WO2012132370A1 - Device for producing and method for producing light hydrocarbon oil - Google Patents

Device for producing and method for producing light hydrocarbon oil Download PDF

Info

Publication number
WO2012132370A1
WO2012132370A1 PCT/JP2012/002033 JP2012002033W WO2012132370A1 WO 2012132370 A1 WO2012132370 A1 WO 2012132370A1 JP 2012002033 W JP2012002033 W JP 2012002033W WO 2012132370 A1 WO2012132370 A1 WO 2012132370A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrocarbon oil
group
elements
light hydrocarbon
metal oxide
Prior art date
Application number
PCT/JP2012/002033
Other languages
French (fr)
Japanese (ja)
Inventor
智史 古田
朋之 平尾
Original Assignee
Jx日鉱日石エネルギー株式会社
一般財団法人石油エネルギー技術センター
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石エネルギー株式会社, 一般財団法人石油エネルギー技術センター filed Critical Jx日鉱日石エネルギー株式会社
Priority to JP2013507162A priority Critical patent/JP5943906B2/en
Priority to CA2831565A priority patent/CA2831565A1/en
Publication of WO2012132370A1 publication Critical patent/WO2012132370A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the alkali- or alkaline earth metals or beryllium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/32Manganese, technetium or rhenium
    • B01J23/34Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/02Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils characterised by the catalyst used
    • C10G11/04Oxides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G49/00Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00
    • C10G49/02Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00 characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G69/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process
    • C10G69/02Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only
    • C10G69/04Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only including at least one step of catalytic cracking in the absence of hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/80Additives
    • C10G2300/805Water

