JPS62291072A - Semiconductor pressure sensor - Google Patents

Semiconductor pressure sensor

Info

Publication number
JPS62291072A
JPS62291072A JP13460386A JP13460386A JPS62291072A JP S62291072 A JPS62291072 A JP S62291072A JP 13460386 A JP13460386 A JP 13460386A JP 13460386 A JP13460386 A JP 13460386A JP S62291072 A JPS62291072 A JP S62291072A
Authority
JP
Japan
Prior art keywords
layer
mosi2
pressure sensor
thermal expansion
semiconductor pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13460386A
Other languages
Japanese (ja)
Inventor
Hirokazu Hirano
宏和 平野
Bunshirou Yamaki
八巻 文史朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP13460386A priority Critical patent/JPS62291072A/en
Publication of JPS62291072A publication Critical patent/JPS62291072A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Fluid Pressure (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Pressure Sensors (AREA)

Abstract

PURPOSE:To decrease internal strains in silicon developed as the temperature varies and reduce a voltage change of offset due to changes in temperature by causing a thermal expansion coefficient of material for an electrode interconnection layer to be within the specific limit. CONSTITUTION:In a case of semiconductor pressure sensor having a pressure sensitive semiconductor substrate 1 where a diffusion resistance layer 6 and electrode interconnection layer 11 connecting to the above layer 6 are formed on the one surface and a diaphragm is formed at an opposite face of the diffusion resistance layer 6, a thermal expansion coefficient of material for an electrode interconnection layer 11 is set so that it is 1.5-5 times that of silicon. For instance, the pattern interconnection layer 11 is formed through an oxide film 7 at the Si substrate 1 where the diffusion resistance 6 was formed. The interconnection layer 11 is formed according to a laminated layer structure of MoSi2/Mo/MoSi2 and an MoSi2 layer 11a is formed about 1000 Angstrom thick to improve an adhision to Si and an Mo layer 11b is formed on the MoSi2 layer 11a about 8000 Angstrom thick. Moreover, an MoSi2 layer 11c formed about 1000 Angstrom thick on the Mo layer 11b to prevent the oxidation of Mo layer and the oxide film 8 is laminated on the surface of the layer 11c.

Description

【発明の詳細な説明】 3、発明の詳細な説明 [発明の目的] (産業上の利用分野) 本発明は、一方表面に拡散抵抗層及びこれに接続される
電極配線層が形成され、前記拡散抵抗層の反対面にダイ
ヤフラムが形成された感圧半導体基板を有する半導体圧
力センサに関し、特に産業用プロセス計装の圧力、流量
測定などに利用される圧力伝送器の部品である半導体圧
力センサとして使用されるものである。
Detailed Description of the Invention 3. Detailed Description of the Invention [Object of the Invention] (Industrial Field of Application) The present invention is characterized in that a diffusion resistance layer and an electrode wiring layer connected thereto are formed on one surface, and Regarding a semiconductor pressure sensor having a pressure-sensitive semiconductor substrate with a diaphragm formed on the opposite side of a diffusion resistance layer, it is particularly suitable as a semiconductor pressure sensor that is a component of a pressure transmitter used for pressure and flow measurement in industrial process instrumentation. It is used.

(従来の技術) この種の半導体圧力センサの従来例の断面図を第5図に
示し、その一部拡大図f第6図に示す。
(Prior Art) A sectional view of a conventional example of this type of semiconductor pressure sensor is shown in FIG. 5, and a partially enlarged view f is shown in FIG. 6.

図中1は半導体感圧基板、2は基板台、3V」外囲器、
4はリードビン、5はデンディングワイヤ、6は拡散抵
抗、7.8は絶縁膜、9はAt(アルミニウム)パター
ン配線層である。
In the figure, 1 is a semiconductor pressure-sensitive board, 2 is a board stand, a 3V" envelope,
4 is a lead bin, 5 is a ending wire, 6 is a diffused resistor, 7.8 is an insulating film, and 9 is an At (aluminum) pattern wiring layer.

