JPS6229095B2 - - Google Patents

Info

Publication number
JPS6229095B2
JPS6229095B2 JP54116662A JP11666279A JPS6229095B2 JP S6229095 B2 JPS6229095 B2 JP S6229095B2 JP 54116662 A JP54116662 A JP 54116662A JP 11666279 A JP11666279 A JP 11666279A JP S6229095 B2 JPS6229095 B2 JP S6229095B2
Authority
JP
Japan
Prior art keywords
catalyst
titanium oxide
molybdenum
nickel
hours
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54116662A
Other languages
Japanese (ja)
Other versions
JPS5640432A (en
Inventor
Taketo Higashi
Osamu Tokari
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiyoda Chemical Engineering and Construction Co Ltd
Original Assignee
Chiyoda Chemical Engineering and Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda Chemical Engineering and Construction Co Ltd filed Critical Chiyoda Chemical Engineering and Construction Co Ltd
Priority to JP11666279A priority Critical patent/JPS5640432A/en
Publication of JPS5640432A publication Critical patent/JPS5640432A/en
Publication of JPS6229095B2 publication Critical patent/JPS6229095B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は炭化水素油中に含まれる窒素化合物な
らびに硫黄化合物を効果的に除去するための水素
化処理用触媒に関する。更に詳しくは窒素化合物
ならびに硫黄化合物を含む原油、常圧蒸留留出
油、常圧蒸留残油、減圧蒸留留出油、減圧蒸留残
油、熱分解油、脱れき油、タールサンドビチユー
メン、けつ岩油等を効果的に水素化脱窒素、脱硫
処理するための触媒に関し特に水素化脱窒素反応
に対し著しく高い活性を有する触媒に関するもの
である。 一般に炭化水素油中には窒素化合物として例え
ばピリジン類、ピロール類、キノリン類、カルバ
ゾール類、アミン類、ポリフイリン類、ニトリル
類などが含まれ、また硫黄化合物として例えばメ
ルカプタン類、サルフアイド類、ジサルフアイド
類、チオフエン類、ベンゾチオフエン類、ジベン
ゾチオフエン類などが含まれている。これらを含
む炭化水素油は、燃料油として用いた場合、窒素
化合物や硫黄化合物が大気汚染の原因となり好ま
しくない。また特に窒素化合物は製品炭化水素油
の色相や安定性を悪くし、更に炭化水素油を接触
分解や接触改質する場合に著しい触媒活性低下の
原因ともなる。 従来、炭化水素油中からこれらの窒素化合物お
よび硫黄化合物を除去する方法として水素化精製
即ち水素存在下の高温高圧反応条件で原料炭化水
素油を接触的に水素化処理する方法が知られてい
る。既に工業的に広く実施されている水素化脱硫
法はこの水素化精製法の1つであり、その際アル
ミナ或はアルミナ−シリカからなる担体に周期律
表a族及び族金属を担持した触媒が一般に使
用されている。しかしこれらの触媒は水素化脱硫
反応には高活性を示すが、水素化脱窒素反応には
十分な活性を示さない。即ち、通常用いられる水
素化脱硫条件下においては水素化脱硫活性に対
し、水素化脱窒素活性は極めて低いものとなる。
したがつて水素化脱硫用触媒を用い、水素化脱窒
素反応を十分に行なうためには、高い温度と圧
力、或は小さい空間速度で処理することが必要と
なる。そのような条件下で実際に原料炭化水素油
を水素化処理した場合には水素化脱窒素に関し満
足する結果が得られても、一方では脱硫或は水素
化、更には軽質化が必要以上に進み、その結果と
して水素消費量の増大を招き、また希望する留分
分布の製品が得にくくなる。このようなことは経
済的に好ましいことではなく、実用的でない。し
たがつて炭化水素油を水素化処理して硫黄化合物
のみならず窒素化合物をも除去するためには従来
から知られている水素化脱硫用触媒の水素化脱硫
活性に加え、高い水素化脱窒素活性をも具備する
触媒が必要となつている。従つてこれら要件を満
たす触媒は多くの研究者によつて研究され、また
いくつかの提案もなされている。 例えば、米国特許第3434964号は炭化水素油を
水素化脱窒素するために、フツ素処理したアルミ
ナ或は、アルミナ−シリカにモリブデン、ニツケ
ル、コバルト等の金属を担持した触媒を提案して
いる。また、米国特許第3444074号はシリカ−ジ
ルコニア担体にa族及び族金属を担持し、更
に、ビスマス、アルミニウム、ガリウム、インジ
ウム、タリウム、希土類等の金属フツ化物を添加
した触媒を水素化脱窒素用に提案している。米国
特許第3446730号は活性アルミナ担体にa族及
び族金属を担持し更にリン、ケイ素、バリウム
等を添加したものが石油留分の水素化脱窒素反応
に有効であると述べている。米国特許第3749664
号もアルミナ、シリカ−アルミナ等にa族及び
族金属とリンを担持した触媒が水素化脱窒素反
応に有効であると述べている。米国特許第
3536604号はアルミナ−シリカとゼオライトそし
てa族及び族金属更にはチタン、ジルコニウ
ム、トリウム、ハフニウムを加えた触媒が炭化水
素油の水素化脱窒素反応に有効であると述べてい
る。米国特許第3954670号、特開昭51−100983
号、及び本件出願人による特願昭53−3306はa
族及び族金属とアルミナ及びボリアから成る触
媒が水素化脱窒素反応に有効であることを述べて
いる。これらの特許及び公開特許公報を含め一般
に水素化処理用触媒にはアルミナ或はシリカを主
成分とするものが多く、それらを改良したものが
水素化脱窒素反応に用いられている。しかしなが
ら、前述の文献に提案されている触媒は、いずれ
も水素化処理反応における高脱窒素活性をもたせ
るため、様々な工夫が行われているが、未だ十分
なものとなつていない。 発明者らは、より高い水素化脱窒素活性を有す
る水素化処理用触媒を得るべく、考えられる固体
酸担体と触媒金属の組合せについて試験を重ね本
発明の開発に至つたものである。即ち、酸化チタ
ンを担体とし、これに周期律表a族ならびに
族金属の少くとも各1種以上、およびリン或は/
及びホウ素とからなる触媒成分を担持してなる触
媒が、従来公知のアルミナ或はシリカ等を主体と
する担体に、触媒金属を担持してなる触媒と比較
して水素化脱窒素処理に対して著しく高活性を示
すことを見出したものである。従来、酸化チタン
を触媒担体として用いた例は少なく、わずかに
NOxの処理用触媒ならびにカルボン酸の製造用
触媒として用いられている例がみられるのみであ