Definitions

  • the present invention relates to a light hydrocarbon oil production method and a light hydrocarbon oil production apparatus, and in particular, produces a light hydrocarbon oil having a low olefin content by cracking the hydrocarbon oil without supplying hydrogen from outside the system.
  • the present invention relates to a method and an apparatus used in the process.
  • the hydrocracking method is a method for lightening a heavy hydrocarbon oil by bringing a heavy hydrocarbon oil and a hydrogenation catalyst into contact with each other in a high-temperature, high-pressure hydrogen atmosphere (for example, patents).
  • Reference 1 The thermal decomposition method is a method for lightening a heavy hydrocarbon oil without using a catalyst by thermally decomposing hydrocarbon molecules under high temperature conditions (see, for example, Patent Document 2).
  • the fluid catalytic cracking method is a method of reducing the weight of heavy hydrocarbon oil by bringing a flowing catalyst and heavy hydrocarbon oil into contact with each other (see, for example, Patent Document 3).
  • the hydrocracking method uses a large amount of high-pressure hydrogen gas for the cracking reaction, which requires a large-scale hydrogen gas production facility, resulting in an increase in cost.
  • the pyrolysis method a large amount of coke is generated and the aromatic ring is hardly cleaved, so that the production efficiency of light hydrocarbon oil is poor and the heavy hydrocarbon oil cannot be decomposed sufficiently. was there.
  • the fluid catalytic cracking method has a problem that the operating cost of the apparatus is high.
  • the hydrocracking method it was necessary to desulfurize and denitrogenate the heavy hydrocarbon oil in advance in order to prevent deterioration (poisoning) of the hydrogenation catalyst. Furthermore, in the thermal cracking method and fluid catalytic cracking method, there is almost no desulfurization reaction or denitrogenation reaction of hydrocarbon oil, so it is necessary to desulfurize and denitrogenate the heavy hydrocarbon oil in advance as in the hydrocracking method. was there. That is, the hydrocracking method, the thermal cracking method, and the fluid catalytic cracking method have a problem that a pretreatment of heavy hydrocarbon oil is required.
  • the present inventors have developed a method that can lighten hydrocarbon oil efficiently at low cost without desulfurizing and denitrogenating hydrocarbon oil in advance and without using high-pressure hydrogen gas.
  • the present inventors use a predetermined composite metal oxide as a hydrocarbon oil cracking catalyst, thereby decomposing a hydrocarbon oil in the presence of water without supplying hydrogen from outside the reaction system. It was newly found that it can be converted.
  • the hydrocarbon oil when the hydrocarbon oil is lightened using the hydrocarbon oil decomposition catalyst in the presence of water, the hydrocarbon oil is not desulfurized and denitrogenated in advance, and high-pressure hydrogen gas is not used. It is possible to obtain light hydrocarbon oil efficiently at low cost.
  • the hydrocarbon oil when the hydrocarbon oil is lightened in the presence of water using the hydrocarbon oil cracking catalyst, the olefin content of the obtained light hydrocarbon oil is low. It became clear that it was relatively high. That is, the light hydrocarbon oil obtained by lightening the hydrocarbon oil using the hydrocarbon oil decomposition catalyst has room for improvement in terms of reducing the olefin content and improving the oxidation stability. .
  • the present invention provides a low-cost light hydrocarbon oil with a low olefin content from hydrocarbon oil without desulfurizing and denitrifying the hydrocarbon oil as a raw material in advance and without using high-pressure hydrogen gas. It is an object of the present invention to provide a method and an apparatus that can be efficiently manufactured.
  • the present invention aims to advantageously solve the above-mentioned problems, and the light hydrocarbon oil production method of the present invention comprises a light carbonization process for producing a light hydrocarbon oil by decomposing a hydrocarbon oil.
  • a method for producing hydrogen oil comprising contacting a hydrocarbon oil with a hydrocarbon oil cracking catalyst composed of a composite metal oxide in the presence of water to decompose the hydrocarbon oil, including light hydrocarbon oil
  • a decomposition step for obtaining a reaction mixture and a hydrogenation step for hydrogenating light hydrocarbon oil in the reaction mixture by contacting the reaction mixture obtained in the decomposition step with a hydrogenation catalyst comprising a metal oxide. It is characterized by including.
  • the hydrogenation catalyst preferably contains anatase-type titanium dioxide.
  • the hydrocarbon oil decomposition catalyst comprises (A) a composite metal oxide having a perovskite structure, and (B) a composite metal oxide having a pseudo brookite structure. And (C) one element X selected from group IVA elements, group IIIA elements, group VIA elements and group VIIA elements, group IVA elements in the fourth to sixth periods, and group VIII elements in the fourth period
  • the “element abundance” refers to a solution obtained by dissolving the catalyst by ICP emission spectroscopic analysis, and from the obtained measurement value, the molar amount of each element in the catalyst in terms of simple metal. It can be obtained by calculating the concentration.
  • the “element abundance ratio (molar ratio)” can be obtained by calculating the calculated molar concentration ratio of each element (hereinafter, the element abundance ratio calculation method is “melt / ICP-AES method ”).
  • the composite metal oxide having the perovskite structure is LaAlO 3 , NiTiO 3 , CoTiO 3 , KTiO 3 , BaTiO 3 , SrTiO 3 , and these composite metals. It is preferably selected from the group consisting of complex metal oxides in which part of the metal element of the oxide is substituted with another metal element.
  • the composite metal oxide having the pseudo-brookite structure is preferably Fe 2 TiO 5 .
  • the element X is zirconium
  • the element Y 1 is cerium
  • the element Y 2 is selected from the group consisting of tungsten, iron, and manganese. It is preferable that
  • the present invention aims to advantageously solve the above-mentioned problems, and the light hydrocarbon oil production apparatus of the present invention is a light carbonization that decomposes a hydrocarbon oil to produce a light hydrocarbon oil.
  • An apparatus for producing hydrogen oil comprising: a reactor; a raw material supply means for supplying hydrocarbon oil into the reactor; and a water supply means for supplying water into the reactor.
  • the hydrocarbon oil, the water, and a hydrocarbon oil decomposition catalyst composed of a composite metal oxide are brought into contact with each other to decompose the hydrocarbon oil to obtain a reaction mixture containing light hydrocarbon oil, and the reaction It has a hydrogenation part which hydrogenates the light hydrocarbon oil in a reaction mixture by making the mixture and the hydrogenation catalyst which consists of metal oxides contact.
  • the hydrogenation catalyst preferably contains anatase-type titanium dioxide.
  • the hydrocarbon oil cracking catalyst comprises (A) a composite metal oxide having a perovskite structure, and (B) a composite metal oxide having a pseudo-brookite structure. And (C) one element X selected from group IVA elements, group IIIA elements, group VIA elements and group VIIA elements, group IVA elements in the fourth to sixth periods, and group VIII elements in the fourth period
  • the sum of (the presence of the element X with respect to y 1 + y 2) (a ratio of x) (x / (y 1 + y 2)) is,
  • the “element abundance” refers to a solution obtained by dissolving the catalyst by ICP emission spectroscopic analysis, and from the obtained measurement value, the molar amount of each element in the catalyst in terms of simple metal. It can be obtained by calculating the concentration.
  • the “element abundance ratio (molar ratio)” can be obtained by calculating the calculated molar concentration ratio of each element (hereinafter, the element abundance ratio calculation method is “melt / ICP-AES method ”).
  • the composite metal oxide having the perovskite structure is LaAlO 3 , NiTiO 3 , CoTiO 3 , KTiO 3 , BaTiO 3 , SrTiO 3 , and these composite metals. It is preferably selected from the group consisting of complex metal oxides in which part of the metal element of the oxide is substituted with another metal element.
  • the composite metal oxide having a pseudo-brookite structure is preferably Fe 2 TiO 5 .
  • the element X is zirconium
  • the element Y 1 is cerium
  • the element Y 2 is selected from the group consisting of tungsten, iron, and manganese. It is preferable that
  • olefins are contained from hydrocarbon oil without desulfurization and denitrification of the hydrocarbon oil as a raw material in advance and without using high-pressure hydrogen gas. A small amount of light hydrocarbon oil can be produced efficiently at low cost.
  • 2 is an X-ray diffraction spectrum of NiTiO 3 having a perovskite structure.
  • 2 is an X-ray diffraction spectrum of CoTiO 3 having a perovskite structure.
  • 2 is an X-ray diffraction spectrum of Fe 2 TiO 5 having a pseudo-brookite structure.
  • 2 is an X-ray diffraction spectrum of anatase-type TiO 2 .
  • the manufacturing method and manufacturing apparatus of the light hydrocarbon oil of this invention are used when cracking hydrocarbon oil and manufacturing light hydrocarbon oil. And in the manufacturing method and manufacturing apparatus of the light hydrocarbon oil of this invention, light hydrocarbon oil with little olefin content can be manufactured, without supplying hydrogen from the outside of a reaction system.
  • the hydrocarbon oil used as a raw material when producing the light hydrocarbon oil using the light hydrocarbon oil production method and production apparatus of the present invention is not particularly limited, and is usually obtained during petroleum refining.
  • heavy hydrocarbon oils such as pressure distillation residue and vacuum distillation residue.
  • T50 vol% distillation temperature
  • examples thereof include hydrocarbon oils having a temperature of 550 ° C. or lower and hydrocarbon oils having a T50 of 250 ° C. or higher and 550 ° C. or lower.
  • the light hydrocarbon oil production apparatus includes a reactor that decomposes a hydrocarbon oil that is a raw material into a light hydrocarbon oil having a low olefin content, and a hydrocarbon oil that is a raw material into the reactor. It is characterized by comprising raw material supply means for supplying and water supply means for supplying water into the reactor.
  • the light hydrocarbon oil production apparatus of the present invention includes a cracking unit that decomposes hydrocarbon oil in the reactor to obtain a reaction mixture containing the light hydrocarbon oil, and a light hydrocarbon oil in the reaction mixture. And a hydrogenation part for hydrogenation.
  • the "reaction mixture” refers to a mixture obtained through a hydrocarbon oil decomposition reaction, and the reaction mixture includes not only reaction products such as light hydrocarbon oil but also unreacted materials such as water. .
  • the cracking section is a region where hydrocarbon oil supplied by the raw material supply means, water supplied by the water supply means, and a hydrocarbon oil decomposition catalyst are brought into contact with each other to decompose the hydrocarbon oil.
  • the hydrogenation section is an area where the reaction mixture obtained in the cracking section and the hydrogenation catalyst are brought into contact with each other to hydrogenate the light hydrocarbon oil in the reaction mixture, thereby reducing the olefin content of the light hydrocarbon oil. is there.
  • the reactor of the light hydrocarbon oil production apparatus of the present invention is filled with at least two types of catalysts, a hydrocarbon oil decomposition catalyst and a hydrogenation catalyst.
  • the vicinity of the hydrocarbon oil cracking catalyst in the reactor serves as a cracking section, and the vicinity of the hydrogenation catalyst serves as a hydrogenation section.
  • the hydrogenation section the light hydrocarbon oil in the reaction mixture obtained in the cracking section is hydrogenated. Therefore, in the reactor of the light hydrocarbon oil production apparatus of the present invention, a hydrocarbon comprising a hydrocarbon oil cracking catalyst is used.
  • An oil cracking catalyst layer is disposed upstream of the reactor (a side to which hydrocarbon oil and water are supplied) from the hydrogenation catalyst layer made of a hydrogenation catalyst, or a hydrocarbon oil cracking catalyst. And hydrogenation catalyst are mixed.
  • the hydrocarbon oil cracking catalyst is a compound that functions as a catalyst when cracking hydrocarbon oil without supplying hydrogen from outside the system in the presence of water, for example, two or more metal oxides.
  • a composite metal oxide which is an oxide formed by composite can be used. Specifically, without being particularly limited, (A) a composite metal oxide having a perovskite structure (apatite type structure), (B) a pseudo brookite type structure (pseudo plate titanium stone type structure, “pseudo brookite” (C) a composite metal oxide containing predetermined elements X, Y 1 and Y 2 , or a composite metal oxide thereof (A) The mixture of (C) can be used as a hydrocarbon oil cracking catalyst.
  • the crystal structure of the composite metal oxide used as a hydrocarbon oil cracking catalyst can be evaluated using, for example, X-ray diffraction analysis.
  • X-ray diffraction analysis for example, when the crystal structure of a hydrocarbon oil cracking catalyst made of NiTiO 3 having a perovskite structure is evaluated, an X-ray diffraction spectrum as shown in FIG. 2 is obtained.
  • a diffraction peak peculiar to NiTiO 3 having a perovskite structure appears.
  • the composite metal oxide having a perovskite structure includes a composite metal oxide represented by the general formula: ABO 3 and a part of at least one of the A site element and the B site element of the composite metal oxide ABO 3.
  • the composite metal oxide having a perovskite structure has the following general formula (1): A 1-x A ′ x B 1-y B ′ y O 3- ⁇ (1) [In the formula, A represents one element selected from the group consisting of Group IA element, Group IIA element, Group IIIA element and Group VIII element, and A ′ represents a group composed of Group VA element and Group IIIB element.
  • At least one element selected from B represents one element selected from the group consisting of Group IIIB elements and Group IVA elements
  • B ′ represents a group consisting of Group VA elements and Group IIIB elements
  • indicates the amount of oxygen deficiency.
  • the oxide represented by these can be mentioned. Note that the oxygen deficiency is a number at which the oxide represented by the general formula (1) becomes electrically neutral.
  • the atomic ratio y of the element B ′ is preferably 0.4 or less (0 ⁇ y ⁇ 0.4), more preferably 0.35 or less (0 ⁇ y ⁇ 0.35), More preferably, it is 0.25 or less (0 ⁇ y ⁇ 0.25).
  • the B site element is preferably one element selected from the group consisting of IIIB group elements when the A site element is a IIIA group element. Further, the B site element is preferably one element selected from the group consisting of an IVA group element when the A site element is an IA group element, an IIA group element or a VIII group element.
  • the composite metal oxide having a perovskite structure includes LaAlO 3 , NiTiO 3 , CoTiO 3 , KTiO 3 , BaTiO 3 , SrTiO 3 , or a metal element of these composite metal oxides (A site).
  • Examples thereof include composite metal oxides in which a part of the element and the B site element is substituted with another metal element.
  • the composite metal oxide having a pseudo-brookite structure is not particularly limited, and Fe 2 TiO 5 can be exemplified.
  • a predetermined element X, a predetermined element Y 1, as a composite metal oxide containing predetermined element Y 2 is (A) one element X selected from group IVA elements; (B) one element Y 1 selected from the group consisting of Group IIIA elements, Group VIA elements and Group VIIA elements, and Group IVA elements in the 4th to 6th periods and Group VIII elements in the 4th period (provided that Is an element different from the element X), (C) One element Y 2 selected from the group consisting of Group IIIA elements, Group VIA elements and Group VIIA elements, and Group IVA elements in the 4th to 6th periods and Group VIII elements in the 4th period (provided that Element X and element Y 1 are different elements).
  • the ratio (molar ratio) of the abundance of each element X, Y 1 , Y 2 in the catalyst determined by melting / ICP-AES method is (D) a ratio of abundance x of the element X to the total (y 1 + y 2) between the abundance y 2 abundance y 1 and the element Y 2 elements Y 1 is 0.5 to 2.0 (0 .5 ⁇ x / (y 1 + y 2 ) ⁇ 2.0)
  • E a ratio of abundance y 2 elements Y 2 relative abundance y 1 element Y 1 is 0.02 to 0.25 (0.02 ⁇ y 2 / y 1 ⁇ 0.25), A ratio can be mentioned.
  • the element X, the element Y 1 , and the element Y 2 are not particularly limited, and examples thereof include Ti, Zr, Ce, W, Mn, and Fe.
  • the composite metal oxide in which these elements are element X, element Y 1 or element Y 2 is, for example, a composite containing Zr as element X, Ce as element Y 1 , W, Fe or Mn as element Y 2. Mention may be made of metal oxides.
  • the element X, the element Y 1, the composite metal oxide containing element Y 2, it is particularly preferable element X is zirconium (Zr).
  • Zr zirconium
  • the structure of the composite metal oxide can be maintained even when the catalyst is used under high temperature and high pressure conditions. That is, in the case of a composite metal oxide (hydrocarbon oil cracking catalyst) in which the element X is Zr, it is composed of hydrothermally synthesized zeolite, silica, or ⁇ -alumina used for hydrocracking of hydrocarbon oil. Like a hydrogenation catalyst, the crystal structure of the catalyst is not greatly changed by high-temperature and high-pressure steam, and the catalyst is not usable.
  • the catalyst is hardly deteriorated, and it is not necessary to pretreat the hydrocarbon oil (desulfurization and denitrogenation).
  • the molar ratio (x / m) of the abundance x of the element X to the abundance m of all the metal elements in the catalyst is 0.55 or more. It is preferable that it is 0.60 or more.
  • the above-described composite metal oxide can be prepared using a known method such as a coprecipitation method or a sol-gel method.
  • the composite metal oxide can be prepared as follows without any particular limitation.
  • the obtained precipitate is filtered and dried, and then the dried precipitate is fired to obtain a composite metal oxide.
  • the temperature for drying the precipitate in (iii) is preferably 100 ° C. or higher from the viewpoint of efficiently evaporating moisture, and 160 ° C. or lower from the viewpoint of preventing rapid drying. preferable.
  • the temperature at which the dried precipitate is calcined is the structural stability of the resulting composite metal oxide (catalyst) (ie, suppression of structural change of the composite metal oxide when hydrocarbon oil is decomposed using the catalyst). From the viewpoint of the above, it is preferably 500 ° C. or higher, and from the viewpoint of suppressing the reduction of the surface area of the composite metal oxide to be generated, it is preferably 900 ° C. or lower.
  • a compound that functions as a catalyst when hydrogenating the light hydrocarbon oil in the reaction mixture for example, a metal oxide
  • a metal oxide for example, anatase-type titanium dioxide (TiO 2 ) or a mixture containing anatase-type titanium dioxide can be used as a hydrogenation catalyst.
  • the anatase-type titanium dioxide used as a hydrogenation catalyst or a mixture containing anatase-type titanium dioxide is not particularly limited, and anatase-type titanium dioxide or anatase-type titanium dioxide is used.
  • the mixture containing nickel, cobalt, molybdenum or oxides supported thereon examples of the mixture containing nickel, cobalt, molybdenum or oxides supported thereon.
  • the total amount of titanium dioxide in the mixture is preferably 50% by mass or more, and more preferably 55% by mass or more of the mixture. It is preferably 60% by mass or more.
  • the light hydrocarbon oil production apparatus 1 shown in FIG. 1 includes a reactor 2, a raw material supply pump 3 as a raw material supply means, and a water supply pump 4 as a water supply means. Then, the reactor 2 of the light hydrocarbon oil production apparatus 1 is formed by filling the catalyst layer 21 for cracking hydrocarbon oil formed by filling the catalyst for cracking hydrocarbon oil and the catalyst for hydrogenation inside. And a hydrogenation catalyst layer 22.
  • one layer of hydrocarbon oil decomposition catalyst layer 21 is located upstream of one layer of hydrogenation catalyst layer 22 (the side to which heavy hydrocarbon oil and water are supplied).
  • a plurality of hydrocarbon oil decomposition catalyst layers and a plurality of hydrogenation catalyst layers are alternately and most upstreamly located. You may arrange
  • a mixed layer in which a hydrocarbon oil cracking catalyst and a hydrogenation catalyst are mixed may be disposed in the reactor.
  • the container filled with the hydrocarbon oil cracking catalyst and the container filled with the hydrogenation catalyst are arranged upstream of the container filled with the hydrogenation catalyst. It is good also as a reactor by connecting so that it may be located in the side.
  • the raw material supply pump 3 supplies the water supplied from the water supply pump 4.
  • the resulting heavy hydrocarbon oil and the hydrocarbon oil decomposition catalyst come into contact with each other, and the heavy hydrocarbon oil is decomposed (decomposition step).
  • disassembling the high molecular weight hydrocarbon compound in heavy hydrocarbon oil is obtained.
  • the reaction mixture containing the light hydrocarbon oil and the hydrogenation catalyst are contacted, and the light hydrocarbon oil in the reaction mixture is hydrogenated,
  • the olefin content of light hydrocarbon oil is reduced (hydrogenation process).
  • the reason why the heavy hydrocarbon oil can be decomposed in the presence of water in the decomposition step is not clear, but the composite metal oxide as described above, particularly a composite metal oxide having a perovskite structure, In addition, a composite metal oxide having a pseudo-brookite structure or a composite metal oxide containing the predetermined elements X, Y 1 and Y 2 has a high lattice oxygen supply rate, and decomposes water to release oxygen and hydrogen. This is presumed to be due to their high ability. That is, when these composite metal oxides decompose heavy hydrocarbon compounds using water as a hydrogen source, a part of the hydrocarbon compounds and water react as shown in the following reaction formula to generate hydrogen. This is presumed to be because the generation of hydrogen as a source can be promoted.
  • the heavy hydrocarbon oil is decomposed to become a light hydrocarbon oil, but this light hydrocarbon oil contains a relatively large amount of olefin and has low oxidation stability.
  • the reason why the light hydrocarbon oil contains a relatively large amount of olefin is not clear, but is presumably because the hydrogenation ability of the composite metal oxide used as the catalyst for cracking hydrocarbon oil is low. . That is, when the hydrocarbon oil cracking catalyst supplies lattice oxygen to decompose heavy hydrocarbon oil, hydrogenation using hydrogen generated by cracking water cannot be sufficiently advanced. Inferred.
  • the amount of water used when producing light hydrocarbon oil using the light hydrocarbon oil production apparatus may be an amount sufficient to lighten the hydrocarbon oil used as a raw material. It is desirable to add water at a ratio of 5 to 2000 parts by mass, preferably 10 to 1000 parts by mass, and more preferably 10 to 500 parts by mass with respect to 100 parts by mass of the oil. This is because when the amount of water added to 100 parts by mass of the hydrocarbon oil is less than 5 parts by mass, the hydrogen source may be insufficient and the hydrocarbon oil may not be sufficiently lightened.
  • the temperature in the reactor of the light hydrocarbon oil production apparatus can be set to a relatively low temperature, for example, 300 to 600 ° C., preferably 350 to 550 ° C., more preferably 400 to 500 ° C. This is because when the temperature is lower than 300 ° C., the activation energy necessary for the reaction cannot be obtained, and the decomposition of the hydrocarbon oil and the hydrogenation of the light hydrocarbon oil may not sufficiently proceed. Further, when the temperature is higher than 600 ° C., a large amount of unnecessary gas (methane, ethane, etc.) is generated, and the decomposition efficiency of hydrocarbon oil may be lowered.
  • a relatively low temperature for example, 300 to 600 ° C., preferably 350 to 550 ° C., more preferably 400 to 500 ° C.
  • the pressure in the reactor can be, for example, 0.1 to 40 MPa, preferably 0.1 to 35 MPa, and more preferably 0.1 to 30 MPa. This is because when the pressure is less than 0.1 MPa, it may be difficult to smoothly flow the hydrocarbon oil and water into the reactor. Moreover, it is because the manufacturing cost of a reactor may become high when a pressure exceeds 40 Mpa.
  • the liquid space velocity (LHSV) when circulating hydrocarbon oil and water in the reactor is, for example, 0.01 to 10 h ⁇ 1 , preferably 0.05 to 5 h ⁇ 1 , more preferably 0.1 to 2 h. ⁇ 1 .
  • the volume ratio (B / A) of the amount (B) of the hydrogenation catalyst to the amount (A) of the hydrocarbon oil cracking catalyst in the reactor can be 0.1 to 1.0. This is because if the amount of the hydrocarbon oil decomposition catalyst is small, the decomposition of the hydrocarbon oil may not sufficiently proceed. Further, if the amount of the hydrogenation catalyst is too large, the amount of the catalyst that does not contribute to the hydrogenation of the light hydrocarbon oil increases, and the production efficiency of the light hydrocarbon oil decreases.
  • hydrogen necessary for the hydrocarbon oil cracking reaction or light hydrocarbon oil hydrogenation reaction is present in the system.
  • the ratio (hydrogenation amount / hydrocarbon oil supply amount) can be 0.1 or less, preferably 0.
  • the light hydrocarbon oil production method and production apparatus of the present invention since the light hydrocarbon oil produced by cracking the hydrocarbon oil is hydrogenated, the light hydrocarbon having a low olefin content and excellent oxidation stability Oil can be obtained. Therefore, according to the light hydrocarbon oil production method and production apparatus of the present invention, light hydrocarbon oil having a low olefin content can be efficiently decomposed at low cost without using high-pressure hydrogen gas. Can be obtained.
  • the hydrocarbon oil decomposition catalyst used in the light hydrocarbon oil production method and production apparatus of the present invention is not easily deteriorated, the light hydrocarbon oil production method and production apparatus of the present invention using the catalyst is used. According to this, it is not necessary to desulfurize and denitrify the raw hydrocarbon oil to be decomposed in advance.
  • the manufacturing method of the light hydrocarbon oil of this invention and the manufacturing apparatus of light hydrocarbon oil are not limited to the said embodiment,
  • the light hydrocarbon oil of this invention The production method and the production apparatus for light hydrocarbon oil can be modified as appropriate.
  • the hydrogenation of the light hydrocarbon oil in the reaction mixture may be performed after removing water remaining in the reaction mixture after the decomposition of the hydrocarbon oil.
  • hydrocarbon oil decomposition catalyst did.
  • a hydrocarbon oil cracking catalyst was analyzed by an X-ray diffractometer, a diffraction peak peculiar to Fe 2 TiO 5 having a pseudo-brookite structure as shown in FIG. 4 (indicated by an arrow in the figure) X-ray diffraction spectrum having) was obtained. That is, it was found that the prepared hydrocarbon oil cracking catalyst was composed of Fe 2 TiO 5 having a pseudo-brookite structure.
  • a hydrogenation catalyst (catalyst a) comprising anatase-type titanium dioxide was prepared.
  • titanium sulfate was dissolved in ion-exchanged water, and ammonia water was added dropwise to form a precipitate.
  • the resulting precipitate was aged (still kept overnight at 40 ° C.), filtered and dried (6 hours in an air atmosphere at 130 ° C.), and then the dried precipitate was calcined at a temperature of 600 ° C. for hydrogenation.
  • a catalyst was prepared. When the obtained hydrogenation catalyst was analyzed with an X-ray diffractometer, a diffraction peak (indicated by an arrow in the figure) corresponding to the (101) plane of anatase TiO 2 as shown in FIG. 5 was obtained.
  • the prepared hydrogenation catalyst was composed of anatase-type titanium dioxide.
  • the upper layer (upstream side) of the superalloy (Inconel 625) reactor (internal volume 10 mL) was filled with 8.0 mL of hydrocarbon decomposition catalyst, and the lower layer was charged with 2.0 mL of hydrogenation catalyst. .
  • the inside of the reactor was heated and pressurized to a temperature of 470 ° C. and a pressure of 15 MPa while passing ion exchange water through the reactor filled with the catalyst at a flow rate of 0.1 mL / min.
  • Example 3 A hydrocarbon oil decomposition catalyst (catalyst C) made of a composite metal oxide in which the element X is zirconium, the element Y 1 is cerium, and the element Y 2 is tungsten was prepared.
  • ammonium metatungstate was dissolved in ion-exchanged water to obtain an aqueous solution of ammonium metatungstate having a predetermined concentration.
  • an aqueous ammonium metatungstate solution was added dropwise to the aqueous solution containing Zr, Ce while adjusting the aqueous solution so that the pH of the aqueous solution did not exceed 8, thereby generating a precipitate.
  • Example 2 A hydrocarbon oil cracking catalyst comprising the composite metal oxide contained was prepared.
  • Zr: Ce: W 49: 48: 3.
  • a hydrogenation catalyst (catalyst a) comprising anatase-type titanium dioxide was prepared.
  • Example 2 In the same manner as in Example 1, a hydrogenation catalyst (catalyst a) comprising anatase-type titanium dioxide was prepared. And the heavy hydrocarbon oil was decomposed
  • Table 2 shows that the light hydrocarbon oils produced in Examples 1 to 4 have a lower olefin content than the light hydrocarbon oils produced in Comparative Examples 1 to 4.
  • Example 5 The light hydrocarbon obtained by decomposing the heavy hydrocarbon oil in the same manner as in Example 3 except that the temperature and pressure in the reactor when decomposing the heavy hydrocarbon oil were changed as shown in Table 3. The properties of hydrogen oil were evaluated in the same manner as in Example 1. The results are shown in Table 3 in comparison with Comparative Example 3.
  • Example 5 has less olefin content than the light hydrocarbon oil produced in Comparative Example 3.
  • Example 5 In order to evaluate the deterioration resistance of the catalyst, in Example 5, the decomposition of the heavy hydrocarbon oil was continued for 14 days or more. Then, after 14 days from the start of oil passing, the effluent from the reactor was collected for 1 hour, and the olefin content (index of olefin attributed carbon content) was calculated in the same manner as in Example 1. Table 4 shows the index of the olefin attributed carbon amount after 6 hours from the start of oil passing and the index of the olefin attributed carbon amount after 14 days from the start of oil passing.
  • Example 5 shows that in Example 5, the amount of olefin attributed carbon after 6 hours from the start of oil passing and the amount of olefin attributed carbon after 14 days from the start of oil passing changed significantly. Therefore, in Example 5, it turns out that deterioration of a catalyst is suppressed.
  • olefins are contained from hydrocarbon oil without desulfurization and denitrification of the hydrocarbon oil as a raw material in advance and without using high-pressure hydrogen gas. A small amount of light hydrocarbon oil can be produced efficiently at low cost.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

The objective of the present invention is to provide a device and method that are able to efficiently produce at a low cost from a hydrocarbon oil a light hydrocarbon oil having a low amount of contained olefins. The method for producing a light hydrocarbon oil includes: a cracking step for cracking the hydrocarbon oil by bringing into contact the hydrocarbon oil and a hydrocarbon oil cracking catalyst in the presence of water; and a hydrogenation step for bringing into contact the reaction mixture obtained in the cracking step and a hydrogenation catalyst in order to hydrogenate the light hydrocarbon oil in the reaction mixture. Also, the device for producing a light hydrocarbon oil is provided with: a reaction vessel; a starting material supply means that supplies the hydrocarbon oil to the reaction vessel; and a water supply means that supplies water to the reaction vessel. The reaction vessel has: a cracking section for obtaining a reaction product containing light hydrocarbon oil by cracking the hydrocarbon oil by bringing into contact the hydrocarbon oil, water, and the hydrocarbon oil cracking catalyst; and a hydrogenation section for hydrogenating the light hydrocarbon oil in the reaction mixture by bringing into contact the reaction mixture and the hydrogenation catalyst.

