JPS62291122A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS62291122A
JPS62291122A JP13535486A JP13535486A JPS62291122A JP S62291122 A JPS62291122 A JP S62291122A JP 13535486 A JP13535486 A JP 13535486A JP 13535486 A JP13535486 A JP 13535486A JP S62291122 A JPS62291122 A JP S62291122A
Authority
JP
Japan
Prior art keywords
thermal stress
semiconductor element
stress buffer
buffer plate
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13535486A
Other languages
Japanese (ja)
Inventor
Tsunego Odai
小田井 恒吾
Katsumi Akabane
赤羽根 克己
Kazuyoshi Kanda
和義 神田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP13535486A priority Critical patent/JPS62291122A/en
Publication of JPS62291122A publication Critical patent/JPS62291122A/en
Pending legal-status Critical Current

Links

Landscapes

  • Die Bonding (AREA)

Abstract

PURPOSE:To improve the working efficiency by fusionbonding thermal stress buffer plates to electrodes to be integrated to prevent the plates from being displaced, and reducing the number of components to be assembled as a semiconductor device. CONSTITUTION:Thermal stress buffer plates 2a, 3a interposed between a semiconductor element 1 and the anode and cathode electrodes 4, 5 are respectively integrated with the electrodes 4, 5 by brazing or simultaneous rolling, and used as anode and cathode electrode assemblies 4A, 5A. Thus, the electrode assemblies in which the plates are integrated are used to prevent the plates from being displaced with respect to the element 1, thereby always applying a uniform pressurizing stress to the element 1. Since the plates 2a, 3a having similar thermal expansion coefficient to that of the element 1 are contacted with the element 1, a thermal stress applied to the element 1 can be reduced.

Description

【発明の詳細な説明】 3、発明の詳細な説明 (産業上の利用分野) 本発明は、圧接構造の半導体装置に係り、特に半導体素
子に加えられる熱応力を緩和するのに好適な電極構造を
有する半導体装置に関する。
Detailed Description of the Invention 3. Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a semiconductor device with a press-contact structure, and in particular to an electrode structure suitable for relieving thermal stress applied to a semiconductor element. The present invention relates to a semiconductor device having:

(従来の技術) 一般に、半導体装置の陰・陽画電極付和としては、1.
気長導体である銅が使用されている。銅の熱膨張係数は
、シリコン等の付和から構成される半導体素子の熱膨張
係数の約3〜4倍である。
(Prior Art) In general, the addition of negative and positive electrodes in a semiconductor device includes: 1.
Copper, which is a durable conductor, is used. The coefficient of thermal expansion of copper is about 3 to 4 times that of a semiconductor element made of an additive such as silicon.

従って、半導体素子を挾持して電極を押圧する場合、電
極と半導体素子との熱膨張係数の差によって生ずる熱応
力が半導体素子に加えられ、著しい場合には、半導体素
子を破壊に至らしめることもある。
Therefore, when holding a semiconductor element and pressing an electrode, thermal stress caused by the difference in thermal expansion coefficient between the electrode and the semiconductor element is applied to the semiconductor element, and in severe cases, it may lead to destruction of the semiconductor element. be.

そこで、この熱応力を緩和することを目的として、半導
体素子の熱膨張係数と近似した熱膨張係数を有するタン
グステンやモリブデンのような金属よりなる熱応力緩衛
板を、この電極と半導体素子との間に挿入している。
Therefore, in order to alleviate this thermal stress, a thermal stress relief plate made of a metal such as tungsten or molybdenum, which has a thermal expansion coefficient similar to that of the semiconductor element, is installed between the electrode and the semiconductor element. inserted in between.

このような圧接構造よりなる半導体装置において、前記
熱応力緩衝板として、例えばF’5−Ni合金板を使用
した構造が、実開昭56−84347号に示されている
In a semiconductor device having such a press-contact structure, a structure in which, for example, an F'5-Ni alloy plate is used as the thermal stress buffer plate is shown in Japanese Utility Model Application Laid-Open No. 56-84347.