る。酸化チタンを担体とする触媒の検討にあた
り、発明者らは先づこれら従来公知の酸化チタン
担体をそのまゝ使用して各種触媒金属を担持せし
め、脱窒素活性について検討したが従来公知の酸
化チタン担体は比表面積が著しく小さいなど、も
ともと炭化水素油の水素化処理用としては、好ま
しい物性を有していないため水素化脱窒素活性の
みならず水素化脱硫活性までもが極めて低く、と
ても実用しうるものではなかつた。そこで発明者
らは再び酸化チタン担体について検討を加え、従
来のものに全く拘束されることなく、酸化チタン
担体を新たに製造し、その際比表面積が或る程度
保持出来れば、触媒活性の著しい向上が見込める
ことを知見し、各種触媒金属との組合せを検討の
末本発明の開発に到つたものである。即ち、比表
面積の低下をもたらさないよう焼成条件等に留意
して製造した酸化チタン担体は、周期律表a
族、および族金属の少くとも各1種と、リン或
は/及びホウ素を担持することによつて、従来公
知のアルミナあるいはシリカを主体とする担体に
触媒金属を担持してなる水素化脱窒素触媒に比較
して、比表面積が未だ小さいにも拘わらず、ほゞ
同程度の水素化脱硫活性と共に、飛躍的に向上し
た水素化脱窒素活性の発現を得たものである。そ
の際担持する触媒成分は周期律表a族ならびに
族金属の少くとも各1種と、リン或は/及びホ
ウ素の3種類の成分が同時に担持されていること
が必要であり、これらのうち1種でも欠除してい
る場合には、従来公知の触媒程度の活性は得られ
ても脱窒素活性についての飛躍的な向上は認めら
れなかつた。これは恐らく、これら3成分の有す
る触媒活性が、担体として使用された酸化チタン
によつて、相剰効果が発揮され、飛躍的な活性向
上となつて現われたものと思われる。 触媒成分として用いる周期律表a族ならびに
族金属は、クロム、モリブデン、タングステ
ン、鉄、コバルト、ニツケル、ルテニウム、ロジ
ウム、パラジウム、オスミウム、イリジウム、白
金であり、特に好ましくはa族金属としてモリ
ブデンあるいはタングステンの何れか一方と、
族金属としてコバルト或は/ニツケルとの組合せ
である。これら金属類の組合せに対しリン或は/
及びホウ素を組合せたものが好ましい触媒成分で
ある。次に最も好ましい触媒成分の組合せを列挙
する。モリブデン、ニツケル、ホウ素;モリブデ
ン、コバルト、ホウ素;モリブデン、ニツケル、
リン;モリブデン、ニツケル、コバルト、ホウ
素;モリブデン、ニツケル、コバルト、リン。触
媒成分の含有量はa族金属にあつては、金属酸
化物として触媒全重量に対して5〜25重量%、
族金属にあつては0.5〜15重量%である。またホ
ウ素およびリンも同じくB2O3およびP2O5として
0.5〜30重量%である。夫々の担持量の最小限界
は所要の活性を発現し得る最低限界であり、上限
は添加量に対する活性の関係を求めたとき添加量
の増加の効果が減少しはじめる点を示したもので
ある。換言すると上限値はそれ以上の量を加える
ことによつて加えた量に比例した効果が得られな
い点である。 これら金属化合物は通常水溶性の塩の形で水に
溶解して添加し、焼成して酸化物とする。使用に
際しては、必要に応じ硫化処理し、硫化物の形で
変換した後使用する。また他の触媒成分であるホ
ウ素ならびにリンは、ホウ酸ならびにその塩、リ
ン酸ならびにその塩を水溶液にして添加する。ホ
ウ素またはリンを効果的に添加する方法として、
ホウ酸ならびにリン酸を、前記触媒金属の塩、例
えばリン酸ニツケル、リン酸コバルト、リンタン
グステン酸、リンモリブデン酸、ホウ酸ニツケル
を用いて担持する方法がある。このような方法で
行えば担持処理を何回も繰返す必要がなく製造工
程が簡略化出来る利点がある。 担体として用いる酸化チタンは、種々の酸化物
の形のものが使用出来る。即ち、塩基性の一酸化
チタンTiO、弱塩基性の三酸化二チタンTi2O3
両性の二酸化チタンTiO2、酸性の三酸化チタン
TiO3等何れの形でもよいが、二酸化チタンTiO2
が最も安定で実用性が高い。二酸化チタンには、
アナターゼ型、ルチル型、あるいは無定形のもの
が存在するが、それらの何れでもよく、またそれ
らの混合物であつてもよい。 前にも述べたように本発明に係わる触媒は、従
来の酸化チタンを担体とする触媒に比較して大き
な比表面積を有することを要件とする。一般に比
表面積ならびに細孔容積は、触媒活性ならびに寿
命の点から大きい程よいとされており特に炭化水
素油の水素化処理用触媒としてはその要請が大き
いが、酸化チタンはその物理的性質上、アルミ
ナ、あるいはアルミナ−シリカ触媒に比較して比
表面積を大きくとりにくく、しかも触媒成分担持
後の焼成処理によつて比表面積が低下し易い。本
発明の触媒は、必要とする脱窒素率を維持するた
めに、比表面積50m2/g以上、細孔容積0.1c.c./
g以上、平均細孔径50〜150Åが望ましいことを
実験上確認している。以上の物性は何れも
AMINOCO社製の水銀圧入式ポロシメーターによ
り測定した値である。 次に本発明に係る触媒の製造法の一例を説明す
る。方法としては、2法あり第1には酸化チタン
よりなる担体を作りこれに触媒成分を担持する方
法と、第2には含水酸化チタンに触媒成分を混練
し、これを成形して触媒とする方法である。原料
となる含水酸化チタンは、チタンの塩化物TiCl4
あるいは硫酸塩TiOSO4を加水分解するか、これ
らにアンモニア、苛性ソーダ、苛性カリ等のアル
カリを加えて作るか、あるいは更に、イルメナイ
ト鉱石、高チタンスラグ等から工業的にチタン顔
料を製造する硫酸法酸化チタン製造工程の中間製
品として得られる。これらの何れの方法において
も、本発明の目的には、得られる含水酸化チタン
は十分に洗浄され、共存塩が出来るだけ除去され
たものであることが望ましい。含水酸化チタンは
風乾等により水分を調整した後、押出成形、転動
造粒、油中成形造粒等任意の方法で所要の形状に
成形し、乾燥する。乾燥は、もし要すれば室温で
風乾した後、80〜150℃の温度で1〜10時間行な
う。乾燥後更に150〜600℃で1/6〜5時間、更に
望ましくは、400〜600℃の温度で1/6〜3時間焼
成し担体とする。このようにして得た担体に含浸
法あるいはスプレー法等通常の方法により前述の
触媒成分を担持する。 また、第2の方法を採用する場合には十分洗浄
した含水酸化チタンに触媒成分を共沈法、スプレ
ー法、混練法等によつて担持し、風乾後、担体製
造の要領で触媒成形体を得ればよい。 本発明に係る触媒は、炭化水素油の水素化処
理、特に水素化脱窒素、水素化脱硫用として有効
である。使用方法としては特に制限はなく、公知
の固定床、移動床方式等の各種の反応器で、通常
の方法で用いることが出来る。また反応条件も特
に制限的なく、反応圧10〜300Kg/cm2・G;反応
温度250〜450℃;液空間速度0.1〜10Hr-1;水素
対原料炭化水素油の供給比100〜3000N/の
範囲内で原料炭化水素の性状に応じ選択設定す
る。 本発明を更に詳細に説明するために、触媒の製
造ならびに触媒の使用について下記に実施例なら
びに比較例に基いて説明する。 比較例 1 下記のように特願昭53−3306号に記載した方法
に従い触媒を調製した。 市販アルミナ担体80gに、硫酸ニツケル18g、
モリブデン酸アンモン19gを15規定アンモニア水
に溶かした液96gをふりかけ、3時間放置した後
120℃で5時間乾燥し、これを電気炉中で550℃、
4時間焼成した。次に、これをフラスコに取り、
酸化ホウ素(B2O3)として10重量%含むオルトホ
ウ酸水溶液を91.1gを加え、煮沸し、水分を蒸発
させた。更にこれを磁製ルツボに移し蒸発乾固後