Description

軽質炭化水素油の製造方法および製造装置Method and apparatus for producing light hydrocarbon oil
 本発明は、軽質炭化水素油の製造方法および軽質炭化水素油の製造装置に関し、特に、系外から水素を供給することなく炭化水素油を分解してオレフィン含有量の少ない軽質炭化水素油を製造する際に用いられる方法および装置に関するものである。 TECHNICAL FIELD The present invention relates to a light hydrocarbon oil production method and a light hydrocarbon oil production apparatus, and in particular, produces a light hydrocarbon oil having a low olefin content by cracking the hydrocarbon oil without supplying hydrogen from outside the system. The present invention relates to a method and an apparatus used in the process.
 従来、重質炭化水素油を分解して軽質化することにより、石油化学製品の原料や燃料油等として有用な軽質炭化水素油と、燃料ガス等として有用な軽質炭化水素ガスとを得る方法として、水素化分解法、熱分解法および流動接触分解法が知られている。 Conventionally, as a method of obtaining light hydrocarbon oil useful as a raw material for petrochemical products, fuel oil, etc. and light hydrocarbon gas useful as fuel gas, etc. by decomposing and lightening heavy hydrocarbon oil Hydrocracking, thermal cracking and fluid catalytic cracking are known.
 ここで、水素化分解法とは、高温・高圧の水素雰囲気中で重質炭化水素油と水素化触媒とを接触させることにより、重質炭化水素油を軽質化する方法である(例えば、特許文献1参照)。また、熱分解法とは、高温条件下で炭化水素分子を熱分解することにより、触媒を用いることなく重質炭化水素油を軽質化する方法である(例えば、特許文献2参照)。更に、流動接触分解法とは、流動している触媒と重質炭化水素油とを接触させることにより、重質炭化水素油を軽質化する方法である(例えば、特許文献3参照)。 Here, the hydrocracking method is a method for lightening a heavy hydrocarbon oil by bringing a heavy hydrocarbon oil and a hydrogenation catalyst into contact with each other in a high-temperature, high-pressure hydrogen atmosphere (for example, patents). Reference 1). The thermal decomposition method is a method for lightening a heavy hydrocarbon oil without using a catalyst by thermally decomposing hydrocarbon molecules under high temperature conditions (see, for example, Patent Document 2). Furthermore, the fluid catalytic cracking method is a method of reducing the weight of heavy hydrocarbon oil by bringing a flowing catalyst and heavy hydrocarbon oil into contact with each other (see, for example, Patent Document 3).
特開2008-297452号公報JP 2008-297452 A 特開2009-102471号公報JP 2009-102471 A 特開平8-269464号公報JP-A-8-269464
 しかし、水素化分解法には、分解反応に大量の高圧水素ガスを使用するため、大規模な水素ガス製造設備が必要であり、コストが増大するという問題があった。また、熱分解法には、大量のコークスが発生すると共に、芳香環の開裂が殆ど起こらないために軽質炭化水素油の製造効率が悪く、重質炭化水素油を十分に分解し得ないという問題があった。更に、流動接触分解法には、装置の運転コストが高いという問題があった。 However, the hydrocracking method uses a large amount of high-pressure hydrogen gas for the cracking reaction, which requires a large-scale hydrogen gas production facility, resulting in an increase in cost. In addition, in the pyrolysis method, a large amount of coke is generated and the aromatic ring is hardly cleaved, so that the production efficiency of light hydrocarbon oil is poor and the heavy hydrocarbon oil cannot be decomposed sufficiently. was there. Furthermore, the fluid catalytic cracking method has a problem that the operating cost of the apparatus is high.
 また、水素化分解法では、水素化触媒の劣化(被毒)を防止するために重質炭化水素油を予め脱硫および脱窒素しておく必要があった。更に、熱分解法および流動接触分解法では、炭化水素油の脱硫反応および脱窒素反応が殆ど起こらないため、水素化分解法と同様に重質炭化水素油を予め脱硫および脱窒素しておく必要があった。即ち、水素化分解法、熱分解法および流動接触分解法には、重質炭化水素油の前処理が必要であるという問題があった。 Further, in the hydrocracking method, it was necessary to desulfurize and denitrogenate the heavy hydrocarbon oil in advance in order to prevent deterioration (poisoning) of the hydrogenation catalyst. Furthermore, in the thermal cracking method and fluid catalytic cracking method, there is almost no desulfurization reaction or denitrogenation reaction of hydrocarbon oil, so it is necessary to desulfurize and denitrogenate the heavy hydrocarbon oil in advance as in the hydrocracking method. was there. That is, the hydrocracking method, the thermal cracking method, and the fluid catalytic cracking method have a problem that a pretreatment of heavy hydrocarbon oil is required.
 そこで、本発明者らは、炭化水素油を予め脱硫および脱窒素することなく、且つ、高圧水素ガスを使用することなく、低コストで効率的に炭化水素油を軽質化することができる方法を提供することを目的として鋭意研究を行った。そして、本発明者らは、所定の複合金属酸化物を炭化水素油分解用触媒として用いることにより、反応系外から水素を供給することなく、水の存在下で炭化水素油を分解して軽質化し得ることを新たに見出した。 Accordingly, the present inventors have developed a method that can lighten hydrocarbon oil efficiently at low cost without desulfurizing and denitrogenating hydrocarbon oil in advance and without using high-pressure hydrogen gas. We conducted intensive research for the purpose of providing. Then, the present inventors use a predetermined composite metal oxide as a hydrocarbon oil cracking catalyst, thereby decomposing a hydrocarbon oil in the presence of water without supplying hydrogen from outside the reaction system. It was newly found that it can be converted.
 ここで、上記炭化水素油分解用触媒を用いて水の存在下で炭化水素油を軽質化した場合、炭化水素油を予め脱硫および脱窒素することなく、且つ、高圧水素ガスを使用することなく、低コストで効率的に軽質炭化水素油を得ることはできる。しかし、本発明者らが更に研究を重ねたところ、上記炭化水素油分解用触媒を用いて水の存在下で炭化水素油を軽質化した場合、得られた軽質炭化水素油のオレフィン含有量が比較的高くなるということが明らかとなった。即ち、上記炭化水素油分解用触媒を用いて炭化水素油を軽質化して得た軽質炭化水素油には、オレフィン含有量を低減して酸化安定性を向上させるという点において改善の余地があった。 Here, when the hydrocarbon oil is lightened using the hydrocarbon oil decomposition catalyst in the presence of water, the hydrocarbon oil is not desulfurized and denitrogenated in advance, and high-pressure hydrogen gas is not used. It is possible to obtain light hydrocarbon oil efficiently at low cost. However, as a result of further research by the present inventors, when the hydrocarbon oil is lightened in the presence of water using the hydrocarbon oil cracking catalyst, the olefin content of the obtained light hydrocarbon oil is low. It became clear that it was relatively high. That is, the light hydrocarbon oil obtained by lightening the hydrocarbon oil using the hydrocarbon oil decomposition catalyst has room for improvement in terms of reducing the olefin content and improving the oxidation stability. .
 そこで、本発明は、原料となる炭化水素油を予め脱硫および脱窒素することなく、且つ、高圧水素ガスを使用することなく、炭化水素油からオレフィン含有量の少ない軽質炭化水素油を低コストで効率的に製造することができる方法および装置を提供することを目的とする。 Therefore, the present invention provides a low-cost light hydrocarbon oil with a low olefin content from hydrocarbon oil without desulfurizing and denitrifying the hydrocarbon oil as a raw material in advance and without using high-pressure hydrogen gas. It is an object of the present invention to provide a method and an apparatus that can be efficiently manufactured.
 即ち、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の軽質炭化水素油の製造方法は、炭化水素油を分解して軽質炭化水素油を製造する軽質炭化水素油の製造方法であって、水の存在下で、炭化水素油と、複合金属酸化物からなる炭化水素油分解用触媒とを接触させて炭化水素油を分解し、軽質炭化水素油を含む反応混合物を得る分解工程と、前記分解工程で得た前記反応混合物と、金属酸化物からなる水素化用触媒とを接触させて反応混合物中の軽質炭化水素油を水素化する水素化工程とを含むことを特徴とする。 That is, the present invention aims to advantageously solve the above-mentioned problems, and the light hydrocarbon oil production method of the present invention comprises a light carbonization process for producing a light hydrocarbon oil by decomposing a hydrocarbon oil. A method for producing hydrogen oil, comprising contacting a hydrocarbon oil with a hydrocarbon oil cracking catalyst composed of a composite metal oxide in the presence of water to decompose the hydrocarbon oil, including light hydrocarbon oil A decomposition step for obtaining a reaction mixture; and a hydrogenation step for hydrogenating light hydrocarbon oil in the reaction mixture by contacting the reaction mixture obtained in the decomposition step with a hydrogenation catalyst comprising a metal oxide. It is characterized by including.
 ここで、本発明の軽質炭化水素油の製造方法は、前記水素化用触媒が、アナターゼ型の二酸化チタンを含むことが好ましい。 Here, in the method for producing a light hydrocarbon oil of the present invention, the hydrogenation catalyst preferably contains anatase-type titanium dioxide.
 そして、本発明の軽質炭化水素油の製造方法は、前記炭化水素油分解用触媒が、(A)ペロブスカイト型構造を有する複合金属酸化物と、(B)擬ブルッカイト型構造を有する複合金属酸化物と、(C)IVA族元素から選択される1種の元素Xと、IIIA族元素、VIA族元素およびVIIA族元素、並びに、第4~6周期のIVA族元素および第4周期のVIII族元素からなる群より選択され、且つ、前記元素Xとは異なる1種の元素Yと、IIIA族元素、VIA族元素およびVIIA族元素、並びに、第4~6周期のIVA族元素および第4周期のVIII族元素からなる群より選択され、且つ、前記元素Xおよび前記元素Yとは異なる1種の元素Yとを含有し、元素Yの存在量(y)と元素Yの存在量(y)との合計(y+y)に対する元素Xの存在量(x)の比(x/(y+y))が、0.5以上2.0以下であり、元素Yの存在量(y)に対する元素Yの存在量(y)の比(y/y)が、0.02以上0.25以下である複合金属酸化物とからなる群より選択される少なくとも一つからなることが好ましい。
 なお、本発明において、「元素の存在量」は、触媒を溶解して得た溶液をICP発光分光分析法で分析し、得られた測定値から触媒中の各元素の金属単体換算でのモル濃度を算出することにより求めることができる。そして、「元素の存在量の比(モル比)」は、算出した各元素のモル濃度の比を算出することにより求めることができる(以下、元素の存在量の比の算出方法を「融解/ICP-AES法」と称する場合がある。)。
And the light hydrocarbon oil production method of the present invention is such that the hydrocarbon oil decomposition catalyst comprises (A) a composite metal oxide having a perovskite structure, and (B) a composite metal oxide having a pseudo brookite structure. And (C) one element X selected from group IVA elements, group IIIA elements, group VIA elements and group VIIA elements, group IVA elements in the fourth to sixth periods, and group VIII elements in the fourth period One element Y 1 different from the element X, a group IIIA element, a group VIA element and a group VIIA element, and a group IVA element and a fourth period of the fourth to sixth periods It is selected from the group consisting of VIII group elements, and said containing and different one element Y 2 is the element X and the element Y 1, abundance of elements Y 1 (y 1) and the element Y 2 abundance (y ) The sum of (the presence of the element X with respect to y 1 + y 2) (a ratio of x) (x / (y 1 + y 2)) is, is 0.5 to 2.0, the abundance of elements Y 1 The ratio (y 2 / y 1 ) of the abundance (y 2 ) of the element Y 2 to (y 1 ) is at least one selected from the group consisting of complex metal oxides of 0.02 or more and 0.25 or less. Preferably it consists of one.
In the present invention, the “element abundance” refers to a solution obtained by dissolving the catalyst by ICP emission spectroscopic analysis, and from the obtained measurement value, the molar amount of each element in the catalyst in terms of simple metal. It can be obtained by calculating the concentration. The “element abundance ratio (molar ratio)” can be obtained by calculating the calculated molar concentration ratio of each element (hereinafter, the element abundance ratio calculation method is “melt / ICP-AES method ”).
 なお、本発明の軽質炭化水素油の製造方法では、前記ペロブスカイト型構造を有する複合金属酸化物が、LaAlO、NiTiO、CoTiO、KTiO、BaTiO、SrTiO、および、これらの複合金属酸化物の金属元素の一部を他の金属元素で置換した複合金属酸化物からなる群より選択されることが好ましい。
 また、本発明の軽質炭化水素油の製造方法では、前記擬ブルッカイト型構造を有する複合金属酸化物が、FeTiOであることが好ましい。
 更に、本発明の軽質炭化水素油の製造方法では、前記元素Xがジルコニウムであり、前記元素Yがセリウムであり、前記元素Yがタングステン、鉄およびマンガンからなる群より選択される1種であることが好ましい。
In the light hydrocarbon oil production method of the present invention, the composite metal oxide having the perovskite structure is LaAlO 3 , NiTiO 3 , CoTiO 3 , KTiO 3 , BaTiO 3 , SrTiO 3 , and these composite metals. It is preferably selected from the group consisting of complex metal oxides in which part of the metal element of the oxide is substituted with another metal element.
In the method for producing a light hydrocarbon oil of the present invention, the composite metal oxide having the pseudo-brookite structure is preferably Fe 2 TiO 5 .
Furthermore, in the method for producing a light hydrocarbon oil of the present invention, the element X is zirconium, the element Y 1 is cerium, and the element Y 2 is selected from the group consisting of tungsten, iron, and manganese. It is preferable that
 また、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の軽質炭化水素油の製造装置は、炭化水素油を分解して軽質炭化水素油を製造する軽質炭化水素油の製造装置であって、反応器と、前記反応器内へ炭化水素油を供給する原料供給手段と、前記反応器内へ水を供給する水供給手段とを備え、前記反応器が、前記炭化水素油と、前記水と、複合金属酸化物からなる炭化水素油分解用触媒とを接触させて炭化水素油を分解し、軽質炭化水素油を含む反応混合物を得る分解部と、前記反応混合物と、金属酸化物からなる水素化用触媒とを接触させて反応混合物中の軽質炭化水素油を水素化する水素化部とを有することを特徴とする。 Further, the present invention aims to advantageously solve the above-mentioned problems, and the light hydrocarbon oil production apparatus of the present invention is a light carbonization that decomposes a hydrocarbon oil to produce a light hydrocarbon oil. An apparatus for producing hydrogen oil, comprising: a reactor; a raw material supply means for supplying hydrocarbon oil into the reactor; and a water supply means for supplying water into the reactor. The hydrocarbon oil, the water, and a hydrocarbon oil decomposition catalyst composed of a composite metal oxide are brought into contact with each other to decompose the hydrocarbon oil to obtain a reaction mixture containing light hydrocarbon oil, and the reaction It has a hydrogenation part which hydrogenates the light hydrocarbon oil in a reaction mixture by making the mixture and the hydrogenation catalyst which consists of metal oxides contact.
 ここで、本発明の軽質炭化水素油の製造装置は、前記水素化用触媒が、アナターゼ型の二酸化チタンを含むことが好ましい。 Here, in the light hydrocarbon oil production apparatus of the present invention, the hydrogenation catalyst preferably contains anatase-type titanium dioxide.
 そして、本発明の軽質炭化水素油の製造装置は、前記炭化水素油分解用触媒が、(A)ペロブスカイト型構造を有する複合金属酸化物と、(B)擬ブルッカイト型構造を有する複合金属酸化物と、(C)IVA族元素から選択される1種の元素Xと、IIIA族元素、VIA族元素およびVIIA族元素、並びに、第4~6周期のIVA族元素および第4周期のVIII族元素からなる群より選択され、且つ、前記元素Xとは異なる1種の元素Yと、IIIA族元素、VIA族元素およびVIIA族元素、並びに、第4~6周期のIVA族元素および第4周期のVIII族元素からなる群より選択され、且つ、前記元素Xおよび前記元素Yとは異なる1種の元素Yとを含有し、元素Yの存在量(y)と元素Yの存在量(y)との合計(y+y)に対する元素Xの存在量(x)の比(x/(y+y))が、0.5以上2.0以下であり、元素Yの存在量(y)に対する元素Yの存在量(y)の比(y/y)が、0.02以上0.25以下である複合金属酸化物とからなる群より選択される少なくとも一つからなることが好ましい。
