986-06-11 1986-06-11 Bidirectional optical communicating system

Publications (1)

Publication Number Publication Date
JPS62291226A true JPS62291226A (en) 1987-12-18

Family

ID=15109915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61133658A Pending JPS62291226A (en) 1986-06-11 1986-06-11 Bidirectional optical communicating system

Country Status (1)

Country Link
JP (1) JPS62291226A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63227225A (en) * 1987-03-17 1988-09-21 Oki Electric Ind Co Ltd Automatic wavelength switching type wavelength multiplex optical transmitter
JPH03195221A (en) * 1989-12-25 1991-08-26 Hitachi Cable Ltd Multiplex optical distributor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63227225A (en) * 1987-03-17 1988-09-21 Oki Electric Ind Co Ltd Automatic wavelength switching type wavelength multiplex optical transmitter
JPH03195221A (en) * 1989-12-25 1991-08-26 Hitachi Cable Ltd Multiplex optical distributor

Similar Documents

Publication Publication Date Title
US8457497B2 (en) Optimized directionless optical add/drop module systems and methods
US7899334B2 (en) Signal distribution module for a directionless reconfigurable optical add/drop multiplexer
US6069719A (en) Dynamically reconfigurable optical add-drop multiplexers for WDM optical communication systems
JP3995781B2 (en) Optical branching / inserting device and optical branching device using wavelength selective filter
KR100301950B1 (en) Apparatus for monitoring optical path based on the identification of optical cross-connect input ports
US6535312B2 (en) Versatile optical switching for wavelength-division multiplexed system
JPH10285119A (en) Optical communication node and wavelength divisional multiplex optical transmission device having ring configuration constituted of the node
JPH03219793A (en) Wavelength division optical exchange
EP0923264B1 (en) Optical matrix switch for wavelength-multiplexed signals
CN111796469B (en) Optical frequency comb light source and method for generating optical frequency comb
JP2014099915A (en) Protected light source for multiple wavelength division multiplex passive optical network (wdm-pon)
JPH10282532A (en) Optical switch device
EP1719271A2 (en) All-optical wavelength converter circuit
JPS62291226A (en) Bidirectional optical communicating system
CN219676335U (en) Multichannel active optical cable photon integrated chip and active optical cable
JP2003134089A (en) Transmitter
US6782204B1 (en) Network with shared optical sources
JP2001044934A (en) Wavelength multiplex optical transmitter
JP2000298297A (en) Multi-wavelength conversion device
Leuthold et al. All-optical nonblocking terabit/s crossconnect based on low power all-optical wavelength converter and MEMS switch fabric
JP2022002402A (en) Repeater and repeating method
US7151630B2 (en) Raman amplification repeater
JP4029515B2 (en) Wavelength converter and wavelength converter
JPH11313349A (en) Optical cross connect control system
JPH11258647A (en) Signal converting device and optical transmission system using signal converting device