550℃において4時間焼成し触媒Aを得た。 比較例 2 市販酸化チタン担体100gにパラモリブデン酸
アンモニウム18.4g、硝酸ニツケル19.5gを25%
アンモニア水に溶かし、この液全量をふりかけ、
3時間放置後、120℃において5時間乾燥した。
この乾燥物にオルトホウ酸8.9gを脱イオン水に
溶かし、その溶液を含浸せしめ、1時間放置し
た。その後磁製ルツボにうつし、120℃において
2時間乾燥し、更に500℃において30分焼成し、
触媒Bを得た。 触媒組成 TiO280重量%;MoO312重量%;
NiO4重量%;B2O34重量% 比表面積 34m2/g 細孔容積 0.32c.c./g 脱窒素率 35% 脱硫率 62% 実施例 1 四塩化チタンをドラフト中で水に除々に溶解し
TiCl4として500g/含む水溶液を調製した。次
に加熱、撹拌できる60のガラス製反応容器に脱
イオン水14をとり95℃に加熱した。この反応容
器に上記四塩化チタン水溶液7を徐々に撹拌し
ながら加え、液温が95℃以上であることを確認し
た後、更に15%アンモニア水9を除々に加え
た。 その後更に撹拌しながら1時間煮沸した。上記
操作で得られた含水酸化チタンに脱イオン水を加
え真空過器を用いて過し塩素イオンが硝酸銀
水溶液で検知されなくなるまで洗浄を繰返した。
この様にして5.8Kgの含水酸化チタンケーキを得
た。この含水酸化チタンケーキ中の固形分濃度は
500℃1時間焼成後25重量%であつた(以下これ
を含水酸化チタンケーキと呼ぶ)。含水酸化チタ
ンケーキ4Kgとり押し出し成型機を用いて1mmφ
の円柱状成型体とした後120℃にて3時間乾燥し
乾燥物1.25Kgを得た。更にこの乾燥物1Kgを500
℃1時間焼成し酸化チタン成型体担体を0.8Kg得
た。 次にパラモリブデン酸アンモウム36.8g、硝酸
ニツケル39.0gを25%アンモニア水に溶かした溶
液全量を、酸化チタン担体200gに含浸させ、3
時間放置した後、120℃で5時間乾燥した。この
乾燥した担体を2等分し、1方をオルトホウ酸
8.9gを脱イオン水に溶かした溶液に、他方をオ
ルトリン酸6.9gを脱イオン水に溶かした溶液に
夫々浸し、1時間放置した。その後夫々を磁製ル
ツボにうつし、120℃で2時間乾燥し、更に500℃
で30分焼成して触媒を得た。ここで得た触媒を
夫々C、Dとする。 実施例 2 実施例1で得た酸化チタン担体100gに、パラ
モリブデン酸アンモニウム18.4g、硝酸コバルト
19.4gを25%アンモニア水に溶かした溶液全量を
含浸せしめ、3時間放置した後、120℃で5時間
乾燥した。次にオルトホウ酸8.9gを脱イオン水
に溶かし、この乾燥物に全量含浸し、1時間放置
後、磁製ルツボに移し、再び、120℃で2時間乾
燥した。このようにして得た触媒を500℃で30分
焼成し触媒Eを得た。 実施例 3 25%アンモニア水に溶解する金属塩の種類なら
びにその量を、パラモリブデン酸アンモニウム
18.4g、硝酸ニツケル4.9g、硝酸コバルト14.6g
を使用し、脱イオン水に溶かすオルトホウ酸を
8.9g使用するほかは実施例2の方法を繰返して
触媒Fを得た。 実施例 4 実施例1で得た酸化チタン担体100gに、ケイ
タングステン酸17.8g、硝酸ニツケル19.5gを脱
イオン水に溶かした溶液全量を含浸せしめ、3時
間放置した後、120℃で5時間乾燥した。この乾
燥物にオルトホウ酸8.9gを脱イオン水に溶かし
た溶液全量に含浸せしめ、1時間放置後、磁製ル
ツボに移し、120℃で2時間乾燥し、更に500℃で
30分焼成して触媒Gを得た。 実施例 5 実施例1で得た酸化チタン担体100gにパラモ
リブデン酸アンモニウム18.4g、硝酸ニツケル
19.5gを25%アンモニア水に溶かした溶液全量を
含浸せしめ3時間放置後120℃で5時間乾燥し
た。次にオルトホウ酸6.7gを脱イオン水に溶か
した溶液全量を含浸せしめ1時間放置後120℃で
3時間乾燥した。更にオルトリン酸1.7gを脱イ
オン水に溶かした溶液全量を再び乾燥物に含浸せ
しめ、1時間放置後、磁製ルツボに移し、120℃
で2時間乾燥後500℃において30分焼成して触媒
Hを得た。 実施例 6 実施例1で得た酸化チタン担体100gにパラモ
リブデン酸アンモニウム18.4g、硝酸コバルト
19.4gを25%アンモニア水に溶かした溶液全量を
含浸せしめ、3時間放置した後、120℃で5時間
乾燥した。次にオルトリン酸6.9gを脱イオン水
に溶かし、この乾燥物に全量含浸し、1時間放置
後磁製ルツボに移し、再び120℃で2時間乾燥し
た。このようにして得た触媒を500℃で30分焼成
し、触媒Iを得た。 実施例 7 比較例及び実施例1〜6にて調製した酸化物換
算の組成及び比表面積、細孔容積を下記表−1に
示すA、B、C、D、E、F、G、H、Iの9種
の触媒について水素化脱窒素脱硫反応活性を以下
の条件で試験した。固定床流通式反応装置を用い
て窒素分0.18重量%、硫黄分1.92重量%を含む中
東系真空軽油を反応温度360℃、圧力80Kg/cm2
G、液空間速度2Hr-1水素対真空軽油供給比600N
/の条件で水素化精製処理し、反応開始50時
間後の生成油中の窒素及び硫黄含有量を分析し脱
窒素率と脱硫率を求めた。その結果を表−1に併
記する。窒素分の分析には微量電量滴定装置
(Dohrmann社製)を用い、硫黄分は非分散けい
光X線分析装置(堀場製作所製)を用いて測定し
た。
The present invention relates to a hydrotreating catalyst for effectively removing nitrogen compounds and sulfur compounds contained in hydrocarbon oil. More specifically, crude oil containing nitrogen compounds and sulfur compounds, atmospheric distillate oil, atmospheric distillation residual oil, vacuum distillation distillate oil, vacuum distillation residual oil, pyrolysis oil, deasphalted oil, tar sand bitumen, The present invention relates to a catalyst for effectively hydrodenitrogenizing and desulfurizing rock oil and the like, and particularly to a catalyst having extremely high activity for hydrodenitrogenizing reactions. In general, hydrocarbon oils contain nitrogen compounds such as pyridines, pyrroles, quinolines, carbazoles, amines, polyphyllins, and nitriles, and sulfur compounds such as mercaptans, sulfides, disulfides, Contains thiophenes, benzothiophenes, dibenzothiophenes, etc. When hydrocarbon oil containing these is used as a