 なお、本発明において、「元素の存在量」は、触媒を溶解して得た溶液をICP発光分光分析法で分析し、得られた測定値から触媒中の各元素の金属単体換算でのモル濃度を算出することにより求めることができる。そして、「元素の存在量の比(モル比)」は、算出した各元素のモル濃度の比を算出することにより求めることができる(以下、元素の存在量の比の算出方法を「融解/ICP-AES法」と称する場合がある。)。
In the light hydrocarbon oil production apparatus of the present invention, the hydrocarbon oil cracking catalyst comprises (A) a composite metal oxide having a perovskite structure, and (B) a composite metal oxide having a pseudo-brookite structure. And (C) one element X selected from group IVA elements, group IIIA elements, group VIA elements and group VIIA elements, group IVA elements in the fourth to sixth periods, and group VIII elements in the fourth period One element Y 1 different from the element X, a group IIIA element, a group VIA element and a group VIIA element, and a group IVA element and a fourth period of the fourth to sixth periods It is selected from the group consisting of VIII group elements, and said containing and different one element Y 2 is the element X and the element Y 1, abundance of elements Y 1 (y 1) and the element Y 2 abundance (y ) The sum of (the presence of the element X with respect to y 1 + y 2) (a ratio of x) (x / (y 1 + y 2)) is, is 0.5 to 2.0, the abundance of elements Y 1 The ratio (y 2 / y 1 ) of the abundance (y 2 ) of the element Y 2 to (y 1 ) is at least one selected from the group consisting of complex metal oxides of 0.02 or more and 0.25 or less. Preferably it consists of one.
In the present invention, the “element abundance” refers to a solution obtained by dissolving the catalyst by ICP emission spectroscopic analysis, and from the obtained measurement value, the molar amount of each element in the catalyst in terms of simple metal. It can be obtained by calculating the concentration. The “element abundance ratio (molar ratio)” can be obtained by calculating the calculated molar concentration ratio of each element (hereinafter, the element abundance ratio calculation method is “melt / ICP-AES method ”).
 なお、本発明の軽質炭化水素油の製造装置では、前記ペロブスカイト型構造を有する複合金属酸化物が、LaAlO、NiTiO、CoTiO、KTiO、BaTiO、SrTiO、および、これらの複合金属酸化物の金属元素の一部を他の金属元素で置換した複合金属酸化物からなる群より選択されることが好ましい。
 また、本発明の軽質炭化水素油の製造装置では、前記擬ブルッカイト型構造を有する複合金属酸化物が、FeTiOであることが好ましい。
 更に、本発明の軽質炭化水素油の製造装置では、前記元素Xがジルコニウムであり、前記元素Yがセリウムであり、前記元素Yがタングステン、鉄およびマンガンからなる群より選択される1種であることが好ましい。
In the light hydrocarbon oil production apparatus of the present invention, the composite metal oxide having the perovskite structure is LaAlO 3 , NiTiO 3 , CoTiO 3 , KTiO 3 , BaTiO 3 , SrTiO 3 , and these composite metals. It is preferably selected from the group consisting of complex metal oxides in which part of the metal element of the oxide is substituted with another metal element.
In the light hydrocarbon oil production apparatus of the present invention, the composite metal oxide having a pseudo-brookite structure is preferably Fe 2 TiO 5 .
Furthermore, in the light hydrocarbon oil production apparatus of the present invention, the element X is zirconium, the element Y 1 is cerium, and the element Y 2 is selected from the group consisting of tungsten, iron, and manganese. It is preferable that
 本発明の軽質炭化水素油の製造方法および製造装置によれば、原料となる炭化水素油を予め脱硫および脱窒素することなく、且つ、高圧水素ガスを使用することなく、炭化水素油からオレフィン含有量の少ない軽質炭化水素油を低コストで効率的に製造することができる。 According to the light hydrocarbon oil production method and production apparatus of the present invention, olefins are contained from hydrocarbon oil without desulfurization and denitrification of the hydrocarbon oil as a raw material in advance and without using high-pressure hydrogen gas. A small amount of light hydrocarbon oil can be produced efficiently at low cost.
本発明に従う代表的な軽質炭化水素油の製造装置の概略構成を示す説明図である。It is explanatory drawing which shows schematic structure of the manufacturing apparatus of the typical light hydrocarbon oil according to this invention. ペロブスカイト型構造を有するNiTiOのX線回折スペクトルである。2 is an X-ray diffraction spectrum of NiTiO 3 having a perovskite structure. ペロブスカイト型構造を有するCoTiOのX線回折スペクトルである。2 is an X-ray diffraction spectrum of CoTiO 3 having a perovskite structure. 擬ブルッカイト型構造を有するFeTiOのX線回折スペクトルである。 2 is an X-ray diffraction spectrum of Fe 2 TiO 5 having a pseudo-brookite structure. アナターゼ型のTiOのX線回折スペクトルである。 2 is an X-ray diffraction spectrum of anatase-type TiO 2 .
 以下、図面を参照しつつ本発明の実施の形態を詳細に説明する。ここで、本発明の軽質炭化水素油の製造方法および製造装置は、炭化水素油を分解して軽質炭化水素油を製造する際に用いられる。そして、本発明の軽質炭化水素油の製造方法および製造装置では、反応系外から水素を供給することなく、オレフィン含有量の少ない軽質炭化水素油を製造することができる。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Here, the manufacturing method and manufacturing apparatus of the light hydrocarbon oil of this invention are used when cracking hydrocarbon oil and manufacturing light hydrocarbon oil. And in the manufacturing method and manufacturing apparatus of the light hydrocarbon oil of this invention, light hydrocarbon oil with little olefin content can be manufactured, without supplying hydrogen from the outside of a reaction system.
 ここで、本発明の軽質炭化水素油の製造方法や製造装置を用いて軽質炭化水素油を製造する際に原料として用いる炭化水素油としては、特に限定されることなく、石油精製時に得られる常圧蒸留残油や減圧蒸留残油などの重質炭化水素油を挙げることができる。具体的には、軽質炭化水素油の原料となる炭化水素油としては、常圧蒸留における50容量%留出温度(T50)が150℃以上550℃以下の炭化水素油や、T50が200℃以上550℃以下の炭化水素油や、T50が250℃以上550℃以下の炭化水素油を挙げることができる。 Here, the hydrocarbon oil used as a raw material when producing the light hydrocarbon oil using the light hydrocarbon oil production method and production apparatus of the present invention is not particularly limited, and is usually obtained during petroleum refining. There may be mentioned heavy hydrocarbon oils such as pressure distillation residue and vacuum distillation residue. Specifically, as the hydrocarbon oil used as a raw material for the light hydrocarbon oil, a hydrocarbon oil having a 50 vol% distillation temperature (T50) in atmospheric distillation of 150 ° C. or higher and 550 ° C. or lower, or T50 of 200 ° C. or higher. Examples thereof include hydrocarbon oils having a temperature of 550 ° C. or lower and hydrocarbon oils having a T50 of 250 ° C. or higher and 550 ° C. or lower.
 そして、本発明の軽質炭化水素油の製造装置は、原料となる炭化水素油を分解してオレフィン含有量の少ない軽質炭化水素油にする反応器と、原料となる炭化水素油を反応器内へ供給する原料供給手段と、水を反応器内へ供給する水供給手段とを備えていることを特徴とする。 The light hydrocarbon oil production apparatus according to the present invention includes a reactor that decomposes a hydrocarbon oil that is a raw material into a light hydrocarbon oil having a low olefin content, and a hydrocarbon oil that is a raw material into the reactor. It is characterized by comprising raw material supply means for supplying and water supply means for supplying water into the reactor.
 また、本発明の軽質炭化水素油の製造装置は、反応器の内部に、炭化水素油を分解し、軽質炭化水素油を含む反応混合物を得る分解部と、反応混合物中の軽質炭化水素油を水素化する水素化部とを有していることを特徴とする。なお、「反応混合物」とは、炭化水素油の分解反応を経て得られる混合物を指し、反応混合物には、軽質炭化水素油などの反応生成物のみならず、水などの未反応物も含まれる。 The light hydrocarbon oil production apparatus of the present invention includes a cracking unit that decomposes hydrocarbon oil in the reactor to obtain a reaction mixture containing the light hydrocarbon oil, and a light hydrocarbon oil in the reaction mixture. And a hydrogenation part for hydrogenation. The "reaction mixture" refers to a mixture obtained through a hydrocarbon oil decomposition reaction, and the reaction mixture includes not only reaction products such as light hydrocarbon oil but also unreacted materials such as water. .
 ここで、分解部は、原料供給手段により供給された炭化水素油と、水供給手段により供給された水と、炭化水素油分解用触媒とを接触させて炭化水素油を分解する領域である。また、水素化部は、分解部で得た反応混合物と、水素化用触媒とを接触させて反応混合物中の軽質炭化水素油を水素化し、軽質炭化水素油のオレフィン含有量を低減する領域である。 Here, the cracking section is a region where hydrocarbon oil supplied by the raw material supply means, water supplied by the water supply means, and a hydrocarbon oil decomposition catalyst are brought into contact with each other to decompose the hydrocarbon oil. The hydrogenation section is an area where the reaction mixture obtained in the cracking section and the hydrogenation catalyst are brought into contact with each other to hydrogenate the light hydrocarbon oil in the reaction mixture, thereby reducing the olefin content of the light hydrocarbon oil. is there.
 即ち、本発明の軽質炭化水素油の製造装置の反応器内には、炭化水素油分解用触媒および水素化用触媒の少なくとも2種類の触媒が充填されている。そして、反応器内の炭化水素油分解用触媒の近傍が分解部となり、水素化用触媒の近傍が水素化部となる。なお、水素化部では分解部で得た反応混合物中の軽質炭化水素油を水素化するので、本発明の軽質炭化水素油の製造装置の反応器では、炭化水素油分解用触媒からなる炭化水素油分解用触媒層を、水素化用触媒からなる水素化用触媒層よりも反応器の上流側(炭化水素油および水が供給される側)に配置するか、或いは、炭化水素油分解用触媒と水素化用触媒とを混在させる。 That is, the reactor of the light hydrocarbon oil production apparatus of the present invention is filled with at least two types of catalysts, a hydrocarbon oil decomposition catalyst and a hydrogenation catalyst. The vicinity of the hydrocarbon oil cracking catalyst in the reactor serves as a cracking section, and the vicinity of the hydrogenation catalyst serves as a hydrogenation section. In the hydrogenation section, the light hydrocarbon oil in the reaction mixture obtained in the cracking section is hydrogenated. Therefore, in the reactor of the light hydrocarbon oil production apparatus of the present invention, a hydrocarbon comprising a hydrocarbon oil cracking catalyst is used. An oil cracking catalyst layer is disposed upstream of the reactor (a side to which hydrocarbon oil and water are supplied) from the hydrogenation catalyst layer made of a hydrogenation catalyst, or a hydrocarbon oil cracking catalyst. And hydrogenation catalyst are mixed.
 ここで、炭化水素油分解用触媒としては、水の存在下で系外から水素を供給することなく炭化水素油を分解する際に触媒として機能する化合物、例えば、2種以上の金属酸化物が複合して生ずる酸化物である複合金属酸化物を用いることができる。具体的には、特に限定されることなく、(A)ペロブスカイト型構造(灰チタン石型構造)を有する複合金属酸化物、(B)擬ブルッカイト型構造(擬板チタン石型構造、「シュードブルッカイト型構造」と称されることもある。)を有する複合金属酸化物、(C)所定の元素X、YおよびYを含む複合金属酸化物、或いは、これらの複合金属酸化物(A)~(C)の混合物を炭化水素油分解用触媒として用いることができる。因みに、炭化水素油分解用触媒として用いる複合金属酸化物の結晶構造は、例えばX線回折分析を用いて評価することができる。そして、例えばペロブスカイト型構造を有するNiTiOからなる炭化水素油分解用触媒の結晶構造を評価した場合には、図2に示すようなX線回折スペクトルが得られ、該X線回折スペクトル中に、ペロブスカイト型構造を有するNiTiOに特有の回折ピーク(図2に矢印で示す)が現れる。また、例えばペロブスカイト型構造を有するCoTiOからなる炭化水素油分解用触媒の結晶構造を評価した場合には、図3に示すようなX線回折スペクトルが得られ、該X線回折スペクトル中に、ペロブスカイト型構造を有するCoTiOに特有の回折ピーク(図3に矢印で示す)が現れる。 Here, the hydrocarbon oil cracking catalyst is a compound that functions as a catalyst when cracking hydrocarbon oil without supplying hydrogen from outside the system in the presence of water, for example, two or more metal oxides. A composite metal oxide which is an oxide formed by composite can be used. Specifically, without being particularly limited, (A) a composite metal oxide having a perovskite structure (apatite type structure), (B) a pseudo brookite type structure (pseudo plate titanium stone type structure, “pseudo brookite” (C) a composite metal oxide containing predetermined elements X, Y 1 and Y 2 , or a composite metal oxide thereof (A) The mixture of (C) can be used as a hydrocarbon oil cracking catalyst. Incidentally, the crystal structure of the composite metal oxide used as a hydrocarbon oil cracking catalyst can be evaluated using, for example, X-ray diffraction analysis. And, for example, when the crystal structure of a hydrocarbon oil cracking catalyst made of NiTiO 3 having a perovskite structure is evaluated, an X-ray diffraction spectrum as shown in FIG. 2 is obtained. In the X-ray diffraction spectrum, A diffraction peak peculiar to NiTiO 3 having a perovskite structure (indicated by an arrow in FIG. 2) appears. For example, when the crystal structure of a hydrocarbon oil cracking catalyst made of CoTiO 3 having a perovskite structure is evaluated, an X-ray diffraction spectrum as shown in FIG. 3 is obtained. In the X-ray diffraction spectrum, A diffraction peak peculiar to CoTiO 3 having a perovskite structure (indicated by an arrow in FIG. 3) appears.
 なお、ペロブスカイト型構造を有する複合金属酸化物としては、一般式:ABOで表される複合金属酸化物や、該複合金属酸化物ABOのAサイト元素およびBサイト元素の少なくとも一方の一部を他の元素で置換してなる複合金属酸化物を挙げることができる。具体的には、ペロブスカイト型構造を有する複合金属酸化物としては、下記一般式(1):
1-xA’1-yB’3-δ ・・・(1)
[式中、Aは、IA族元素、IIA族元素、IIIA族元素およびVIII族元素からなる群より選択される1種の元素を示し、A’は、VA族元素およびIIIB族元素からなる群より選択される少なくとも1種の元素を示し、Bは、IIIB族元素およびIVA族元素からなる群より選択される1種の元素を示し、B’は、VA族元素およびIIIB族元素からなる群より選択される少なくとも1種の元素を示し、A、A’、B、B’は互いに異なる元素であり、xは、元素A’の原子割合であり、yは、元素B’の原子割合であり、δは、酸素欠損量を示す。]
で表される酸化物を挙げることができる。なお、酸素欠損量とは、一般式(1)で表される酸化物が電気的に中性になる数である。
 因みに、上記一般式(1)においてAサイト元素やBサイト元素の一部を他の元素A’,B’で置換した複合金属酸化物とする場合には、元素A’の原子割合xは、0.4以下(0≦x≦0.4)であることが好ましく、x=0である(即ち、Aサイト元素は置換せず、Bサイト元素のみを置換する)ことが更に好ましい。また、元素B’の原子割合yは、0.4以下(0≦y≦0.4)であることが好ましく、0.35以下(0≦y≦0.35)であることがより好ましく、0.25以下(0≦y≦0.25)であることがさらに好ましい。各元素A’,B’の原子割合が増加し過ぎると、ペロブスカイト型構造を維持するのが困難になる場合があるからである。
 また、Bサイト元素は、Aサイト元素がIIIA族元素の場合にはIIIB族元素からなる群より選択される1種の元素であることが好ましい。更に、Bサイト元素は、Aサイト元素がIA族元素、IIA族元素またはVIII族元素の場合にはIVA族元素からなる群より選択される1種の元素であることが好ましい。
The composite metal oxide having a perovskite structure includes a composite metal oxide represented by the general formula: ABO 3 and a part of at least one of the A site element and the B site element of the composite metal oxide ABO 3. A mixed metal oxide obtained by substituting with other elements. Specifically, the composite metal oxide having a perovskite structure has the following general formula (1):
A 1-x A ′ x B 1-y B ′ y O 3-δ (1)