上記半導体圧力センサは、圧力に対し相反する抵抗値変
化をともなう拡散抵抗を第7図のようにブリ、ジ回路に
組み、オフセット電圧変化を利用するものであるが、温
度に対してもオフセット電圧変化(温度特性)を生じる
。高精度な圧力センサを提供する場合、温度特性が優れ
ていること(温度変化に対してのオフセラ) 14’i
圧変化が少ないこと)が望まれている。温度特性1・1
、si基板のみならず、感圧基板の外囲器へのアセンブ
リ法及び感圧基板上の酸化膜、 At配線等に依存して
おり、温度特性の向上のため、この点に注目し技術的改
良を加えていた。
The above-mentioned semiconductor pressure sensor utilizes offset voltage changes by assembling diffused resistors with resistance changes that contradict each other in response to pressure into a circuit as shown in Figure 7. Causes changes (temperature characteristics). When providing a high-precision pressure sensor, it must have excellent temperature characteristics (offset against temperature changes) 14'i
(low pressure changes) is desired. Temperature characteristics 1・1
, it depends on not only the Si substrate but also the assembly method of the pressure-sensitive substrate to the envelope, the oxide film on the pressure-sensitive substrate, the At wiring, etc., and in order to improve the temperature characteristics, we focused on this point and developed technical techniques. Improvements were being made.

第3図に・9ターン配線厚に対する温度特性を示す。図
示される如く配線厚は、薄くするにしたがい温度特性が
向上する。しかし配線厚を薄くすることは・パターンの
断切れ及びボンディング性等の問題があり、約1μ以下
にすることは困難であった。温度特性の向上が望まれる
場合、At配線でかつhtyiを可能な限り薄くしても
、高精度の半導体圧カセンザを提供するにはいたらなか
った。
Figure 3 shows the temperature characteristics with respect to the 9-turn wiring thickness. As shown in the figure, as the wiring thickness becomes thinner, the temperature characteristics improve. However, reducing the wiring thickness has problems such as pattern breakage and bonding properties, and it has been difficult to reduce the wiring thickness to about 1 μm or less. When improvement in temperature characteristics is desired, even if At wiring is used and htyi is made as thin as possible, it has not been possible to provide a highly accurate semiconductor pressure sensor.

(発明が解決しようとする問題点) 所で・リーン配線の材料の熱膨張係数を81に近づける
ことにより、温度特性を向上することが考えられる。熱
膨張係数がStに近い材料としてMo、W等があげられ
るが、Slとの密着性不良及びデンディング性不良で、
パターン配線として使用することは不可能であり、 A
tとの積層構造を行ないメンディング性の向上を図って
も、At厚を約1μ以上形成しなければならなく、温度
特性の向上が図れなかった。
(Problems to be Solved by the Invention) By bringing the coefficient of thermal expansion of the material of the lean wiring closer to 81, it is possible to improve the temperature characteristics. Mo, W, etc. are cited as materials with a coefficient of thermal expansion close to St, but they have poor adhesion with Sl and poor densability.
It is impossible to use it as pattern wiring, and A
Even if an attempt was made to improve the mendability by creating a laminated structure with At, the thickness of At must be approximately 1 μm or more, and the temperature characteristics could not be improved.

本発明は高精度な半導体圧力センサを提供するために、
温度特性を向上(つまり温度変化におけるオフセット電
圧変化を低減)させることを目的としている。
In order to provide a highly accurate semiconductor pressure sensor, the present invention
The purpose is to improve temperature characteristics (that is, reduce offset voltage changes due to temperature changes).

(問題点を解決するための手段と作用)本発明は、一方
表面に拡散抵抗層及びこれに接続される電極配線層が形
成され前記拡散抵抗層の反対面にダイヤフラムが形成さ
れた感圧半導体基板を有する半導体圧力センサにおいて
、前記電極配線層の材料の熱膨張係数がシリコンの1.
5〜5倍であることを特徴とする。即ち電極配線層の材
料の熱膨張係数をシリコンに近づけ、温度変化により発
生するシリコン中の内部歪全減少させ、温度変化による
オフセット電圧変化を低減させるようにしたものである
(Means and effects for solving the problems) The present invention provides a pressure sensitive semiconductor having a diffused resistance layer and an electrode wiring layer connected thereto formed on one surface, and a diaphragm formed on the opposite surface of the diffused resistance layer. In a semiconductor pressure sensor having a substrate, the coefficient of thermal expansion of the material of the electrode wiring layer is 1.
It is characterized by being 5 to 5 times larger. That is, the coefficient of thermal expansion of the material of the electrode wiring layer is made close to that of silicon, thereby reducing the total internal strain in silicon that occurs due to temperature changes, and reducing offset voltage changes due to temperature changes.