fuel oil, nitrogen compounds and sulfur compounds cause air pollution, which is undesirable. Furthermore, nitrogen compounds in particular worsen the hue and stability of the product hydrocarbon oil, and also cause a significant decrease in catalytic activity when the hydrocarbon oil is subjected to catalytic cracking or catalytic reforming. Conventionally, hydrorefining, that is, a method of catalytically hydrotreating feedstock hydrocarbon oil under high temperature and high pressure reaction conditions in the presence of hydrogen, has been known as a method for removing these nitrogen compounds and sulfur compounds from hydrocarbon oil. . The hydrodesulfurization method, which has already been widely practiced industrially, is one of these hydrorefining methods, in which a catalyst consisting of a group A metal of the periodic table and a group metal supported on a support made of alumina or alumina-silica is used. Commonly used. However, although these catalysts exhibit high activity for hydrodesulfurization reactions, they do not exhibit sufficient activity for hydrodenitrogenation reactions. That is, under commonly used hydrodesulfurization conditions, the hydrodenitrogenation activity is extremely low compared to the hydrodesulfurization activity.
Therefore, in order to sufficiently carry out the hydrodenitrogenation reaction using a hydrodesulfurization catalyst, it is necessary to perform the treatment at high temperature and pressure or at a low space velocity. When actually hydrotreating feedstock hydrocarbon oil under such conditions, although satisfactory results regarding hydrodenitrogenation may be obtained, on the other hand, desulfurization, hydrogenation, and further lightening may be performed unnecessarily. As a result, hydrogen consumption increases and it becomes difficult to obtain a product with the desired fraction distribution. This is not economically desirable and is not practical. Therefore, in order to remove not only sulfur compounds but also nitrogen compounds by hydrotreating hydrocarbon oil, in addition to the hydrodesulfurization activity of the conventionally known hydrodesulfurization catalyst, it is necessary to have high hydrodenitrogenation. There is a need for catalysts that also have activity. Therefore, many researchers have investigated catalysts that meet these requirements, and several proposals have also been made. For example, US Pat. No. 3,434,964 proposes a catalyst in which metals such as molybdenum, nickel, and cobalt are supported on fluorine-treated alumina or alumina-silica for hydrodenitrifying hydrocarbon oil. In addition, US Patent No. 3,444,074 discloses a catalyst for hydrodenitrogenation in which group A and group metals are supported on a silica-zirconia support, and metal fluorides such as bismuth, aluminum, gallium, indium, thallium, and rare earth metals are added. is proposed. U.S. Pat. No. 3,446,730 states that an activated alumina carrier supporting group A and group metals and further adding phosphorus, silicon, barium, etc. is effective for the hydrodenitrogenation reaction of petroleum fractions. US Patent No. 3749664
No. 1 also states that catalysts in which group A and group metals and phosphorus are supported on alumina, silica-alumina, etc. are effective for hydrodenitrogenation reactions. US Patent No.