第2図は、例えば実開昭56−84347号公報に示さ
れている・従来技術により構成された圧接型半導体装置
の断面図である。
FIG. 2 is a sectional view of a press-contact type semiconductor device constructed according to the prior art disclosed in, for example, Japanese Utility Model Application Publication No. 56-84347.

第2図に示されているように、一般に半導体素子1は、
それぞれ陽極側熱応力緩衝板2及び陰極側熱応力緩衝板
3を介在して、陽極電極4及び陰極電極5により加圧接
触され、挾持されろ。
As shown in FIG. 2, the semiconductor device 1 generally has the following characteristics:
They are brought into pressure contact and held by the anode electrode 4 and the cathode electrode 5 via the anode side thermal stress buffer plate 2 and the cathode side thermal stress buffer plate 3, respectively.

なお、8はパッシベーション処理8施こされた半導体素
子10周縁部を覆って、これを機械的および電、気的に
保腰すると共に、絶縁筒体6に対する半導体素子1の位
置決めの機能をも果たす環状ゴム部材である。
Note that 8 covers the peripheral edge of the semiconductor element 10 that has been subjected to the passivation treatment 8 to mechanically, electrically and electrically maintain it, and also functions to position the semiconductor element 1 with respect to the insulating cylinder 6. It is an annular rubber member.

このように、従来技術においては、熱応力緩衛板2.(
或いは3)が、電極4(或いは5)と半導体素子lの間
に挿入されるので、半導体素子1との相対位置す仁を防
ぐために、熱応力緩衝板2(或いは3)を保持したり固
定したりする方法や構造が検討されなければならない。
As described above, in the prior art, thermal stress relief plate 2. (
Alternatively, 3) is inserted between the electrode 4 (or 5) and the semiconductor element 1, so that the thermal stress buffer plate 2 (or 3) is held or fixed in order to prevent it from being positioned relative to the semiconductor element 1. The method and structure for doing so must be considered.

熱応力緩衝板2(或いは3)を固定する方法として、第
2図の従来装置では、熱応力緩衝板2(或いは3)およ
び、これに接触する電極4(或いは5)の各対向面を凹
凸にして、それぞれを嵌合する構造が採用されている。
As a method for fixing the thermal stress buffer plate 2 (or 3), in the conventional device shown in FIG. A structure is adopted in which the two are fitted together.

類似の電極・熱応力緩衝板固着構造は、特開昭54−3
7681号公報にも記載されている。
A similar electrode/thermal stress buffer plate fixing structure is disclosed in JP-A-54-3.
It is also described in Publication No. 7681.

(発明が解決しようとする問題点〕 上記したように、従来技術を適用する場合には、電極と
半導体素子との間に挿入される熱応力緩衝板を保持また
は固定する手段が用意されなければならない。
(Problems to be Solved by the Invention) As mentioned above, when applying the conventional technology, a means for holding or fixing the thermal stress buffer plate inserted between the electrode and the semiconductor element must be provided. It won't happen.

このような手段がないと、上記熱応力緩衝板が、電極と
半導体素子との間で自由に移動してしまい、半導体素子
に接触する熱応力緩衝板の接触部分(面積)が一様でな
くなる。即ち、電極と半導体素子に対して、熱応力緩衛
板の相対位置が15扛でしまう。
Without such a means, the thermal stress buffering plate would move freely between the electrode and the semiconductor element, and the contact area (area) of the thermal stress buffering plate in contact with the semiconductor element would become uneven. . That is, the relative position of the thermal stress relief plate to the electrode and the semiconductor element is 15 degrees.

このように、熱応力緩衝板がずれた状態で半導体装置を
押圧挾持した場合、半導体素子に対して位置ずれした熱
緩衝板を介して、半導体素子に不均一な応力が加えられ
、著しい場合には、半導体素子を破壊してしまうという
問題があった。
In this way, when a semiconductor device is pressed and clamped with the thermal stress buffer plate misaligned, uneven stress is applied to the semiconductor element via the thermal buffer plate that is misaligned with respect to the semiconductor element, and in severe cases, However, there was a problem in that the semiconductor element was destroyed.