[In the formula, A represents one element selected from the group consisting of Group IA element, Group IIA element, Group IIIA element and Group VIII element, and A ′ represents a group composed of Group VA element and Group IIIB element. At least one element selected from B, B represents one element selected from the group consisting of Group IIIB elements and Group IVA elements, and B ′ represents a group consisting of Group VA elements and Group IIIB elements Represents at least one element selected from the above, A, A ′, B, and B ′ are different from each other, x is an atomic ratio of the element A ′, and y is an atomic ratio of the element B ′. Yes, δ indicates the amount of oxygen deficiency. ]
The oxide represented by these can be mentioned. Note that the oxygen deficiency is a number at which the oxide represented by the general formula (1) becomes electrically neutral.
Incidentally, when the composite metal oxide in which a part of the A site element or B site element in the general formula (1) is substituted with other elements A ′ and B ′, the atomic ratio x of the element A ′ is: It is preferably 0.4 or less (0 ≦ x ≦ 0.4), and more preferably x = 0 (that is, only the B site element is replaced without replacing the A site element). The atomic ratio y of the element B ′ is preferably 0.4 or less (0 ≦ y ≦ 0.4), more preferably 0.35 or less (0 ≦ y ≦ 0.35), More preferably, it is 0.25 or less (0 ≦ y ≦ 0.25). This is because it may be difficult to maintain the perovskite structure if the atomic ratios of the elements A ′ and B ′ are excessively increased.
The B site element is preferably one element selected from the group consisting of IIIB group elements when the A site element is a IIIA group element. Further, the B site element is preferably one element selected from the group consisting of an IVA group element when the A site element is an IA group element, an IIA group element or a VIII group element.
 より具体的には、ペロブスカイト型構造を有する複合金属酸化物としては、LaAlO、NiTiO、CoTiO、KTiO、BaTiO、SrTiO、或いは、これらの複合金属酸化物の金属元素(Aサイト元素およびBサイト元素)の一部を他の金属元素で置換した複合金属酸化物を挙げることができる。 More specifically, the composite metal oxide having a perovskite structure includes LaAlO 3 , NiTiO 3 , CoTiO 3 , KTiO 3 , BaTiO 3 , SrTiO 3 , or a metal element of these composite metal oxides (A site). Examples thereof include composite metal oxides in which a part of the element and the B site element is substituted with another metal element.
 また、擬ブルッカイト型構造を有する複合金属酸化物としては、特に限定されることなく、FeTiOを挙げることができる。 Further, the composite metal oxide having a pseudo-brookite structure is not particularly limited, and Fe 2 TiO 5 can be exemplified.
 更に、所定の元素Xと、所定の元素Yと、所定の元素Yとを含む複合金属酸化物としては、
(a)IVA族元素から選択される1種の元素Xと、
(b)IIIA族元素、VIA族元素およびVIIA族元素、並びに、第4~6周期のIVA族元素および第4周期のVIII族元素からなる群より選択される1種の元素Y(但し、元素Xとは異なる元素である。)と、
(c)IIIA族元素、VIA族元素およびVIIA族元素、並びに、第4~6周期のIVA族元素および第4周期のVIII族元素からなる群より選択される1種の元素Y(但し、元素Xおよび元素Yとは異なる元素である。)と、
の3種の金属元素を所定の比率で含有している複合金属酸化物を挙げることができる。
 ここで、上記「所定の比率」としては、融解/ICP-AES法により求めた触媒中の各元素X,Y,Yの存在量の比(モル比)が、
(d)元素Yの存在量yと元素Yの存在量yとの合計(y+y)に対する元素Xの存在量xの比が、0.5以上2.0以下(0.5≦x/(y+y)≦2.0)となり、
(e)元素Yの存在量yに対する元素Yの存在量yの比が、0.02以上0.25以下(0.02≦y/y≦0.25)となる、
比率を挙げることができる。
Further, a predetermined element X, a predetermined element Y 1, as a composite metal oxide containing predetermined element Y 2 is
(A) one element X selected from group IVA elements;
(B) one element Y 1 selected from the group consisting of Group IIIA elements, Group VIA elements and Group VIIA elements, and Group IVA elements in the 4th to 6th periods and Group VIII elements in the 4th period (provided that Is an element different from the element X),
(C) One element Y 2 selected from the group consisting of Group IIIA elements, Group VIA elements and Group VIIA elements, and Group IVA elements in the 4th to 6th periods and Group VIII elements in the 4th period (provided that Element X and element Y 1 are different elements).
A composite metal oxide containing these three kinds of metal elements in a predetermined ratio can be given.
Here, as the “predetermined ratio”, the ratio (molar ratio) of the abundance of each element X, Y 1 , Y 2 in the catalyst determined by melting / ICP-AES method is
(D) a ratio of abundance x of the element X to the total (y 1 + y 2) between the abundance y 2 abundance y 1 and the element Y 2 elements Y 1 is 0.5 to 2.0 (0 .5 ≦ x / (y 1 + y 2 ) ≦ 2.0)
(E) a ratio of abundance y 2 elements Y 2 relative abundance y 1 element Y 1 is 0.02 to 0.25 (0.02 ≦ y 2 / y 1 ≦ 0.25),
A ratio can be mentioned.
 より具体的には、元素X、元素Y、元素Yとしては、特に限定されることなく、Ti、Zr、Ce、W、Mn、Feなどを挙げることができる。そして、これらの元素を元素X、元素Yまたは元素Yとした複合金属酸化物としては、例えば、元素XとしてZr、元素YとしてCe、元素YとしてW、FeまたはMnを含む複合金属酸化物を挙げることができる。 More specifically, the element X, the element Y 1 , and the element Y 2 are not particularly limited, and examples thereof include Ti, Zr, Ce, W, Mn, and Fe. The composite metal oxide in which these elements are element X, element Y 1 or element Y 2 is, for example, a composite containing Zr as element X, Ce as element Y 1 , W, Fe or Mn as element Y 2. Mention may be made of metal oxides.
 因みに、元素Xと、元素Yと、元素Yとを含む複合金属酸化物では、元素Xがジルコニウム(Zr)であることが特に好ましい。元素XをZrとすれば、高温高圧の条件下で触媒を使用した場合であっても、複合金属酸化物の構造を維持することができるからである。即ち、元素XがZrからなる複合金属酸化物(炭化水素油分解用触媒)では、炭化水素油の水素化分解に使用される、水熱合成されたゼオライトや、シリカや、γ-アルミナからなる水素化触媒のように、高温高圧の水蒸気により触媒の結晶構造が大きく変化して触媒が使用不能となることがない。また、触媒の劣化が起こりにくく、炭化水素油を前処理(脱硫および脱窒素)する必要がない。なお、複合金属酸化物の構造を確実に維持する観点からは、触媒中の全ての金属元素の存在量mに対する元素Xの存在量xのモル比(x/m)は、0.55以上であることが好ましく、0.60以上であることが更に好ましい。 Incidentally, the element X, the element Y 1, the composite metal oxide containing element Y 2, it is particularly preferable element X is zirconium (Zr). This is because if the element X is Zr, the structure of the composite metal oxide can be maintained even when the catalyst is used under high temperature and high pressure conditions. That is, in the case of a composite metal oxide (hydrocarbon oil cracking catalyst) in which the element X is Zr, it is composed of hydrothermally synthesized zeolite, silica, or γ-alumina used for hydrocracking of hydrocarbon oil. Like a hydrogenation catalyst, the crystal structure of the catalyst is not greatly changed by high-temperature and high-pressure steam, and the catalyst is not usable. Further, the catalyst is hardly deteriorated, and it is not necessary to pretreat the hydrocarbon oil (desulfurization and denitrogenation). From the standpoint of reliably maintaining the structure of the composite metal oxide, the molar ratio (x / m) of the abundance x of the element X to the abundance m of all the metal elements in the catalyst is 0.55 or more. It is preferable that it is 0.60 or more.
 なお、上述した複合金属酸化物は、共沈法やゾル-ゲル法等の既知の手法を用いて調製することができる。具体的には、例えば共沈法を用いる場合には、特に限定されることなく例えば以下のようにして複合金属酸化物を調製することができる。
(i)まず、複合金属酸化物を構成する金属元素を含む水溶液を調製する。
(ii)次に、調製した水溶液に対し、アンモニア水や、炭酸ナトリウム水溶液などの共沈剤を、水溶液のpHがアルカリ側に偏らないように(例えばpHが5~8の範囲となるように)調整しながら滴下し、共沈殿物を生成させる。
(iii)そして最後に、得られた沈殿をろ過および乾燥した後、乾燥した沈殿を焼成して複合金属酸化物とする。
 ここで、上記(iii)において沈殿を乾燥する温度は、水分を効率的に蒸発させる観点からは100℃以上であることが好ましく、急激な乾燥を防止する観点からは160℃以下であることが好ましい。また、乾燥した沈殿を焼成する温度は、生成する複合金属酸化物(触媒)の構造安定性(即ち、触媒として使用して炭化水素油を分解した際の複合金属酸化物の構造変化の抑制)の観点からは500℃以上であることが好ましく、生成する複合金属酸化物の表面積の減少を抑制する観点からは900℃以下であることが好ましい。
The above-described composite metal oxide can be prepared using a known method such as a coprecipitation method or a sol-gel method. Specifically, for example, when the coprecipitation method is used, the composite metal oxide can be prepared as follows without any particular limitation.
(I) First, an aqueous solution containing a metal element constituting the composite metal oxide is prepared.
(Ii) Next, a coprecipitation agent such as aqueous ammonia or sodium carbonate solution is added to the prepared aqueous solution so that the pH of the aqueous solution does not deviate toward the alkali side (for example, the pH is in the range of 5 to 8). ) Drop while adjusting to produce a coprecipitate.
(Iii) Finally, the obtained precipitate is filtered and dried, and then the dried precipitate is fired to obtain a composite metal oxide.
Here, the temperature for drying the precipitate in (iii) is preferably 100 ° C. or higher from the viewpoint of efficiently evaporating moisture, and 160 ° C. or lower from the viewpoint of preventing rapid drying. preferable. The temperature at which the dried precipitate is calcined is the structural stability of the resulting composite metal oxide (catalyst) (ie, suppression of structural change of the composite metal oxide when hydrocarbon oil is decomposed using the catalyst). From the viewpoint of the above, it is preferably 500 ° C. or higher, and from the viewpoint of suppressing the reduction of the surface area of the composite metal oxide to be generated, it is preferably 900 ° C. or lower.
 また、水素化用触媒としては、反応混合物中の軽質炭化水素油を水素化する際に触媒として機能する化合物、例えば、金属酸化物を用いることができる。具体的には、特に限定されることなく、アナターゼ型の二酸化チタン(TiO)、或いは、アナターゼ型の二酸化チタンを含む混合物を水素化用触媒として用いることができる。因みに、水素化用触媒として用いる金属酸化物の結晶構造は、例えばX線回折分析を用いて評価することができる。そして、例えばアナターゼ型の二酸化チタンでは、X線回折スペクトル中に、(101)面に対応した回折ピーク(2θ=25.5°)が現れる。 In addition, as the hydrogenation catalyst, a compound that functions as a catalyst when hydrogenating the light hydrocarbon oil in the reaction mixture, for example, a metal oxide can be used. Specifically, without particular limitation, anatase-type titanium dioxide (TiO 2 ) or a mixture containing anatase-type titanium dioxide can be used as a hydrogenation catalyst. Incidentally, the crystal structure of the metal oxide used as the hydrogenation catalyst can be evaluated using, for example, X-ray diffraction analysis. For example, in anatase type titanium dioxide, a diffraction peak (2θ = 25.5 °) corresponding to the (101) plane appears in the X-ray diffraction spectrum.
 ここで、水素化用触媒として用いる、アナターゼ型の二酸化チタン、或いは、アナターゼ型の二酸化チタンを含む混合物としては、特に限定されることなく、アナターゼ型の二酸化チタン、或いは、アナターゼ型の二酸化チタンを含む混合物に対し、ニッケル、コバルト、モリブデンまたはそれらの酸化物を担持したものを挙げることができる。なお、水素化用触媒の水素化能を十分に確保する観点からは、混合物中の二酸化チタンの合計量は、混合物の50質量%以上であることが好ましく、55質量%以上であることが更に好ましく、60質量%以上であることが特に好ましい。 Here, the anatase-type titanium dioxide used as a hydrogenation catalyst or a mixture containing anatase-type titanium dioxide is not particularly limited, and anatase-type titanium dioxide or anatase-type titanium dioxide is used. Examples of the mixture containing nickel, cobalt, molybdenum or oxides supported thereon. In addition, from the viewpoint of sufficiently ensuring the hydrogenation ability of the hydrogenation catalyst, the total amount of titanium dioxide in the mixture is preferably 50% by mass or more, and more preferably 55% by mass or more of the mixture. It is preferably 60% by mass or more.
 そして、本発明の軽質炭化水素油の製造装置の一例としては、図1に示すような構成の装置を挙げることができる。ここで、図1に示す軽質炭化水素油製造装置1は、反応器2と、原料供給手段としての原料供給ポンプ3と、水供給手段としての水供給ポンプ4とを備えている。そして、軽質炭化水素油製造装置1の反応器2は、内部に、炭化水素油分解用触媒を充填して形成した炭化水素油分解用触媒層21と、水素化用触媒を充填して形成した水素化用触媒層22とを有している。 As an example of the light hydrocarbon oil production apparatus of the present invention, an apparatus having a configuration as shown in FIG. 1 can be cited. Here, the light hydrocarbon oil production apparatus 1 shown in FIG. 1 includes a reactor 2, a raw material supply pump 3 as a raw material supply means, and a water supply pump 4 as a water supply means. Then, the reactor 2 of the light hydrocarbon oil production apparatus 1 is formed by filling the catalyst layer 21 for cracking hydrocarbon oil formed by filling the catalyst for cracking hydrocarbon oil and the catalyst for hydrogenation inside. And a hydrogenation catalyst layer 22.
 なお、図1では、1層の炭化水素油分解用触媒層21が1層の水素化用触媒層22よりも上流側(重質炭化水素油および水が供給される側)に位置している場合を示しているが、本発明の軽質炭化水素油の製造装置では、複数の炭化水素油分解用触媒層と、複数の水素化用触媒層とを、交互に且つ最も上流側に位置する触媒層が炭化水素油分解用触媒層となるように反応器内に配置しても良い。また、炭化水素油分解用触媒と水素化用触媒とを混在させた混合層を反応器内に配置しても良い。更に、炭化水素油分解用触媒を充填した容器と、水素化用触媒を充填した容器とを、気密に且つ炭化水素油分解用触媒を充填した容器が水素化用触媒を充填した容器よりも上流側に位置するように連結して反応器としても良い。 In FIG. 1, one layer of hydrocarbon oil decomposition catalyst layer 21 is located upstream of one layer of hydrogenation catalyst layer 22 (the side to which heavy hydrocarbon oil and water are supplied). In the light hydrocarbon oil production apparatus of the present invention, a plurality of hydrocarbon oil decomposition catalyst layers and a plurality of hydrogenation catalyst layers are alternately and most upstreamly located. You may arrange | position in a reactor so that a layer may become a catalyst layer for hydrocarbon oil decomposition | disassembly. A mixed layer in which a hydrocarbon oil cracking catalyst and a hydrogenation catalyst are mixed may be disposed in the reactor. Furthermore, the container filled with the hydrocarbon oil cracking catalyst and the container filled with the hydrogenation catalyst are arranged upstream of the container filled with the hydrogenation catalyst. It is good also as a reactor by connecting so that it may be located in the side.
 そして、このような軽質炭化水素油製造装置1では、装置外から水素を供給することなく、原料供給ポンプ3を用いて供給された炭化水素油としての重質炭化水素油が分解されると共に、重質炭化水素油の分解により生成した軽質炭化水素油が水素化される。従って、軽質炭化水素油製造装置1では、高圧水素ガス等を使用することなく、原料となる重質炭化水素油より軽質で、且つ、オレフィン含有量の少ない軽質炭化水素油が得られる。 And in such a light hydrocarbon oil manufacturing apparatus 1, without supplying hydrogen from the outside of the apparatus, the heavy hydrocarbon oil as the hydrocarbon oil supplied using the raw material supply pump 3 is decomposed, Light hydrocarbon oil produced by cracking heavy hydrocarbon oil is hydrogenated. Therefore, in the light hydrocarbon oil production apparatus 1, a light hydrocarbon oil that is lighter than the heavy hydrocarbon oil as a raw material and has a low olefin content can be obtained without using high-pressure hydrogen gas or the like.