No. 3,536,604 states that a catalyst containing alumina-silica and zeolite and group A and group metals, as well as titanium, zirconium, thorium, and hafnium, is effective in the hydrodenitrogenation reaction of hydrocarbon oils. U.S. Patent No. 3954670, Japanese Unexamined Patent Publication No. 51-100983
No. 53-3306 filed by the applicant is a.
It is stated that catalysts consisting of group metals and group metals, alumina, and boria are effective in hydrodenitrogenation reactions. In general, many catalysts for hydrotreating, including those disclosed in these patents and published patent publications, have alumina or silica as a main component, and improved versions of these catalysts are used in hydrodenitrogenation reactions. However, in order to provide the catalysts proposed in the above-mentioned literature with high denitrification activity in the hydrotreating reaction, various efforts have been made, but they have not yet become sufficient. In order to obtain a hydrotreating catalyst having higher hydrodenitrogenation activity, the inventors conducted repeated tests on possible combinations of solid acid carriers and catalytic metals, leading to the development of the present invention. That is, titanium oxide is used as a carrier, and at least one or more of each of group A and group metals of the periodic table, and phosphorus or/and
A catalyst in which a catalytic component consisting of alumina and boron is supported is more effective in hydrodenitrogenation treatment than a conventional catalyst in which a catalytic metal is supported on a support mainly made of alumina or silica. It was discovered that this compound exhibits extremely high activity. Until now, there have been few examples of using titanium oxide as a catalyst carrier, and only a few
There are only examples of its use as a catalyst for NOx treatment and a catalyst for the production of carboxylic acid. When investigating catalysts using titanium oxide as a carrier, the inventors first used these conventionally known titanium oxide carriers to support various catalytic metals and investigated the denitrification activity. The carrier does not have desirable physical properties for hydrotreating hydrocarbon oils, such as having an extremely small specific surface area, so not only its hydrodenitrogenation activity but also its hydrodesulfurization activity is extremely low, making it very impractical. It wasn't worth it. Therefore, the inventors reexamined titanium oxide carriers and produced a new titanium oxide carrier without being restricted by conventional ones.If the specific surface area could be maintained to a certain extent, the catalytic activity would be significant. After discovering that improvements can be expected, and after studying combinations with various catalyst metals, we have arrived at the development of the present invention. In other words, the titanium oxide support manufactured by paying attention to the firing conditions so as not to cause a decrease in the specific surface area has a
Hydrodenitrogenation in which a catalytic metal is supported on a conventionally known alumina or silica-based carrier by supporting at least one each of group metals and phosphorus and/or boron. Even though the specific surface area is still smaller than that of the catalyst, it has exhibited substantially the same level of hydrodesulfurization activity and dramatically improved hydrodenitrogenation activity. In this case, the supported catalyst components must simultaneously support at least one of each of Group A and Group metals of the periodic table, and three types of components: phosphorus and/or boron. In cases where even species are missing, no dramatic improvement in denitrification activity was observed, even though activity comparable to that of conventionally known catalysts could be obtained. This is probably because the catalytic activity of these three components exerts a mutual effect with the titanium oxide used as a carrier, resulting in a dramatic improvement in activity. The group A and group metals of the periodic table used as catalyst components are chromium, molybdenum, tungsten, iron, cobalt, nickel, ruthenium, rhodium, palladium, osmium, iridium, and platinum, and molybdenum or tungsten is particularly preferable as the group A metal. with either one of
A combination with cobalt or/and nickel as a group metal. For combinations of these metals, phosphorus or/
and boron are the preferred catalyst components. Next, the most preferred combinations of catalyst components will be listed. Molybdenum, nickel, boron; molybdenum, cobalt, boron; molybdenum, nickel,
Phosphorus; molybdenum, nickel, cobalt, boron; molybdenum, nickel, cobalt, phosphorus. In the case of group A metals, the content of the catalyst component is 5 to 25% by weight based on the total weight of the catalyst as a metal oxide;
For group metals it is 0.5-15% by weight. Boron and phosphorus are also represented as B 2 O 3 and P 2 O 5.
It is 0.5-30% by weight. The minimum limit of each supported amount is the minimum limit at which the required activity can be expressed, and the upper limit indicates the point at which the effect of increasing the amount added starts to decrease when the relationship between the amount added and the activity is determined. In other words, the upper limit is the point at which an effect proportional to the added amount cannot be obtained by adding a larger amount. These metal compounds are usually dissolved in water in the form of water-soluble salts, added, and calcined to form oxides. Before use, it is sulfurized if necessary to convert it into a sulfide form. Boron and phosphorus, which are other catalyst components, are added in the form of an aqueous solution of boric acid and its salts, or phosphoric acid and its salts. As a method for effectively adding boron or phosphorus,
There is a method in which boric acid and phosphoric acid are supported using salts of the catalyst metals, such as nickel phosphate, cobalt phosphate, phosphotungstic acid, phosphomolybdic acid, and nickel borate. This method has the advantage that it is not necessary to repeat the supporting treatment many times and the manufacturing process can be simplified. Various oxide forms of titanium oxide can be used as the carrier. That is, basic titanium monoxide TiO, weakly basic dititanium trioxide Ti 2 O 3 ,
Amphoteric titanium dioxide TiO 2 , acidic titanium trioxide
Any form such as TiO 3 may be used, but titanium dioxide TiO 2
is the most stable and practical. Titanium dioxide has
There are anatase type, rutile type, and amorphous type, but any of them may be used, or a mixture thereof may be used. As mentioned above, the catalyst according to the present invention is required to have a larger specific surface area than the conventional catalyst using titanium oxide as a carrier. In general, it is said that the larger the specific surface area and pore volume, the better from the point of view of catalyst activity and life, and there is a strong demand for this as a catalyst for hydrotreating hydrocarbon oils. However, due to its physical properties, titanium oxide Alternatively, it is difficult to obtain a large specific surface area compared to an alumina-silica catalyst, and moreover, the specific surface area tends to decrease due to the firing treatment after supporting the catalyst component. In order to maintain the required denitrification rate, the catalyst of the present invention has a specific surface area of 50 m 2 /g or more and a pore volume of 0.1 cc/g.