更には、半導体装置を組立てろ上で部品点数が多くなり
1作業効率が悪いという欠点もある。
Furthermore, there is also the disadvantage that the number of parts increases when assembling a semiconductor device, resulting in poor work efficiency.

一方、m応力緩衝板の相対位置f#Lを防ぐもう一つの
方法として、この熱応力緩衝板を適当なロウ材を介して
半導体素子と合金接着させる方法がある。
On the other hand, as another method for preventing the relative position f#L of the m stress buffer plate, there is a method of alloy bonding the thermal stress buffer plate to the semiconductor element through a suitable brazing material.

特に、半導体素子自体の陽極側では、半導体素子に加え
られる熱応力を緩和する目的と、半導体素子の補強の目
的を兼ねて、熱応力緩衝板を半導体素子に合金接着させ
ることが公知である。
In particular, on the anode side of the semiconductor element itself, it is known to bond a thermal stress buffer plate to the semiconductor element with an alloy for the purpose of alleviating thermal stress applied to the semiconductor element and reinforcing the semiconductor element.

しかしながら、このような合金接着構造を半導体素子の
陰極側に適用する場合には、以下のような問題点が生ず
る。
However, when such an alloy adhesive structure is applied to the cathode side of a semiconductor element, the following problems occur.

即ち、陰極側に特有な電極構造(パターン)を有しない
ダイオードを除いて、一般の逆阻止型すイリスタ、逆導
通サイリスク、光直接点弧サイリスタ、GTO(ゲート
ターンオフ)サイリスタ等の半導体素子は、それぞれの
素子の特性を保持するための、特有の電極構造(ゲート
パターン)を陰極側に有しており、熱応力緩衝板を半導
体素子の陰極側に合金接着させた場合には、素子の特性
を失ってしまうこともありうる、という問題がある。
That is, except for diodes that do not have a unique electrode structure (pattern) on the cathode side, semiconductor devices such as general reverse blocking thyristors, reverse conduction thyristors, optical direct ignition thyristors, and GTO (gate turn-off) thyristors, The cathode side has a unique electrode structure (gate pattern) to maintain the characteristics of each element, and when the thermal stress buffer plate is alloy-bonded to the cathode side of the semiconductor element, the characteristics of the element are The problem is that it is possible to lose.

本発明の目的は、上記熱応力緩衝板を、半導体素子にで
はなく、電極に融着させて一体化することにより、熱応
力緩衝板の位置t’1r4−を防ぐと共に、半導体装置
を組立てる部品点数を少なくして作業効率を高めること
にある。
An object of the present invention is to prevent the position t'1r4- of the thermal stress buffer plate by fusing and integrating the thermal stress buffer plate not with the semiconductor element but with the electrode, and to provide a component for assembling a semiconductor device. The goal is to reduce the number of points and increase work efficiency.

(問題点を解決するための手段) 電極と半導体素子との間に挿入される、熱応力緩衝板を
保持したり、固定したりするための特別な構造を用いる
ことなく・上記熱応力緩衝板と半導体素子との相対位置
ずれを防ぐという前記目的は、熱応力緩衝板を電極と一
体化することにより達成される。
(Means for Solving the Problem) The above thermal stress buffer plate is inserted between the electrode and the semiconductor element without using a special structure for holding or fixing the thermal stress buffer plate. The above object of preventing relative positional deviation between the semiconductor element and the semiconductor element is achieved by integrating the thermal stress buffer plate with the electrode.

(作 用) 上記熱応力緩衝板を電極と接着して固定一体化し、これ
を新たな電極として、圧接構造の半導体装置に組立てる
(Function) The above-mentioned thermal stress buffer plate is bonded and fixed to an electrode, and this is assembled as a new electrode into a semiconductor device having a press-contact structure.

従って、電極と半導体素子との間に熱応力緩衝板を挿入
する必要がなくなり、熱応力緩衝板の相対位置ずれによ
り半導体素子に対して異常な不均一応力が加えられるこ
とがなくなる。
Therefore, there is no need to insert a thermal stress buffer plate between the electrode and the semiconductor element, and abnormal non-uniform stress is not applied to the semiconductor element due to relative positional deviation of the thermal stress buffer plate.