 具体的には、軽質炭化水素油製造装置1では、まず、炭化水素油分解用触媒層21からなる分解部において、水供給ポンプ4から供給された水の存在下で、原料供給ポンプ3から供給された重質炭化水素油と、炭化水素油分解用触媒とが接触し、重質炭化水素油が分解される(分解工程)。そして、分解部では、重質炭化水素油中の高分子量の炭化水素化合物が分解されて生成した、低分子量の炭化水素化合物を含む軽質炭化水素油を含有する反応混合物が得られる。 Specifically, in the light hydrocarbon oil production apparatus 1, first, in the cracking unit composed of the hydrocarbon oil cracking catalyst layer 21, the raw material supply pump 3 supplies the water supplied from the water supply pump 4. The resulting heavy hydrocarbon oil and the hydrocarbon oil decomposition catalyst come into contact with each other, and the heavy hydrocarbon oil is decomposed (decomposition step). And in the cracking part, the reaction mixture containing the light hydrocarbon oil containing the low molecular weight hydrocarbon compound produced | generated by decomposing | disassembling the high molecular weight hydrocarbon compound in heavy hydrocarbon oil is obtained.
 次に、水素化用触媒層22からなる水素化部において、軽質炭化水素油を含有する反応混合物と、水素化用触媒とが接触し、反応混合物中の軽質炭化水素油が水素化されて、軽質炭化水素油のオレフィン含有量が低減する(水素化工程)。 Next, in the hydrogenation part composed of the hydrogenation catalyst layer 22, the reaction mixture containing the light hydrocarbon oil and the hydrogenation catalyst are contacted, and the light hydrocarbon oil in the reaction mixture is hydrogenated, The olefin content of light hydrocarbon oil is reduced (hydrogenation process).
 ここで、分解工程において水の存在下で重質炭化水素油を分解することができる理由は、明らかではないが、前述したような複合金属酸化物、特にペロブスカイト型構造を有する複合金属酸化物や、擬ブルッカイト型構造を有する複合金属酸化物や、所定の元素X、YおよびYを含む複合金属酸化物は、格子酸素の供給速度が高く、水を分解して酸素および水素を放出する能力が高いためであると推察される。即ち、これらの複合金属酸化物は、水を水素源として利用して重質炭化水素化合物を分解する際に、炭化水素化合物の一部と水とが下記反応式に示すように反応して水素源となる水素を生成するのを促進することができるためであると推察される。
 C+2nHO→nCO+(2n+(m/2))H
Here, the reason why the heavy hydrocarbon oil can be decomposed in the presence of water in the decomposition step is not clear, but the composite metal oxide as described above, particularly a composite metal oxide having a perovskite structure, In addition, a composite metal oxide having a pseudo-brookite structure or a composite metal oxide containing the predetermined elements X, Y 1 and Y 2 has a high lattice oxygen supply rate, and decomposes water to release oxygen and hydrogen. This is presumed to be due to their high ability. That is, when these composite metal oxides decompose heavy hydrocarbon compounds using water as a hydrogen source, a part of the hydrocarbon compounds and water react as shown in the following reaction formula to generate hydrogen. This is presumed to be because the generation of hydrogen as a source can be promoted.
C n H m + 2nH 2 O nCO 2 + (2n + (m / 2)) H 2
 そして、上記分解工程においては、重質炭化水素油が分解されて軽質炭化水素油となるが、この軽質炭化水素油は、比較的多くのオレフィン分を含んでおり、酸化安定性が低い。なお、軽質炭化水素油が比較的多くのオレフィン分を含む理由は、明らかではないが、炭化水素油分解用触媒として用いている複合金属酸化物の水素化能が低いためであると推察される。即ち、炭化水素油分解用触媒が格子酸素を供給して重質炭化水素油を分解した際に、水を分解して生成した水素を用いた水素化を十分に進めることができないためであると推察される。 In the above cracking step, the heavy hydrocarbon oil is decomposed to become a light hydrocarbon oil, but this light hydrocarbon oil contains a relatively large amount of olefin and has low oxidation stability. The reason why the light hydrocarbon oil contains a relatively large amount of olefin is not clear, but is presumably because the hydrogenation ability of the composite metal oxide used as the catalyst for cracking hydrocarbon oil is low. . That is, when the hydrocarbon oil cracking catalyst supplies lattice oxygen to decompose heavy hydrocarbon oil, hydrogenation using hydrogen generated by cracking water cannot be sufficiently advanced. Inferred.
 そこで、水素化工程では、炭化水素油分解用触媒とは別の水素化用触媒を用いて軽質炭化水素油を水素化し、軽質炭化水素油のオレフィン含有量を低減して軽質炭化水素油の酸化安定性を高めている。なお、水素化工程における軽質炭化水素油の水素化は、明らかではないが、反応混合物中に含まれている、分解工程において生成した水素が水素源となって進行すると推察されている。 Therefore, in the hydrogenation process, light hydrocarbon oil is hydrogenated using a hydrogenation catalyst that is different from the hydrocarbon oil cracking catalyst, and the olefin content of the light hydrocarbon oil is reduced to oxidize the light hydrocarbon oil. Increases stability. In addition, although hydrogenation of the light hydrocarbon oil in a hydrogenation process is not clear, it is estimated that the hydrogen produced | generated in the decomposition process contained in the reaction mixture advances as a hydrogen source.
 なお、軽質炭化水素油製造装置を用いて軽質炭化水素油を製造する際に用いる水の量は、原料となる炭化水素油を軽質化させるのに十分な量であれば良く、例えば、炭化水素油100質量部に対して、水を5~2000質量部、好ましくは10~1000質量部、更に好ましくは10~500質量部の割合で添加するのが望ましい。炭化水素油100質量部に対する水の添加量が5質量部未満の場合、水素源が不足して炭化水素油が十分に軽質化されない場合があるからである。一方、水の添加量が2000質量部を超えると、炭化水素油の軽質化に寄与しない水の量が増大することとなり、コストが増加したり、炭化水素油の分解効率(即ち、軽質炭化水素油の製造効率)が低下したりする場合があるからである。 Note that the amount of water used when producing light hydrocarbon oil using the light hydrocarbon oil production apparatus may be an amount sufficient to lighten the hydrocarbon oil used as a raw material. It is desirable to add water at a ratio of 5 to 2000 parts by mass, preferably 10 to 1000 parts by mass, and more preferably 10 to 500 parts by mass with respect to 100 parts by mass of the oil. This is because when the amount of water added to 100 parts by mass of the hydrocarbon oil is less than 5 parts by mass, the hydrogen source may be insufficient and the hydrocarbon oil may not be sufficiently lightened. On the other hand, when the amount of water added exceeds 2000 parts by mass, the amount of water that does not contribute to the lightening of the hydrocarbon oil increases, which increases the cost or the decomposition efficiency of the hydrocarbon oil (that is, the light hydrocarbons). This is because the oil production efficiency may be reduced.
 また、軽質炭化水素油製造装置の反応器内の温度は、比較的低い温度、例えば300~600℃、好ましくは350~550℃、更に好ましくは400~500℃とすることができる。温度が300℃未満の場合、反応に必要な活性化エネルギーが得られず炭化水素油の分解および軽質炭化水素油の水素化が十分に進行しない場合があるからである。また、温度が600℃超の場合、不要なガス(メタン、エタン等)が大量に発生し、炭化水素油の分解効率が低下するおそれがあるからである。
 更に、反応器内の圧力は、例えば0.1~40MPa、好ましくは0.1~35MPa、更に好ましくは0.1~30MPaとすることができる。圧力が0.1MPa未満の場合、炭化水素油と水とを反応器へスムーズに流入させることが困難になる場合があるからである。また、圧力が40MPa超の場合、反応器の製造コストが高くなる場合があるからである。
 また、反応器に炭化水素油および水を流通する際の液空間速度(LHSV)は、例えば0.01~10h-1、好ましくは0.05~5h-1、更に好ましくは0.1~2h-1とすることができる。液空間速度が0.01h-1未満の場合、不要なガスの発生が支配的となり、炭化水素油の分解効率が低下する場合があるからである。また、液空間速度が10h-1超の場合、反応時間が短すぎて炭化水素油の分解および軽質炭化水素油の水素化が十分に進行しない場合があるからである。
 更に、反応器内の炭化水素油分解用触媒の量(A)に対する水素化用触媒の量(B)の体積比(B/A)は、0.1~1.0とすることができる。炭化水素油分解用触媒の量が少ないと、炭化水素油の分解が十分に進行しない場合があるからである。また、水素化用触媒の量が多すぎると、軽質炭化水素油の水素化に寄与しない触媒の量が増加し、軽質炭化水素油の製造効率が低下するからである。
Further, the temperature in the reactor of the light hydrocarbon oil production apparatus can be set to a relatively low temperature, for example, 300 to 600 ° C., preferably 350 to 550 ° C., more preferably 400 to 500 ° C. This is because when the temperature is lower than 300 ° C., the activation energy necessary for the reaction cannot be obtained, and the decomposition of the hydrocarbon oil and the hydrogenation of the light hydrocarbon oil may not sufficiently proceed. Further, when the temperature is higher than 600 ° C., a large amount of unnecessary gas (methane, ethane, etc.) is generated, and the decomposition efficiency of hydrocarbon oil may be lowered.
Furthermore, the pressure in the reactor can be, for example, 0.1 to 40 MPa, preferably 0.1 to 35 MPa, and more preferably 0.1 to 30 MPa. This is because when the pressure is less than 0.1 MPa, it may be difficult to smoothly flow the hydrocarbon oil and water into the reactor. Moreover, it is because the manufacturing cost of a reactor may become high when a pressure exceeds 40 Mpa.
The liquid space velocity (LHSV) when circulating hydrocarbon oil and water in the reactor is, for example, 0.01 to 10 h −1 , preferably 0.05 to 5 h −1 , more preferably 0.1 to 2 h. −1 . This is because when the liquid space velocity is less than 0.01 h −1 , generation of unnecessary gas becomes dominant and the decomposition efficiency of the hydrocarbon oil may decrease. Further, when the liquid space velocity is more than 10 h −1 , the reaction time is too short, and the hydrocarbon oil decomposition and the light hydrocarbon oil hydrogenation may not sufficiently proceed.
Furthermore, the volume ratio (B / A) of the amount (B) of the hydrogenation catalyst to the amount (A) of the hydrocarbon oil cracking catalyst in the reactor can be 0.1 to 1.0. This is because if the amount of the hydrocarbon oil decomposition catalyst is small, the decomposition of the hydrocarbon oil may not sufficiently proceed. Further, if the amount of the hydrogenation catalyst is too large, the amount of the catalyst that does not contribute to the hydrogenation of the light hydrocarbon oil increases, and the production efficiency of the light hydrocarbon oil decreases.
 ここで、上述したように、本発明の軽質炭化水素油の製造方法および製造装置によれば、炭化水素油の分解反応や軽質炭化水素油の水素化反応に必要な水素を系内に存在する水から供給することができる。従って、本発明の軽質炭化水素油の製造方法および製造装置では、系外から水素を添加する必要はなく、系外からの水素の添加量と、原料となる炭化水素油の供給量とのモル比(水素添加量/炭化水素油供給量)は、0.1以下、好ましくは0とすることができる。
 また、本発明の軽質炭化水素油の製造方法および製造装置では、炭化水素油の分解により生成した軽質炭化水素油を水素化しているので、オレフィン含有量の少ない、酸化安定性に優れる軽質炭化水素油を得ることができる。
 よって、本発明の軽質炭化水素油の製造方法および製造装置によれば、高圧水素ガスを使用することなく、炭化水素油を低コストで効率的に分解してオレフィン含有量の少ない軽質炭化水素油を得ることができる。
Here, as described above, according to the light hydrocarbon oil production method and production apparatus of the present invention, hydrogen necessary for the hydrocarbon oil cracking reaction or light hydrocarbon oil hydrogenation reaction is present in the system. Can be supplied from water. Therefore, in the light hydrocarbon oil production method and production apparatus of the present invention, it is not necessary to add hydrogen from outside the system, and the molar amount of hydrogen added from outside the system and the supply amount of hydrocarbon oil as a raw material The ratio (hydrogenation amount / hydrocarbon oil supply amount) can be 0.1 or less, preferably 0.
Further, in the light hydrocarbon oil production method and production apparatus of the present invention, since the light hydrocarbon oil produced by cracking the hydrocarbon oil is hydrogenated, the light hydrocarbon having a low olefin content and excellent oxidation stability Oil can be obtained.
Therefore, according to the light hydrocarbon oil production method and production apparatus of the present invention, light hydrocarbon oil having a low olefin content can be efficiently decomposed at low cost without using high-pressure hydrogen gas. Can be obtained.
 なお、本発明の軽質炭化水素油の製造方法および製造装置で用いている炭化水素油分解用触媒は劣化し難いので、該触媒を用いた本発明の軽質炭化水素油の製造方法および製造装置によれば、分解する原料炭化水素油を予め脱硫および脱窒素する必要がない。 In addition, since the hydrocarbon oil decomposition catalyst used in the light hydrocarbon oil production method and production apparatus of the present invention is not easily deteriorated, the light hydrocarbon oil production method and production apparatus of the present invention using the catalyst is used. According to this, it is not necessary to desulfurize and denitrify the raw hydrocarbon oil to be decomposed in advance.
 以上、本発明の実施形態を説明したが、本発明の軽質炭化水素油の製造方法および軽質炭化水素油の製造装置は上記実施形態に限定されることはなく、本発明の軽質炭化水素油の製造方法および軽質炭化水素油の製造装置には適宜変更を加えることができる。具体的には、例えば、反応混合物中の軽質炭化水素油の水素化は、炭化水素油の分解後に反応混合物中に残っている水を除去してから行っても良い。 As mentioned above, although embodiment of this invention was described, the manufacturing method of the light hydrocarbon oil of this invention and the manufacturing apparatus of light hydrocarbon oil are not limited to the said embodiment, The light hydrocarbon oil of this invention The production method and the production apparatus for light hydrocarbon oil can be modified as appropriate. Specifically, for example, the hydrogenation of the light hydrocarbon oil in the reaction mixture may be performed after removing water remaining in the reaction mixture after the decomposition of the hydrocarbon oil.
 以下、実施例により本発明を更に詳細に説明するが、本発明は下記の実施例に何ら限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples.
(実施例1)
 擬ブルッカイト型構造を有する複合金属酸化物からなる炭化水素油分解用触媒(触媒A)を調製した。具体的には、まず、硝酸鉄と、硫酸チタンとを、Fe:Ti=2:1(モル比)となるようにイオン交換水中に溶解して水溶液を得た。次に、得られた水溶液に対し、水溶液のpHが7超とならないように調整しながら炭酸ナトリウム水溶液を滴下し、沈殿を生成させた。そして最後に、得られた沈殿を熟成(1時間静置)、ろ過および乾燥(150℃、1時間)した後、乾燥した沈殿を温度800℃で焼成して、炭化水素油分解用触媒を調製した。
 なお、得られた炭化水素油分解用触媒をX線回折装置で分析したところ、図4に示すような、擬ブルッカイト型構造を有するFeTiOに特有の回折ピーク(図中、矢印で示す)を有するX線回折スペクトルが得られた。即ち、調製した炭化水素油分解用触媒は擬ブルッカイト型構造を有するFeTiOからなることが分かった。
 また、アナターゼ型の二酸化チタンからなる水素化用触媒(触媒a)を調製した。具体的には、まず、硫酸チタンをイオン交換水中に溶解し、アンモニア水を滴下して沈殿を生成させた。そして、得られた沈殿を熟成(40℃に維持した状態で一昼夜静置)、ろ過および乾燥(130℃空気雰囲気下6時間)した後、乾燥した沈殿を温度600℃で焼成して、水素化用触媒を調製した。
 なお、得られた水素化用触媒をX線回折装置で分析したところ、図5に示すような、アナターゼ型のTiOの(101)面に対応した回折ピーク(図中、矢印で示す)を2θ=25.5°の位置に有するX線回折スペクトルが得られた。即ち、調製した水素化用触媒はアナターゼ型の二酸化チタンからなることが分かった。
 そして、超合金(インコネル625)製の反応器(内容積10mL)の上層部(上流側)に炭化水素分解用触媒を8.0mL充填し、下層部に水素化用触媒2.0mLを充填した。次いで、触媒を充填した反応器にイオン交換水を流量0.1mL/minで通水しつつ、反応器内を温度470℃、圧力15MPaまで加熱および加圧した。その後、水素を供給することなく、表1に示すような性状の重質炭化水素油と、イオン交換水とを反応器内に連続的に流通させた(イオン交換水、重質炭化水素油共に流量は0.1mL/minであり、LHSVは0.6h-1である。)。そして、通油開始から6時間経過後に、反応器からの流出物(軽質炭化水素油)を1時間採取し、以下のようにして軽質炭化水素油の性状を評価した。結果を表2に示す。