It has been experimentally confirmed that an average pore diameter of 50 to 150 Å is desirable. All of the above physical properties
This is a value measured using a mercury intrusion porosimeter manufactured by AMINOCO. Next, an example of a method for producing a catalyst according to the present invention will be explained. There are two methods: the first method is to prepare a carrier made of titanium oxide and support the catalyst component on it, and the second method is to knead the catalyst component into hydrous titanium oxide and mold it to form a catalyst. It's a method. Hydrous titanium oxide, which is the raw material, is titanium chloride TiCl 4
Alternatively, titanium oxide can be produced by hydrolyzing the sulfate TiOSO 4 or by adding alkali such as ammonia, caustic soda, or caustic potash to these, or by the sulfuric acid method to produce titanium pigment industrially from ilmenite ore, high titanium slag, etc. Obtained as an intermediate product in the manufacturing process. In any of these methods, for the purpose of the present invention, it is desirable that the obtained hydrous titanium oxide be sufficiently washed to remove as much of the coexisting salts as possible. After adjusting the water content of the hydrated titanium oxide by air drying or the like, it is formed into a desired shape by any method such as extrusion molding, rolling granulation, molding granulation in oil, etc., and then dried. Drying is carried out at a temperature of 80-150° C. for 1-10 hours, followed by air-drying at room temperature if necessary. After drying, the carrier is further calcined at a temperature of 150 to 600°C for 1/6 to 5 hours, more preferably at a temperature of 400 to 600°C for 1/6 to 3 hours. The above-mentioned catalyst component is supported on the carrier thus obtained by a conventional method such as an impregnation method or a spray method. In addition, when adopting the second method, the catalyst components are supported on thoroughly washed hydrous titanium oxide by coprecipitation, spraying, kneading, etc., and after air drying, catalyst molded bodies are formed in the same manner as in carrier manufacturing. All you have to do is get it. The catalyst according to the present invention is effective for hydrotreating hydrocarbon oils, particularly for hydrodenitrogenation and hydrodesulfurization. There is no particular restriction on the method of use, and it can be used in a conventional manner in various known reactors such as fixed bed and moving bed systems. The reaction conditions are also not particularly limited; reaction pressure 10 to 300 Kg/cm 2 G; reaction temperature 250 to 450°C; liquid hourly space velocity 0.1 to 10 Hr -1 ; supply ratio of hydrogen to raw material hydrocarbon oil 100 to 3000 N/. Select and set within the range depending on the properties of the raw material hydrocarbon. In order to explain the present invention in more detail, the production of the catalyst and the use of the catalyst will be explained below based on Examples and Comparative Examples. Comparative Example 1 A catalyst was prepared according to the method described in Japanese Patent Application No. 53-3306 as follows. 80g of commercially available alumina carrier, 18g of nickel sulfate,
After sprinkling 96 g of a solution of 19 g of ammonium molybdate dissolved in 15N ammonia water and leaving it for 3 hours,
Dry at 120℃ for 5 hours, then heat in an electric oven at 550℃.
It was baked for 4 hours. Next, take this in a flask and
91.1 g of an aqueous orthoboric acid solution containing 10% by weight of boron oxide (B 2 O 3 ) was added, and the mixture was boiled to evaporate water. This was then transferred to a porcelain crucible and evaporated to dryness.
Catalyst A was obtained by calcining at 550°C for 4 hours. Comparative Example 2 100g of commercially available titanium oxide carrier, 18.4g of ammonium paramolybdate and 19.5g of nickel nitrate at 25%
Dissolve in ammonia water, sprinkle the entire amount of this liquid,
After being left for 3 hours, it was dried at 120°C for 5 hours.
This dried material was impregnated with a solution of 8.9 g of orthoboric acid dissolved in deionized water and left for 1 hour. After that, it was transferred to a porcelain crucible, dried at 120℃ for 2 hours, and further baked at 500℃ for 30 minutes.
Catalyst B was obtained. Catalyst composition TiO 2 80% by weight; MoO 3 12% by weight;
NiO4% by weight; B 2 O 3 4% by weight Specific surface area 34m 2 /g Pore volume 0.32cc/g Denitrification rate 35% Desulfurization rate 62% Example 1 Titanium tetrachloride was gradually dissolved in water in a draft.
An aqueous solution containing 500 g/TiCl 4 was prepared. Next, 14 pieces of deionized water was placed in a 60 glass reaction vessel that could be heated and stirred and heated to 95°C. The titanium tetrachloride aqueous solution 7 was gradually added to the reaction vessel with stirring, and after confirming that the liquid temperature was 95° C. or higher, 15% aqueous ammonia 9 was further added gradually. Thereafter, the mixture was further boiled for 1 hour while stirring. Deionized water was added to the hydrous titanium oxide obtained in the above operation, and the mixture was filtered using a vacuum filter, and the washing was repeated until chlorine ions were no longer detected in the silver nitrate aqueous solution.
In this way, a 5.8 kg hydrated titanium oxide cake was obtained. The solid content concentration in this hydrous titanium oxide cake is
After baking at 500°C for 1 hour, the content was 25% by weight (hereinafter referred to as hydrous titanium oxide cake). Take 4kg of hydrous titanium oxide cake and make it into 1mmφ using an extrusion molding machine.