一方、半導体素子の熱膨張係数と近似した熱膨張係数を
有する熱応力緩衝板を電極材の一部として使用するので
、電極と半導体素子との熱膨張係数の差によって生ずる
熱応力で、半導体索子を破壊に至らしめるということも
なくなる。
On the other hand, since a thermal stress buffer plate having a thermal expansion coefficient similar to that of the semiconductor element is used as part of the electrode material, the semiconductor wire is There will be no need for children to be destroyed.

更には、熱応力緩衝板と電極とを一体化したために、半
導体装置を組立てる部品数が低減されると共に、熱応力
緩衛板の位置合せをする必要もなくなるので、組立作業
の効率が非常に向上する。
Furthermore, since the thermal stress buffer plate and the electrode are integrated, the number of parts to assemble the semiconductor device is reduced, and there is no need to align the thermal stress buffer plate, which greatly improves the efficiency of assembly work. improves.

(実施例 ) 電極と熱応力緩衝板とを一体化させた本発明の一実施例
の構造断面を第1図に示す。第1図で用いられている符
号は、第2図で示した部分と同−又は相当部分である。
(Example) FIG. 1 shows a structural cross section of an example of the present invention in which an electrode and a thermal stress buffer plate are integrated. The symbols used in FIG. 1 are the same as or equivalent to those shown in FIG. 2.

本実施例では、半導体索子1と陽極および陰極電極4,
5との間圧介装される熱応力緩衝板2a及び3aをそれ
ぞれ前記陽極、陰極電極4及び5にロウ液酸いは同時圧
延の方法を用いて一体化し、これらをそれぞれ陽極およ
び陰極電極組立体4A。
In this embodiment, the semiconductor cord 1 and the anode and cathode electrodes 4,
Thermal stress buffer plates 2a and 3a, which are interposed between the anode and cathode electrodes 4 and 5, are integrated with the anode and cathode electrodes 4 and 5, respectively, using a wax coating or simultaneous rolling method, and these are assembled into an anode and cathode electrode assembly, respectively. 3D 4A.

5Aとして使用する。Used as 5A.

このように熱応力緩衝板を一体化した電極組立体を用い
ることにより、熱応力緩衝板を半導体素子に対(−で固
定する構造とすること無しに、半導体素子1に対して熱
応力緩衝板が位置ずれを生ずることを防止し、半導体索
子1に対して、常に均一な圧接応力を加えることができ
る。
By using the electrode assembly that integrates the thermal stress buffer plate in this way, the thermal stress buffer plate can be attached to the semiconductor element 1 without having to have a structure in which the thermal stress buffer plate is fixed to the semiconductor element with (-). It is possible to prevent the occurrence of positional shift and to apply uniform pressure stress to the semiconductor cord 1 at all times.

一方、半導体索子1のそれと近似した熱膨張係数を有す
る熱応力緩衝板2a(或いは3m)を、半導体索子1と
接触させているので、半導体索子IK加えられる熱応力
を低減することができる。
On the other hand, since the thermal stress buffer plate 2a (or 3 m) having a coefficient of thermal expansion similar to that of the semiconductor cord 1 is brought into contact with the semiconductor cord 1, it is possible to reduce the thermal stress applied to the semiconductor cord IK. can.

更に、これらの熱応力緩衝板と電極とを一体化し、電極
組立体としているので、半導体装置の組立部品数が低減
され、又、熱応力緩衛板の位置決めをする必要がなくな
り、組立作業効率が向上する。
Furthermore, since these thermal stress buffer plates and electrodes are integrated into an electrode assembly, the number of assembled parts of the semiconductor device is reduced, and there is no need to position the thermal stress buffer plates, improving assembly work efficiency. will improve.

なお、第1図の実施例では、熱応力緩衝板2a。In the embodiment shown in FIG. 1, the thermal stress buffer plate 2a.

3aの外に、電極4,50反対側の面(半導体索子1と
反対の面)にも、同−材料、寸法の熱応力緩衝板が一体
化され、いわゆるサンドイッチ構造とされている。
In addition to 3a, a thermal stress buffer plate made of the same material and having the same dimensions is also integrated on the surface opposite to the electrodes 4 and 50 (the surface opposite to the semiconductor cable 1), forming a so-called sandwich structure.