(実施例) 以下図面を参照して本発明の詳細な説明する。第1図は
同実施例の断面図であるが、これは第6図に対応させた
場合の例であるから、対応個所には同一符号を付してお
く。即ち拡散抵抗6が形成された81基板1に酸化膜7
1に介して・母ターン配線層が形成される。この配線層
は、ノ臂ターンの断切れの問題があるため、基板とのコ
ンタクト部はプラズマエツチング等の手法によりテーノ
4を形成し、断切れ問題を防止している。上記配線層は
Mo S l 2/ Mo /MoS i 、、、の積
層構造により形成される。
(Example) The present invention will be described in detail below with reference to the drawings. FIG. 1 is a sectional view of the same embodiment, but since this is an example corresponding to FIG. 6, corresponding parts are given the same reference numerals. That is, an oxide film 7 is formed on the 81 substrate 1 on which the diffused resistor 6 is formed.
1, a mother turn wiring layer is formed. Since this wiring layer has a problem of breakage of the elbow turn, a contact portion 4 with the substrate is formed by a technique such as plasma etching to prevent the problem of breakage. The wiring layer is formed of a laminated structure of Mo S l 2 /Mo /MoS i .

即ち第1図に示すように% Mo512層11hは約x
ooolはどの厚さで形成し、81との密着性の向ヒを
図る。Mo)@llbはMo S ’r 2層11瓢の
上に形成し、約80001はどの厚さとする。オだMo
層11bの上に、Mo層の酸化防止のためMo812層
11cを約1000Xはど形成する。従ってこのMo 
S l 2 / Mo / Mo S 12層は合計的
10000Xである。
That is, as shown in FIG. 1, the %Mo512 layer 11h is about x
The thickness of oool should be determined to improve adhesion to 81. Mo)@llb is formed on the Mo S'r 2 layer 11 and has a thickness of about 80001. OdaMo
On the layer 11b, a Mo812 layer 11c is formed at a depth of about 1000× to prevent oxidation of the Mo layer. Therefore, this Mo
12 layers of S l 2 /Mo /Mo S have a total of 10000X.

上記Mo S l □/Mo / Mo S 12層の
形成は、真空中での蒸着等の手法により行なわれる。ま
た第2図よりMo5t  、 Moの熱膨張係数は、A
tに比較しStに近い値となっている。形成されたMo
 S l 2 /Mo /Mo 8 l 2層は、約1
000℃、30分程度のアニールによりSlとの密着性
及び電気的接触状態の向上を図る。
The above-mentioned Mo S l □/Mo / Mo S 12 layer is formed by a method such as vapor deposition in a vacuum. Also, from Figure 2, the thermal expansion coefficient of Mo5t and Mo is A
Compared to t, the value is closer to St. Formed Mo
The S l 2 /Mo /Mo 8 l 2 layer is about 1
By annealing at 000° C. for about 30 minutes, the adhesion with Sl and the state of electrical contact are improved.

Mo S i  /Mo / Mo S i 2のノ千
ターン配線層の上面は、酸化膜8を積層し、外部との電
気的絶縁を形成する。
An oxide film 8 is laminated on the upper surface of the multi-turn wiring layer of MoS i /Mo / MoS i 2 to form electrical insulation from the outside.

第2図に熱膨張係数を示す。ktは、MO8121MO
に比較し熱膨張係数がかなり太き(、Slの9倍程度で
あり、Mo S i 2 e MoはSlの2〜3倍程
度である。
Figure 2 shows the coefficient of thermal expansion. kt is MO8121MO
The coefficient of thermal expansion is quite large (about 9 times that of Sl, and Mo Si 2 e Mo is about 2 to 3 times that of Sl).

第3図に79タ一ン配線層厚に対する温度特性を示す。FIG. 3 shows the temperature characteristics with respect to the thickness of the 79 tan wiring layer.

Mo S i 2 /Mo /Mo S i 2層は、
At層に比較し、同一層厚において約IA程度のオフセ
ット電圧変化となる。よってMo5t /Mo/Mo5
i2j−等の熱膨張係数がSlに近い材料でパターン配
線層を形成することで・温度特性の向上が図れる。
The Mo S i 2 /Mo /Mo S i two layers are
Compared to the At layer, the offset voltage changes by about IA at the same layer thickness. Therefore, Mo5t /Mo/Mo5
By forming the patterned wiring layer with a material such as i2j- whose thermal expansion coefficient is close to Sl, temperature characteristics can be improved.