After forming a cylindrical molded product, it was dried at 120°C for 3 hours to obtain 1.25 kg of dried product. Furthermore, 1Kg of this dried material is 500
C. for 1 hour to obtain 0.8 kg of a titanium oxide molded carrier. Next, 200 g of titanium oxide carrier was impregnated with the entire solution of 36.8 g of ammonium paramolybdate and 39.0 g of nickel nitrate dissolved in 25% ammonia water.
After being left for an hour, it was dried at 120°C for 5 hours. This dried carrier was divided into two equal parts, and one side was made with orthoboric acid.
One was immersed in a solution of 8.9 g of orthophosphoric acid dissolved in deionized water, and the other was immersed in a solution of 6.9 g of orthophosphoric acid dissolved in deionized water, and left for one hour. After that, each was transferred to a porcelain crucible, dried at 120℃ for 2 hours, and then heated to 500℃.
The catalyst was obtained by firing for 30 minutes. The catalysts obtained here are designated as C and D, respectively. Example 2 To 100 g of the titanium oxide support obtained in Example 1, 18.4 g of ammonium paramolybdate and cobalt nitrate were added.
The whole sample was impregnated with a solution of 19.4 g dissolved in 25% aqueous ammonia, left to stand for 3 hours, and then dried at 120°C for 5 hours. Next, 8.9 g of orthoboric acid was dissolved in deionized water, and the entire amount was impregnated into this dried product. After being left for 1 hour, it was transferred to a porcelain crucible and dried again at 120° C. for 2 hours. The catalyst thus obtained was calcined at 500°C for 30 minutes to obtain catalyst E. Example 3 The types and amounts of metal salts dissolved in 25% aqueous ammonia were compared with ammonium paramolybdate.
18.4g, nickel nitrate 4.9g, cobalt nitrate 14.6g
Dissolve orthoboric acid in deionized water using
Catalyst F was obtained by repeating the method of Example 2, except that 8.9 g was used. Example 4 100 g of the titanium oxide support obtained in Example 1 was impregnated with the entire solution of 17.8 g of tungstic acid and 19.5 g of nickel nitrate dissolved in deionized water, left for 3 hours, and then dried at 120°C for 5 hours. did. This dried product was impregnated with a solution of 8.9 g of orthoboric acid dissolved in deionized water, left for 1 hour, transferred to a porcelain crucible, dried at 120°C for 2 hours, and further heated at 500°C.
Catalyst G was obtained by firing for 30 minutes. Example 5 18.4 g of ammonium paramolybdate and nickel nitrate were added to 100 g of the titanium oxide support obtained in Example 1.
It was impregnated with the entire solution of 19.5 g dissolved in 25% aqueous ammonia, left to stand for 3 hours, and then dried at 120°C for 5 hours. Next, the entire surface was impregnated with a solution of 6.7 g of orthoboric acid dissolved in deionized water, allowed to stand for 1 hour, and then dried at 120° C. for 3 hours. Furthermore, the dry material was again impregnated with the entire solution of 1.7 g of orthophosphoric acid dissolved in deionized water, and after being left for 1 hour, it was transferred to a porcelain crucible and heated at 120°C.
After drying for 2 hours, Catalyst H was obtained by calcining at 500°C for 30 minutes. Example 6 18.4 g of ammonium paramolybdate and cobalt nitrate were added to 100 g of the titanium oxide support obtained in Example 1.
The whole sample was impregnated with a solution of 19.4 g dissolved in 25% aqueous ammonia, left to stand for 3 hours, and then dried at 120°C for 5 hours. Next, 6.9 g of orthophosphoric acid was dissolved in deionized water, the entire amount was impregnated into the dried product, and after being left for 1 hour, it was transferred to a porcelain crucible and dried again at 120° C. for 2 hours. The catalyst thus obtained was calcined at 500°C for 30 minutes to obtain catalyst I. Example 7 The composition, specific surface area, and pore volume in terms of oxides prepared in Comparative Example and Examples 1 to 6 are shown in Table 1 below. A, B, C, D, E, F, G, H, The hydrodenitrogenation desulfurization reaction activity of nine types of catalysts I was tested under the following conditions. Using a fixed bed flow reactor, Middle Eastern vacuum gas oil containing 0.18% by weight of nitrogen and 1.92% by weight of sulfur was reacted at a reaction temperature of 360℃ and a pressure of 80Kg/ cm2 .
G, liquid space velocity 2Hr -1 hydrogen to vacuum gas oil supply ratio 600N
Hydrorefining treatment was carried out under the conditions of /, and the nitrogen and sulfur contents in the produced oil were analyzed 50 hours after the start of the reaction to determine the denitrification rate and desulfurization rate. The results are also listed in Table-1. The nitrogen content was analyzed using a microcoulometric titration device (manufactured by Dohrmann), and the sulfur content was measured using a non-dispersive fluorescence X-ray analyzer (manufactured by Horiba, Ltd.).

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 酸化チタンを担体とし、これに周期律表a
族ならびに族金属の少くとも各1種以上と、リ
ン或は/及びホウ素からなる触媒成分を担持して
なることを特徴とする炭化水素油の水素化脱窒素
用触媒。 2 50m2/g以上の比表面積と、0.1c.c./g以上
の細孔容積を有する特許請求の範囲第1項記載の
触媒。 3 周期律表a族金属が、モリブデン或はタン
グステンであり、族金属がニツケル或は/及び
コバルトである特許請求の範囲第1、あるいは2
項記載の触媒。 4 触媒成分がモリブデン、ニツケル及びホウ素
からなる特許請求の範囲第3項記載の触媒。 5 触媒成分がモリブデン、コバルト及びホウ素
からなる特許請求の範囲第3項記載の触媒。 6 触媒成分がモリブデン、ニツケル及びリンか
らなる特許請求の範囲第3項記載の触媒。 7 触媒成分がモリブデン、コバルト及びリンか
らなる特許請求の範囲第3項記載の触媒。 8 触媒成分がモリブデン、ニツケル、コバルト
及びホウ素からなる特許請求の範囲第3項記載の
触媒。 9 触媒成分がモリブデン、ニツケル、コバルト
及びリンからなる特許請求の範囲第3項記載の触
媒。
[Claims] 1 Titanium oxide is used as a carrier, and periodic table a
1. A catalyst for hydrodenitrogenization of hydrocarbon oil, characterized in that it supports a catalyst component consisting of at least one of each of group metals and group metals, and phosphorus and/or boron. The catalyst according to claim 1, having a specific surface area of 250 m 2 /g or more and a pore volume of 0.1 cc/g or more. 3. Claim 1 or 2, wherein the Group A metal of the periodic table is molybdenum or tungsten, and the Group metal is nickel and/or cobalt.