Example 1
A hydrocarbon oil decomposition catalyst (catalyst A) comprising a composite metal oxide having a pseudo-brookite structure was prepared. Specifically, first, iron nitrate and titanium sulfate were dissolved in ion-exchanged water so that Fe: Ti = 2: 1 (molar ratio) to obtain an aqueous solution. Next, an aqueous sodium carbonate solution was added dropwise to the obtained aqueous solution while adjusting the pH of the aqueous solution so as not to exceed 7, thereby generating a precipitate. Finally, the resulting precipitate is aged (still for 1 hour), filtered and dried (150 ° C., 1 hour), and then the dried precipitate is calcined at a temperature of 800 ° C. to prepare a hydrocarbon oil decomposition catalyst. did.
When the obtained hydrocarbon oil cracking catalyst was analyzed by an X-ray diffractometer, a diffraction peak peculiar to Fe 2 TiO 5 having a pseudo-brookite structure as shown in FIG. 4 (indicated by an arrow in the figure) X-ray diffraction spectrum having) was obtained. That is, it was found that the prepared hydrocarbon oil cracking catalyst was composed of Fe 2 TiO 5 having a pseudo-brookite structure.
Further, a hydrogenation catalyst (catalyst a) comprising anatase-type titanium dioxide was prepared. Specifically, first, titanium sulfate was dissolved in ion-exchanged water, and ammonia water was added dropwise to form a precipitate. The resulting precipitate was aged (still kept overnight at 40 ° C.), filtered and dried (6 hours in an air atmosphere at 130 ° C.), and then the dried precipitate was calcined at a temperature of 600 ° C. for hydrogenation. A catalyst was prepared.
When the obtained hydrogenation catalyst was analyzed with an X-ray diffractometer, a diffraction peak (indicated by an arrow in the figure) corresponding to the (101) plane of anatase TiO 2 as shown in FIG. 5 was obtained. An X-ray diffraction spectrum having a position of 2θ = 25.5 ° was obtained. That is, it was found that the prepared hydrogenation catalyst was composed of anatase-type titanium dioxide.
The upper layer (upstream side) of the superalloy (Inconel 625) reactor (internal volume 10 mL) was filled with 8.0 mL of hydrocarbon decomposition catalyst, and the lower layer was charged with 2.0 mL of hydrogenation catalyst. . Next, the inside of the reactor was heated and pressurized to a temperature of 470 ° C. and a pressure of 15 MPa while passing ion exchange water through the reactor filled with the catalyst at a flow rate of 0.1 mL / min. Then, without supplying hydrogen, heavy hydrocarbon oil having the properties shown in Table 1 and ion exchange water were continuously circulated in the reactor (both ion exchange water and heavy hydrocarbon oil). The flow rate is 0.1 mL / min and the LHSV is 0.6 h −1 .) Then, after 6 hours from the start of oil passage, the effluent (light hydrocarbon oil) from the reactor was collected for 1 hour, and the properties of the light hydrocarbon oil were evaluated as follows. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
<軽質炭化水素油の性状評価>
[オレフィン含有量]
 原料とした重質炭化水素油と、得られた軽質炭化水素油について、13C-NMRスペクトルを測定し、得られたスペクトル中の113~117ppmのエリアに現れるピークを“CH=”に帰属するとみなして、ピークの面積からオレフィンを構成する炭素の量(オレフィン帰属炭素量)を算出した。そして、原料とした重質炭化水素油のオレフィン帰属炭素量を100として指数評価した。表中、値が小さいほどオレフィン含有量が少ないことを示す。
[蒸留性状]
 原料とした重質炭化水素油と、得られた軽質炭化水素油について、JIS K2254に準拠して蒸留性状を測定した。
<Property evaluation of light hydrocarbon oil>
[Olefin content]
With respect to the heavy hydrocarbon oil used as a raw material and the obtained light hydrocarbon oil, the 13C-NMR spectrum was measured, and the peak appearing in the area of 113 to 117 ppm in the obtained spectrum was attributed to “CH 2 =”. In view of this, the amount of carbon constituting the olefin (olefin-assigned carbon amount) was calculated from the area of the peak. Then, index evaluation was performed by setting the olefin attributed carbon amount of the heavy hydrocarbon oil used as a raw material to 100. In the table, the smaller the value, the smaller the olefin content.
[Distillation properties]
About the heavy hydrocarbon oil used as a raw material and the obtained light hydrocarbon oil, the distillation property was measured based on JISK2254.
(実施例2)
 元素Xがジルコニウムであり、元素Yがセリウムであり、元素Yが鉄である複合金属酸化物からなる炭化水素油分解用触媒(触媒B)を調製した。具体的には、硝酸ジルコニルと硝酸セリウムとを、Zr:Ce=1:1(モル比)となるようにイオン交換水中に溶解して水溶液を得た。次に、得られた水溶液に対し、硝酸鉄をCe:Fe=1:0.06(モル比)となるように加え撹拌した。そして、Zr,Ce,Feを含有する水溶液に対し、水溶液のpHが8超とならないように調整しながらアンモニア水を滴下し、沈殿を生成させた。そして最後に、得られた沈殿を熟成(室温にて一昼夜静置)、ろ過および乾燥(130℃、16時間)した後、乾燥した沈殿を温度600℃で焼成して、Zr,Ce,Feを含有する複合金属酸化物からなる炭化水素油分解用触媒を調製した。
 なお、得られた炭化水素油分解用触媒中のZr,Ce,Feの存在比を融解/ICP-AES法で確認したところ、Zr:Ce:Fe=49:48:3であった。
 また、実施例1と同様にしてアナターゼ型の二酸化チタンからなる水素化用触媒(触媒a)を調製した。
 そして、上記触媒を用いた以外は実施例1と同様にして重質炭化水素油を分解し、得られた軽質炭化水素油の性状を評価した。結果を表2に示す。
(実施例3)
 元素Xがジルコニウムであり、元素Yがセリウムであり、元素Yがタングステンである複合金属酸化物からなる炭化水素油分解用触媒(触媒C)を調製した。具体的には、硝酸ジルコニルと硝酸セリウムとを、Zr:Ce=1:1(モル比)となるようにイオン交換水中に溶解してZr,Ceを含有する水溶液を得た。次に、メタタングステン酸アンモニウムをイオン交換水中に溶解して所定の濃度のメタタングステン酸アンモニウム水溶液を得た。そして、Zr,Ceを含有する水溶液に対し、水溶液のpHが8超とならないように調整しながらメタタングステン酸アンモニウム水溶液を滴下し、沈殿を生成させた。そして最後に、得られた沈殿を熟成(室温にて一昼夜静置)、ろ過および乾燥(130℃、16時間)した後、乾燥した沈殿を温度600℃で焼成して、Zr,Ce,Wを含有する複合金属酸化物からなる炭化水素油分解用触媒を調製した。
 なお、得られた炭化水素油分解用触媒中のZr,Ce,Wの存在比を実施例2と同様にして確認したところ、Zr:Ce:W=49:48:3であった。
 また、実施例1と同様にしてアナターゼ型の二酸化チタンからなる水素化用触媒(触媒a)を調製した。
 そして、上記触媒を用いた以外は実施例1と同様にして重質炭化水素油を分解し、得られた軽質炭化水素油の性状を評価した。結果を表2に示す。
(実施例4)
 元素Yをマンガンとし、硝酸鉄の代わりに硝酸マンガンをCe:Mn=1:0.06(モル比)となるように加えた以外は実施例2と同様にして、Zr,Ce,Mnを含有する複合金属酸化物からなる炭化水素油分解用触媒(触媒D)を調製した。
 なお、得られた触媒中のZr,Ce,Mnの存在比を実施例2と同様にして確認したところ、Zr:Ce:Mn=49:48:3であった。
 また、実施例1と同様にしてアナターゼ型の二酸化チタンからなる水素化用触媒(触媒a)を調製した。
 そして、上記触媒を用いた以外は実施例1と同様にして重質炭化水素油を分解し、得られた軽質炭化水素油の性状を評価した。結果を表2に示す。
(Example 2)
A hydrocarbon oil cracking catalyst (catalyst B) made of a composite metal oxide in which the element X is zirconium, the element Y 1 is cerium, and the element Y 2 is iron was prepared. Specifically, zirconyl nitrate and cerium nitrate were dissolved in ion-exchanged water so that Zr: Ce = 1: 1 (molar ratio) to obtain an aqueous solution. Next, to the obtained aqueous solution, iron nitrate was added and stirred so that Ce: Fe = 1: 0.06 (molar ratio). And ammonia water was dripped with respect to the aqueous solution containing Zr, Ce, and Fe, adjusting so that pH of aqueous solution might not exceed 8, and the precipitation was produced | generated. Finally, the obtained precipitate was aged (still at room temperature for a whole day and night), filtered and dried (130 ° C., 16 hours), and then the dried precipitate was calcined at a temperature of 600 ° C. to obtain Zr, Ce, Fe. A hydrocarbon oil cracking catalyst comprising the composite metal oxide contained was prepared.
When the abundance ratio of Zr, Ce, Fe in the obtained hydrocarbon oil cracking catalyst was confirmed by melting / ICP-AES method, it was Zr: Ce: Fe = 49: 48: 3.
In the same manner as in Example 1, a hydrogenation catalyst (catalyst a) comprising anatase-type titanium dioxide was prepared.
And the heavy hydrocarbon oil was decomposed | disassembled like Example 1 except having used the said catalyst, and the property of the obtained light hydrocarbon oil was evaluated. The results are shown in Table 2.
(Example 3)
A hydrocarbon oil decomposition catalyst (catalyst C) made of a composite metal oxide in which the element X is zirconium, the element Y 1 is cerium, and the element Y 2 is tungsten was prepared. Specifically, zirconyl nitrate and cerium nitrate were dissolved in ion-exchanged water such that Zr: Ce = 1: 1 (molar ratio) to obtain an aqueous solution containing Zr and Ce. Next, ammonium metatungstate was dissolved in ion-exchanged water to obtain an aqueous solution of ammonium metatungstate having a predetermined concentration. Then, an aqueous ammonium metatungstate solution was added dropwise to the aqueous solution containing Zr, Ce while adjusting the aqueous solution so that the pH of the aqueous solution did not exceed 8, thereby generating a precipitate. Finally, the obtained precipitate was aged (still at room temperature for a whole day and night), filtered and dried (130 ° C., 16 hours), and then the dried precipitate was calcined at a temperature of 600 ° C. to obtain Zr, Ce, W. A hydrocarbon oil cracking catalyst comprising the composite metal oxide contained was prepared.
In addition, when the abundance ratio of Zr, Ce, and W in the obtained hydrocarbon oil cracking catalyst was confirmed in the same manner as in Example 2, it was Zr: Ce: W = 49: 48: 3.
In the same manner as in Example 1, a hydrogenation catalyst (catalyst a) comprising anatase-type titanium dioxide was prepared.
And the heavy hydrocarbon oil was decomposed | disassembled like Example 1 except having used the said catalyst, and the property of the obtained light hydrocarbon oil was evaluated. The results are shown in Table 2.
Example 4
The element Y 2 and manganese, the manganese nitrate Ce instead of iron nitrate: Mn = 1: 0.06, except that was added to a molar ratio in the same manner as in Example 2, Zr, Ce, and Mn A hydrocarbon oil decomposition catalyst (catalyst D) comprising the mixed metal oxide contained was prepared.
In addition, when the abundance ratio of Zr, Ce, and Mn in the obtained catalyst was confirmed in the same manner as in Example 2, it was Zr: Ce: Mn = 49: 48: 3.
In the same manner as in Example 1, a hydrogenation catalyst (catalyst a) comprising anatase-type titanium dioxide was prepared.
And the heavy hydrocarbon oil was decomposed | disassembled like Example 1 except having used the said catalyst, and the property of the obtained light hydrocarbon oil was evaluated. The results are shown in Table 2.
(比較例1~4)
 水素化用触媒(触媒a)を使用せず、反応器に炭化水素油分解用触媒のみを8.0mL充填した以外は、それぞれ実施例1~4と同様にして重質炭化水素油を分解し、得られた軽質炭化水素油の性状を評価した。結果を表2に示す。
(Comparative Examples 1 to 4)
The heavy hydrocarbon oil was decomposed in the same manner as in Examples 1 to 4, except that the hydrogenation catalyst (catalyst a) was not used and the reactor was charged with 8.0 mL of the hydrocarbon oil decomposition catalyst only. The properties of the obtained light hydrocarbon oil were evaluated. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2より、実施例1~4で製造した軽質炭化水素油は、比較例1~4で製造した軽質炭化水素油と比較してオレフィン含有量が少ないことが分かる。 Table 2 shows that the light hydrocarbon oils produced in Examples 1 to 4 have a lower olefin content than the light hydrocarbon oils produced in Comparative Examples 1 to 4.
(実施例5)
 重質炭化水素油を分解する際の反応器内の温度および圧力を表3に示すように変更した以外は、実施例3と同様にして重質炭化水素油を分解し、得られた軽質炭化水素油の性状を実施例1と同様にして評価した。結果を、比較例3と対比させる形で表3に示す。
(Example 5)
The light hydrocarbon obtained by decomposing the heavy hydrocarbon oil in the same manner as in Example 3 except that the temperature and pressure in the reactor when decomposing the heavy hydrocarbon oil were changed as shown in Table 3. The properties of hydrogen oil were evaluated in the same manner as in Example 1. The results are shown in Table 3 in comparison with Comparative Example 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3より、実施例5で製造した軽質炭化水素油は、比較例3で製造した軽質炭化水素油と比較してオレフィン含有量が少ないことが分かる。 From Table 3, it can be seen that the light hydrocarbon oil produced in Example 5 has less olefin content than the light hydrocarbon oil produced in Comparative Example 3.
 触媒の耐劣化性を評価するため、実施例5において、重質炭化水素油の分解を14日間以上継続した。そして、通油開始から14日間経過後に、反応器からの流出物を1時間採取し、オレフィン含有量(オレフィン帰属炭素量の指数)を実施例1と同様にして算出した。通油開始から6時間経過後のオレフィン帰属炭素量の指数と、通油開始から14日間経過後のオレフィン帰属炭素量の指数とを表4に示す。 In order to evaluate the deterioration resistance of the catalyst, in Example 5, the decomposition of the heavy hydrocarbon oil was continued for 14 days or more. Then, after 14 days from the start of oil passing, the effluent from the reactor was collected for 1 hour, and the olefin content (index of olefin attributed carbon content) was calculated in the same manner as in Example 1. Table 4 shows the index of the olefin attributed carbon amount after 6 hours from the start of oil passing and the index of the olefin attributed carbon amount after 14 days from the start of oil passing.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表4より、実施例5では、通油開始6時間経過後のオレフィン帰属炭素量と、通油開始14日間経過後のオレフィン帰属炭素量とが、あまり変化してことが分かる。従って、実施例5では触媒の劣化が抑制されていることが分かる。 Table 4 shows that in Example 5, the amount of olefin attributed carbon after 6 hours from the start of oil passing and the amount of olefin attributed carbon after 14 days from the start of oil passing changed significantly. Therefore, in Example 5, it turns out that deterioration of a catalyst is suppressed.
 本発明の軽質炭化水素油の製造方法および製造装置によれば、原料となる炭化水素油を予め脱硫および脱窒素することなく、且つ、高圧水素ガスを使用することなく、炭化水素油からオレフィン含有量の少ない軽質炭化水素油を低コストで効率的に製造することができる。 According to the light hydrocarbon oil production method and production apparatus of the present invention, olefins are contained from hydrocarbon oil without desulfurization and denitrification of the hydrocarbon oil as a raw material in advance and without using high-pressure hydrogen gas. A small amount of light hydrocarbon oil can be produced efficiently at low cost.
1 軽質炭化水素油製造装置
2 反応器
3 原料供給ポンプ
4 水供給ポンプ
21 炭化水素油分解用触媒層
22 水素化用触媒層
 