Mo S i 2 /Mo /Mo S 12層で可能
なかぎりパターン層厚を薄くすることで、従来達成する
ことができなかった良好な温度特性が得られる(第3図
参照)。
By making the pattern layer thickness as thin as possible using 12 layers of Mo S i 2 /Mo /Mo S, good temperature characteristics that could not be achieved conventionally can be obtained (see FIG. 3).

また同一の温度特性を得ることに対しても、MoSi2
/Mo /Mo S 12層においては層厚を厚くする
ことが可能であり、パターン段切れ等に対してマージン
がもてる。
Also, in order to obtain the same temperature characteristics, MoSi2
The 12 layers of /Mo /Mo S can be made thicker, providing a margin against pattern breakage and the like.

第4図に静圧誤差特性を示す。静圧誤差特性は、静圧が
印加された場合のオフセット電圧の変化で6一 あり、この変化が少ないことが圧力センサの高精度化に
関し望1れる。パターン配線層をAtからMo5I2 
/Mo /Mo512にすることにより静圧誤差が減少
している。よってパターン配線ノーをAtからMoS 
i 2 /Mo /MoS l□にすることで、温度特
性の向上のみならず、静圧誤差特性の向上も図れた。
Figure 4 shows the static pressure error characteristics. The static pressure error characteristic is a change in offset voltage when static pressure is applied, and it is desirable for this change to be small in order to improve the accuracy of the pressure sensor. Pattern wiring layer from At to Mo5I2
/Mo By setting /Mo512, the static pressure error is reduced. Therefore, the pattern wiring no. is changed from At to MoS.
By setting i 2 /Mo /MoS l□, not only the temperature characteristics but also the static pressure error characteristics were improved.

なお本発明Vま一ヒ記実施例に限られず種々の応用が可
能である0例えばパターン配線層電気抵抗が大きくても
さしつかえない場合、パターン配線層jzMosi□の
みにより形成することもできる6また本発明は、パター
ン配線層(電極配線層)の材料の熱膨張係数がSLに近
いもので形成することが目的であり、電極配線層の材料
の熱膨張係数がSlの1.5〜5倍であることが特徴で
ある。ここで1.5倍としたのは、これ以下で配線に使
える材料はなきに等しいからであり、5倍としたのは、
これ以上だと温度特性が使用に耐えなくなるからである
Note that the present invention is not limited to the above embodiments and can be applied in various ways. For example, if it is acceptable even if the electrical resistance of the patterned wiring layer is large, the patterned wiring layer may be formed only by Mosi□6. The object of the invention is to form the pattern wiring layer (electrode wiring layer) with a material whose thermal expansion coefficient is close to SL, and to form the pattern wiring layer (electrode wiring layer) with a material whose thermal expansion coefficient is 1.5 to 5 times that of SL. It is characterized by one thing. The reason why we set it to 1.5 times here is because there is no material that can be used for wiring if it is less than this, and the reason why we set it to 5 times is because
This is because if the temperature is higher than this, the temperature characteristics will become unusable.

[発明の効果] 以上説明した如く本発明によれば、電極配線層の材料の
熱膨張係数をSIに近づけ、温度変化により発生するS
t中の内部歪を減少させ、温度変化によるオフセット電
圧変化を減少させるようにしたため、高精度の半導体圧
力センサが提供できるものである。
[Effects of the Invention] As explained above, according to the present invention, the coefficient of thermal expansion of the material of the electrode wiring layer approaches SI, and S
Since the internal strain during t is reduced and the offset voltage change due to temperature change is reduced, a highly accurate semiconductor pressure sensor can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の要ft、5を2ドす断面図
、第2図は各材料の熱膨張係jl−示す図表、第3図、
第4図は本発明の詳細な説明する特性図、第5図は半導
体圧力センサの全体内断1111図、第6図は同センサ
の要部の断面図(従来例)、第7図は同センサの出力測
定回路図である。 1・・・半導体感圧基板、6・・・拡散抵抗、II&。 11 c ・” Mo812層、1 l b ・−Mo
ll。 出願人代理人  弁理士 鈴 江 武 彦! 第 11図 第21図 1 2  喰1厚(〃) 第3j図 財斤款差 第4.苫
Fig. 1 is a cross-sectional view of an embodiment of the present invention taken from 5 x 2, Fig. 2 is a chart showing the coefficient of thermal expansion of each material, Fig. 3,
Fig. 4 is a characteristic diagram explaining the present invention in detail, Fig. 5 is an overall internal 1111 view of the semiconductor pressure sensor, Fig. 6 is a sectional view of the main part of the sensor (conventional example), and Fig. 7 is the same. FIG. 2 is a sensor output measurement circuit diagram. 1... Semiconductor pressure sensitive substrate, 6... Diffused resistor, II&. 11 c ・”Mo812 layer, 1 l b ・-Mo
ll. Applicant's agent, patent attorney Takehiko Suzue! Figure 11 Figure 21 1 2 Thickness (〃) Figure 3j Difference in price 4. Toma