Catalysts as described in section. 4. The catalyst according to claim 3, wherein the catalyst components consist of molybdenum, nickel, and boron. 5. The catalyst according to claim 3, wherein the catalyst components consist of molybdenum, cobalt and boron. 6. The catalyst according to claim 3, wherein the catalyst components consist of molybdenum, nickel, and phosphorus. 7. The catalyst according to claim 3, wherein the catalyst components consist of molybdenum, cobalt, and phosphorus. 8. The catalyst according to claim 3, wherein the catalyst components consist of molybdenum, nickel, cobalt and boron. 9. The catalyst according to claim 3, wherein the catalyst components consist of molybdenum, nickel, cobalt and phosphorus.
JP11666279A 1979-09-13 1979-09-13 Catalyst for hydrodenitrification of hydrocarbon oil Granted JPS5640432A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11666279A JPS5640432A (en) 1979-09-13 1979-09-13 Catalyst for hydrodenitrification of hydrocarbon oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11666279A JPS5640432A (en) 1979-09-13 1979-09-13 Catalyst for hydrodenitrification of hydrocarbon oil

Publications (2)

Publication Number Publication Date
JPS5640432A JPS5640432A (en) 1981-04-16
JPS6229095B2 true JPS6229095B2 (en) 1987-06-24

Family

ID=14692782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11666279A Granted JPS5640432A (en) 1979-09-13 1979-09-13 Catalyst for hydrodenitrification of hydrocarbon oil

Country Status (1)

Country Link
JP (1) JPS5640432A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005324195A (en) * 2005-06-17 2005-11-24 Chiyoda Corp Porous group iv metal oxide for hydrogenation treatment and hydrogenation treatment method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4743574A (en) * 1986-01-09 1988-05-10 Intevep, S.A. Catalyst for hydrotreatment of distillates of petroleum and method for the preparation of same
WO2003011762A1 (en) * 2001-07-27 2003-02-13 Chiyoda Corporation Porous 4 group metal oxide and method for preparation thereof
AU2010238811B2 (en) * 2009-04-21 2015-01-29 Albemarle Europe Sprl Hydrotreating catalyst containing phosphorus and boron
EP2465605A3 (en) * 2010-12-20 2014-04-30 Sachtleben Chemie GmbH Titania-supported hydrotreating catalysts
WO2012132370A1 (en) * 2011-03-31 2012-10-04 Jx日鉱日石エネルギー株式会社 Device for producing and method for producing light hydrocarbon oil

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005324195A (en) * 2005-06-17 2005-11-24 Chiyoda Corp Porous group iv metal oxide for hydrogenation treatment and hydrogenation treatment method
JP4515337B2 (en) * 2005-06-17 2010-07-28 千代田化工建設株式会社 Porous titania for hydrotreating and hydrotreating method

Also Published As

Publication number Publication date
JPS5640432A (en) 1981-04-16

Similar Documents

Publication Publication Date Title
US10569254B2 (en) Catalyst support and catalysts prepared therefrom
JPH0214745A (en) Catalyst composition and manufacture thereof
US5210061A (en) Resid hydroprocessing catalyst
CA2360121C (en) Hydroprocessing catalyst and use thereof
CA2508630C (en) Hydro processing of hydrocarbon using a mixture of catalysts
KR20180014008A (en) High Hydrogenation Nitrogen Selectivity Hydrogen Treatment Catalyst
US4444905A (en) Hydrotreating catalyst preparation and process
US4048115A (en) Hydrodesulfurization catalyst and method of preparation
JP4369871B2 (en) Heavy material HPC process using a mixture of catalysts
JPH0639296A (en) New aqueous solution for impregnation of catalyst carrier, catalyst produced from said aqueous solution and its use
US4655905A (en) Process for catalytic hydrotreatment of heavy hydrocarbons, in fixed or moving bed, with injection of a metal compound into the charge
JPS6229095B2 (en)
US5494875A (en) Alumina-containing carrier and hydrofining catalyst for hydrocarbon oils
US4298458A (en) Low pressure hydrotreating of residual fractions
US11674094B2 (en) Co-mixed catalyst produced from solutions containing heteropolyanions, method for the production thereof, and use of same in hydroconversion of heavy hydrocarbon feedstock
US3846284A (en) Hydroconversion process
JP2011074235A (en) Method of hydrorefining hydrocarbon oil
JP2008105031A (en) Catalyst for hydrogenation treatment of gas oil and method for preparation thereof, and process for hydrogenation treatment of gas oil
EP0034908B1 (en) Process for hydrodemetallization of hydrocarbon streams
GB2032796A (en) Hydrodemetallization catalyst and process
CN113731436B (en) Desulfurization catalyst with aromatization function, preparation method thereof and hydrocarbon oil desulfurization method
JPH08182930A (en) Catalyst for hydrogenation refining
JP2000167411A (en) Regenerated catalyst for hydrogenation and hydrogenating method of heavy oil
JP2019177357A (en) Hydrotreating catalyst for heavy hydrocarbon oil, method for producing hydrotreating catalyst for heavy hydrocarbon oil, and hydrotreating method for heavy hydrocarbon oil
JPH07136516A (en) Production of catalyst for hydrogenating, desulfurizing and denitrifying hydrocarbonaceous oil