これは、電極4,5の一力の面のみに熱応力緩衛板を固
着一体化した場合に、両者の熱膨張係数の差に基づいて
、バイメタル効果による電極組立体の湾曲が生ずるのを
防止するためである。
This prevents bending of the electrode assembly due to the bimetallic effect based on the difference in thermal expansion coefficient between the electrodes 4 and 5 when the thermal stress relief plate is fixed and integrated only on one side of the electrodes 4 and 5. This is to prevent this.

前記バイメタル効果による電極組立体の湾曲は、図示の
サンドイッチ構造による外、それぞれの電極および熱応
力緩衝板の厚みを、両者の縦弾性係数と熱膨張係数の比
に基づいて、適当に調整することによっても防止するこ
とができる。
The curvature of the electrode assembly due to the bimetallic effect can be achieved by adjusting the thickness of each electrode and thermal stress buffer plate appropriately based on the ratio of their longitudinal elastic modulus and thermal expansion coefficient, in addition to the sandwich structure shown in the figure. It can also be prevented by

熱応力緩衝板を電極に一体化する方法としては、適当な
ロウ材を使用して両者を接着したり、或いは、同時圧延
による、いわゆるクラツド材としたりすることが可能で
ある。
As a method of integrating the thermal stress buffer plate with the electrode, it is possible to bond the two together using a suitable brazing material, or to form a so-called clad material by simultaneous rolling.

前記実施例は、ダイオードの両面電極圧接構造の場合に
ついて述べであるが本発明は、陰極側に電極構造を有す
るサイリスタ(述阻止サイリスタ。
Although the above-mentioned embodiment describes the case of a diode having a double-sided electrode press-contact structure, the present invention is a thyristor (depression blocking thyristor) having an electrode structure on the cathode side.

逆導通サイリスタ、光直接点弧サイリスタ、GTOサイ
リスタ等)に、特に有用であることはいうまでもない。
Needless to say, it is particularly useful for reverse conduction thyristors, optical direct ignition thyristors, GTO thyristors, etc.).

更に、本発明は、半導体素子1が、陽極側で熱応力緩衝
板と合金接着されている場合に4適用できることはもち
ろんである。
Furthermore, it goes without saying that the present invention can be applied to the case where the semiconductor element 1 is alloy-bonded to a thermal stress buffer plate on the anode side.

(発明の効果) 本発明は、圧接型半導体装置の電極と半導体素子との間
に挿入される熱応力緩衝板を電極側に一体化して電極組
立体どしたことにより、熱応力緩衝板が半導体素子に対
して位置ずれすることがないので、半導体素子に加えら
れる応力を均一にできる効果がある。
(Effects of the Invention) The present invention integrates a thermal stress buffer plate inserted between an electrode and a semiconductor element of a press-contact type semiconductor device on the electrode side to form an electrode assembly. Since there is no misalignment with respect to the element, there is an effect that the stress applied to the semiconductor element can be made uniform.

また、熱応力緩衝板が、電極と半導体素子との間に介在
しているので、半導体素子に加えられる熱応力を低減で
きるという効果もあることは当然である。更に、これら
を一体化したことにより組立部品数が低減され、作業効
率が向上し、比較的安価な半導体装置を提供でき7)。
Further, since the thermal stress buffer plate is interposed between the electrode and the semiconductor element, it is natural that it has the effect of reducing the thermal stress applied to the semiconductor element. Furthermore, by integrating these, the number of assembled parts is reduced, work efficiency is improved, and a relatively inexpensive semiconductor device can be provided7).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明になる圧接型半導体装置の一実施例の
構造断面図、第2図は従来技術を用いた圧接型半導体装
置の構造断面図である。
FIG. 1 is a structural sectional view of one embodiment of a pressure contact type semiconductor device according to the present invention, and FIG. 2 is a structural sectional view of a pressure contact type semiconductor device using a conventional technique.