Claims (2)

【特許請求の範囲】[Claims] (1)一方表面に拡散抵抗層及びこれに接続される電極
配線層が形成され前記拡散抵抗層の反対面にダイヤフラ
ムが形成された感圧半導体基板を有する半導体圧力セン
サにおいて、前記電極配線層の材料の熱膨張係数がシリ
コンの1.5〜5倍であることを特徴とする半導体圧力
センサ。
(1) In a semiconductor pressure sensor having a pressure sensitive semiconductor substrate in which a diffused resistance layer and an electrode wiring layer connected thereto are formed on one surface and a diaphragm is formed on the opposite surface of the diffused resistance layer, the electrode wiring layer is A semiconductor pressure sensor characterized in that the coefficient of thermal expansion of the material is 1.5 to 5 times that of silicon.
(2)前記電極配線層が、MoSi_2/Mo/MoS
i_2の積層構造もしくはMoSi_2の単層構造であ
ることを特徴とする特許請求の範囲第1項記載の半導体
圧力センサ。
(2) The electrode wiring layer is MoSi_2/Mo/MoS
The semiconductor pressure sensor according to claim 1, characterized in that it has a laminated structure of i_2 or a single layer structure of MoSi_2.
JP13460386A 1986-06-10 1986-06-10 Semiconductor pressure sensor Pending JPS62291072A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13460386A JPS62291072A (en) 1986-06-10 1986-06-10 Semiconductor pressure sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13460386A JPS62291072A (en) 1986-06-10 1986-06-10 Semiconductor pressure sensor

Publications (1)

Publication Number Publication Date
JPS62291072A true JPS62291072A (en) 1987-12-17

Family

ID=15132259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13460386A Pending JPS62291072A (en) 1986-06-10 1986-06-10 Semiconductor pressure sensor

Country Status (1)

Country Link
JP (1) JPS62291072A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015129643A (en) * 2014-01-06 2015-07-16 アルプス電気株式会社 Mems sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015129643A (en) * 2014-01-06 2015-07-16 アルプス電気株式会社 Mems sensor

Similar Documents

Publication Publication Date Title
US4462018A (en) Semiconductor strain gauge with integral compensation resistors
JPH02132866A (en) Mechanical sensor for high-temperature environment
JPH02150754A (en) Production of sensitive element
JPS61100956A (en) Monobrid integrated circuit
US20060164204A1 (en) Magnetoresistance effect element and production method and application method therefor same
JPS62291072A (en) Semiconductor pressure sensor
JPH05281251A (en) Acceleration sensor and manufacture thereof
JPH01183165A (en) Semiconductor pressure sensor
JP2000315805A (en) Strain detecting element and manufacture of the same
JPS6155263B2 (en)
JPH03208375A (en) Semiconductor pressure sensor
JPH05343705A (en) Pressure sensor using soi board
JPS6239927B2 (en)
JPS6124836B2 (en)
JPH04251985A (en) Semiconductor pressure sensor
JP2748077B2 (en) Pressure sensor
JPS63226073A (en) Force detector
JPH0539473Y2 (en)
JPH0961270A (en) Semiconductor pressure sensor
JPH0234971A (en) Semiconductor pressure sensor
JPS6154267B2 (en)
JPH10221144A (en) Micro heater and its manufacture
WO2007052800A1 (en) Semiconductor pressure sensor
JPH06347354A (en) Manufacture of semiconductor pressure sensor
JPH01235824A (en) Pressure sensor