Claims (3)

【特許請求の範囲】[Claims] (1)少なくとも2つの反対導電型半導体領域を含み、
所定の構造を有する半導体素子と、前記半導体素子を圧
接挾持する一対の電極と、前記半導体素子の熱膨張係数
と近似した熱膨張係数を有し、前記各電極と半導体素子
との間に介装された熱応力緩衝板と、前記一対の電極を
支持すると共に、これらを電気的に絶縁する絶縁筒体か
らなる外囲器とで構成される半導体装置において、 前記熱応力緩衝板の少なくとも一方は、隣接する電極に
固着一体化されて電極組立体とされたことを特徴とする
圧接型半導体装置。
(1) including at least two opposite conductivity type semiconductor regions;
a semiconductor element having a predetermined structure; a pair of electrodes that press and hold the semiconductor element; and a pair of electrodes having a thermal expansion coefficient similar to that of the semiconductor element, and an intervening device between each of the electrodes and the semiconductor element. In the semiconductor device, the semiconductor device is configured of a thermal stress buffer plate and an envelope made of an insulating cylinder that supports the pair of electrodes and electrically insulates them, at least one of the thermal stress buffer plates is A pressure contact type semiconductor device, characterized in that it is fixedly integrated with adjacent electrodes to form an electrode assembly.
(2)電極組立体は、電極材料と、熱応力緩衝板と同材
料とを同時圧延したクラッド材であることを特徴とする
特許請求の範囲第1項記載の半導体装置。
(2) The semiconductor device according to claim 1, wherein the electrode assembly is a clad material obtained by co-rolling the electrode material and the same material as the thermal stress buffer plate.
(3)電極組立体は、電極を、熱応力緩衝板と同材料、
同寸法の板材でサンドイッチ状に挾んだ構造であること
を特徴とした前記特許請求の範囲第1項または第2項記
載の半導体装置。
(3) In the electrode assembly, the electrode is made of the same material as the thermal stress buffer plate.
The semiconductor device according to claim 1 or 2, characterized in that it has a structure sandwiched between plates of the same size.
JP13535486A 1986-06-11 1986-06-11 Semiconductor device Pending JPS62291122A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13535486A JPS62291122A (en) 1986-06-11 1986-06-11 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13535486A JPS62291122A (en) 1986-06-11 1986-06-11 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS62291122A true JPS62291122A (en) 1987-12-17

Family

ID=15149792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13535486A Pending JPS62291122A (en) 1986-06-11 1986-06-11 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS62291122A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013149762A (en) * 2012-01-19 2013-08-01 Meidensha Corp Semiconductor module

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013149762A (en) * 2012-01-19 2013-08-01 Meidensha Corp Semiconductor module

Similar Documents

Publication Publication Date Title
US4385310A (en) Structured copper strain buffer
KR960012561A (en) Press-fit semiconductor device
US4500907A (en) Pressure-applied type semiconductor device
JPS62291122A (en) Semiconductor device
JPS6337660A (en) Pressurized contact type gto thyristor
US5063436A (en) Pressure-contacted semiconductor component
JPS6197933A (en) Wholly compression bonded semiconductor device
JPH03228339A (en) Bonding tool
JP2569109B2 (en) Pressure contact type semiconductor device
JPH065685B2 (en) Pressurized contact type semiconductor device
JP2604997B2 (en) Pressure contact type semiconductor device
JP2590256B2 (en) Pressure contact type semiconductor device
JPS5846177B2 (en) semiconductor equipment
JPS60257142A (en) Pressure-welding type semiconductor device
JPH01217974A (en) Cut-off semiconductor structure element
JPH01321640A (en) Compression bonded type semiconductor device
JPH0691117B2 (en) Pressure contact type semiconductor device
JPS5853838A (en) Semiconductor device
JPS61134064A (en) Semiconductor device
JP2587450B2 (en) Pressure welding structure of semiconductor device
JP3258146B2 (en) Semiconductor device
JPS6279669A (en) Semiconductor device
JPS6242542Y2 (en)
JP2598573B2 (en) Pressure contact type semiconductor device
JPS6362378A (en) Compression bonded semiconductor device