DESCRIPTION OF SYMBOLS 1 Light hydrocarbon oil production apparatus 2 Reactor 3 Raw material supply pump 4 Water supply pump 21 Hydrocarbon oil decomposition catalyst layer 22 Hydrogenation catalyst layer

Claims (8)

  1.  炭化水素油を分解して軽質炭化水素油を製造する軽質炭化水素油の製造方法であって、
     水の存在下で、炭化水素油と、複合金属酸化物からなる炭化水素油分解用触媒とを接触させて炭化水素油を分解し、軽質炭化水素油を含む反応混合物を得る分解工程と、
     前記分解工程で得た前記反応混合物と、金属酸化物からなる水素化用触媒とを接触させて反応混合物中の軽質炭化水素油を水素化する水素化工程と、
    を含むことを特徴とする、軽質炭化水素油の製造方法。
    A method for producing a light hydrocarbon oil by decomposing a hydrocarbon oil to produce a light hydrocarbon oil,
    A cracking step of bringing a hydrocarbon oil into contact with a hydrocarbon oil cracking catalyst comprising a composite metal oxide in the presence of water to crack the hydrocarbon oil to obtain a reaction mixture containing light hydrocarbon oil;
    A hydrogenation step of hydrogenating light hydrocarbon oil in the reaction mixture by contacting the reaction mixture obtained in the decomposition step with a hydrogenation catalyst comprising a metal oxide;
    A process for producing a light hydrocarbon oil, comprising:
  2.  前記水素化用触媒が、アナターゼ型の二酸化チタンを含むことを特徴とする、請求項1に記載の軽質炭化水素油の製造方法。 The method for producing a light hydrocarbon oil according to claim 1, wherein the hydrogenation catalyst contains anatase-type titanium dioxide.
  3.  前記炭化水素油分解用触媒が、
     ペロブスカイト型構造を有する複合金属酸化物と、
     擬ブルッカイト型構造を有する複合金属酸化物と、
     IVA族元素から選択される1種の元素Xと、IIIA族元素、VIA族元素およびVIIA族元素、並びに、第4~6周期のIVA族元素および第4周期のVIII族元素からなる群より選択され、且つ、前記元素Xとは異なる1種の元素Yと、IIIA族元素、VIA族元素およびVIIA族元素、並びに、第4~6周期のIVA族元素および第4周期のVIII族元素からなる群より選択され、且つ、前記元素Xおよび前記元素Yとは異なる1種の元素Yとを含有し、元素Yの存在量(y)と元素Yの存在量(y)との合計(y+y)に対する元素Xの存在量(x)の比(x/(y+y))が、0.5以上2.0以下であり、元素Yの存在量(y)に対する元素Yの存在量(y)の比(y/y)が、0.02以上0.25以下である複合金属酸化物と、
    からなる群より選択される少なくとも一つからなることを特徴とする、請求項1または2に記載の軽質炭化水素油の製造方法。
    The hydrocarbon oil cracking catalyst,
    A composite metal oxide having a perovskite structure;
    A composite metal oxide having a pseudo-brookite structure;
    Selected from the group consisting of one element X selected from Group IVA elements, Group IIIA elements, Group VIA elements and Group VIIA elements, Group IVA elements in the 4th to 6th periods, and Group VIII elements in the 4th period And one element Y 1 different from the element X, a group IIIA element, a group VIA element and a group VIIA element, a group IVA element in the fourth to sixth periods, and a group VIII element in the fourth period is selected from the group consisting and wherein contain and one element different from Y 2 is the element X and the element Y 1, abundance of elements Y 1 (y 1) and abundance of the elements Y 2 (y 2 ) And the ratio (x / (y 1 + y 2 )) of the abundance (x) of the element X to the sum (y 1 + y 2 ) and the abundance of the element Y 1 the ratio of the abundance of elements Y 2 with respect to (y 1) (y 2) y 2 / y 1) comprises a composite metal oxide is 0.02 to 0.25,
    The process for producing a light hydrocarbon oil according to claim 1 or 2, wherein the process comprises at least one selected from the group consisting of:
  4.  前記ペロブスカイト型構造を有する複合金属酸化物が、LaAlO、NiTiO、CoTiO、KTiO、BaTiO、SrTiO、および、これらの複合金属酸化物の金属元素の一部を他の金属元素で置換した複合金属酸化物からなる群より選択され、
     前記擬ブルッカイト型構造を有する複合金属酸化物が、FeTiOであり、
     前記元素Xがジルコニウムであり、前記元素Yがセリウムであり、前記元素Yがタングステン、鉄およびマンガンからなる群より選択される1種である、
    ことを特徴とする、請求項3に記載の軽質炭化水素油の製造方法。
    The composite metal oxide having the perovskite structure includes LaAlO 3 , NiTiO 3 , CoTiO 3 , KTiO 3 , BaTiO 3 , SrTiO 3 , and part of the metal elements of these composite metal oxides with other metal elements. Selected from the group consisting of substituted composite metal oxides;
    The composite metal oxide having the pseudo-brookite structure is Fe 2 TiO 5 ,
    The element X is zirconium, the element Y 1 is cerium, and the element Y 2 is one selected from the group consisting of tungsten, iron, and manganese.
    The method for producing a light hydrocarbon oil according to claim 3, wherein:
  5.  炭化水素油を分解して軽質炭化水素油を製造する軽質炭化水素油の製造装置であって、
     反応器と、
     前記反応器内へ炭化水素油を供給する原料供給手段と、
     前記反応器内へ水を供給する水供給手段と、
    を備え、
     前記反応器が、
     前記炭化水素油と、前記水と、複合金属酸化物からなる炭化水素油分解用触媒とを接触させて炭化水素油を分解し、軽質炭化水素油を含む反応混合物を得る分解部と、
     前記反応混合物と、金属酸化物からなる水素化用触媒とを接触させて反応混合物中の軽質炭化水素油を水素化する水素化部と、
    を有することを特徴とする、軽質炭化水素油の製造装置。
    An apparatus for producing light hydrocarbon oil that decomposes hydrocarbon oil to produce light hydrocarbon oil,
    A reactor,
    Raw material supply means for supplying hydrocarbon oil into the reactor;
    Water supply means for supplying water into the reactor;
    With
    The reactor is
    A cracking section for contacting the hydrocarbon oil, the water, and a hydrocarbon oil cracking catalyst composed of a composite metal oxide to crack the hydrocarbon oil to obtain a reaction mixture containing light hydrocarbon oil;
    A hydrogenation section for contacting the reaction mixture with a hydrogenation catalyst comprising a metal oxide to hydrogenate light hydrocarbon oil in the reaction mixture;
    An apparatus for producing light hydrocarbon oil, comprising:
  6.  前記水素化用触媒が、アナターゼ型の二酸化チタンを含むことを特徴とする、請求項5に記載の軽質炭化水素油の製造装置。 6. The apparatus for producing light hydrocarbon oil according to claim 5, wherein the hydrogenation catalyst contains anatase type titanium dioxide.
  7.  前記炭化水素油分解用触媒が、
     ペロブスカイト型構造を有する複合金属酸化物と、
     擬ブルッカイト型構造を有する複合金属酸化物と、
     IVA族元素から選択される1種の元素Xと、IIIA族元素、VIA族元素およびVIIA族元素、並びに、第4~6周期のIVA族元素および第4周期のVIII族元素からなる群より選択され、且つ、前記元素Xとは異なる1種の元素Yと、IIIA族元素、VIA族元素およびVIIA族元素、並びに、第4~6周期のIVA族元素および第4周期のVIII族元素からなる群より選択され、且つ、前記元素Xおよび前記元素Yとは異なる1種の元素Yとを含有し、元素Yの存在量(y)と元素Yの存在量(y)との合計(y+y)に対する元素Xの存在量(x)の比(x/(y+y))が、0.5以上2.0以下であり、元素Yの存在量(y)に対する元素Yの存在量(y)の比(y/y)が、0.02以上0.25以下である複合金属酸化物と、
    からなる群より選択される少なくとも一つからなることを特徴とする請求項5または6に記載の軽質炭化水素油の製造装置。
    The hydrocarbon oil cracking catalyst,
    A composite metal oxide having a perovskite structure;
    A composite metal oxide having a pseudo-brookite structure;
    Selected from the group consisting of one element X selected from Group IVA elements, Group IIIA elements, Group VIA elements and Group VIIA elements, Group IVA elements in the 4th to 6th periods, and Group VIII elements in the 4th period And one element Y 1 different from the element X, a group IIIA element, a group VIA element and a group VIIA element, a group IVA element in the fourth to sixth periods, and a group VIII element in the fourth period is selected from the group consisting and wherein contain and one element different from Y 2 is the element X and the element Y 1, abundance of elements Y 1 (y 1) and abundance of the elements Y 2 (y 2 ) And the ratio (x / (y 1 + y 2 )) of the abundance (x) of the element X to the sum (y 1 + y 2 ) and the abundance of the element Y 1 the ratio of the abundance of elements Y 2 with respect to (y 1) (y 2) y 2 / y 1) comprises a composite metal oxide is 0.02 to 0.25,
    The light hydrocarbon oil production apparatus according to claim 5 or 6, wherein the light hydrocarbon oil production apparatus comprises at least one selected from the group consisting of:
  8.  前記ペロブスカイト型構造を有する複合金属酸化物が、LaAlO、NiTiO、CoTiO、KTiO、BaTiO、SrTiO、および、これらの複合金属酸化物の金属元素の一部を他の金属元素で置換した複合金属酸化物からなる群より選択され、
     前記擬ブルッカイト型構造を有する複合金属酸化物が、FeTiOであり、
     前記元素Xがジルコニウムであり、前記元素Yがセリウムであり、前記元素Yがタングステン、鉄およびマンガンからなる群より選択される1種である、
    ことを特徴とする、請求項7に記載の軽質炭化水素油の製造装置。
    The composite metal oxide having the perovskite structure includes LaAlO 3 , NiTiO 3 , CoTiO 3 , KTiO 3 , BaTiO 3 , SrTiO 3 , and part of the metal elements of these composite metal oxides with other metal elements. Selected from the group consisting of substituted composite metal oxides;
    The composite metal oxide having the pseudo-brookite structure is Fe 2 TiO 5 ,
    The element X is zirconium, the element Y 1 is cerium, and the element Y 2 is one selected from the group consisting of tungsten, iron, and manganese.
    The apparatus for producing light hydrocarbon oil according to claim 7, wherein:
PCT/JP2012/002033 2011-03-31 2012-03-23 Device for producing and method for producing light hydrocarbon oil WO2012132370A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013507162A JP5943906B2 (en) 2011-03-31 2012-03-23 Method and apparatus for producing light hydrocarbon oil
CA2831565A CA2831565A1 (en) 2011-03-31 2012-03-23 Device for producing and method for producing light hydrocarbon oil

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011080130 2011-03-31
JP2011-080130 2011-03-31

Publications (1)

Publication Number Publication Date
WO2012132370A1 true WO2012132370A1 (en) 2012-10-04

Family

ID=46930147

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/002033 WO2012132370A1 (en) 2011-03-31 2012-03-23 Device for producing and method for producing light hydrocarbon oil

Country Status (3)

Country Link
JP (1) JP5943906B2 (en)
CA (1) CA2831565A1 (en)
WO (1) WO2012132370A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104549276A (en) * 2013-10-28 2015-04-29 中国石油化工股份有限公司 Thermal cracking catalyst for residual oil in presence of hydrogen, and preparation and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5485203A (en) * 1977-11-29 1979-07-06 Shell Int Research Production of hydrocarbon
JP2005520918A (en) * 2002-03-21 2005-07-14 シェブロン ユー.エス.エー. インコーポレイテッド A new hydrocracking method for producing high quality distillate from heavy gas oil.
JP2006501981A (en) * 2002-07-24 2006-01-19 ピー. ニュートン、ジェフリー Catalyst composition and its use in the production of low molecular weight hydrocarbons

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5640432A (en) * 1979-09-13 1981-04-16 Chiyoda Chem Eng & Constr Co Ltd Catalyst for hydrodenitrification of hydrocarbon oil
JPS6162591A (en) * 1984-09-04 1986-03-31 Nippon Oil Co Ltd Method of converting heavy oil to light oil

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5485203A (en) * 1977-11-29 1979-07-06 Shell Int Research Production of hydrocarbon
JP2005520918A (en) * 2002-03-21 2005-07-14 シェブロン ユー.エス.エー. インコーポレイテッド A new hydrocracking method for producing high quality distillate from heavy gas oil.
JP2006501981A (en) * 2002-07-24 2006-01-19 ピー. ニュートン、ジェフリー Catalyst composition and its use in the production of low molecular weight hydrocarbons

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
S.FUNAI ET AL.: "Recovery of useful lighter fuels from petroleum residual oil by oxidative cracking with steam using", CHEMICAL ENGINEERING SCIENCE, vol. 65, no. 1, 1 January 2010 (2010-01-01), pages 60 - 65, XP026754605, DOI: doi:10.1016/j.ces.2009.03.028 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104549276A (en) * 2013-10-28 2015-04-29 中国石油化工股份有限公司 Thermal cracking catalyst for residual oil in presence of hydrogen, and preparation and application thereof
CN104549276B (en) * 2013-10-28 2017-04-26 中国石油化工股份有限公司 Thermal cracking catalyst for residual oil in presence of hydrogen, and preparation and application thereof

Also Published As

Publication number Publication date
JP5943906B2 (en) 2016-07-05
JPWO2012132370A1 (en) 2014-07-24
CA2831565A1 (en) 2012-10-04

Similar Documents

Publication Publication Date Title
Otroshchenko et al. Current status and perspectives in oxidative, non-oxidative and CO 2-mediated dehydrogenation of propane and isobutane over metal oxide catalysts
WO2016200504A1 (en) Low inlet temperature for oxidative coupling of methane
AU2009293731B2 (en) Process for producing hydrocarbon oil
WO2016200503A1 (en) Methane oxidative coupling with la-ce catalysts
JP2008506004A (en) Hydrogenation of aromatic compounds and olefins using mesoporous catalysts
Zhang et al. MgO nanosheet assemblies supported CoMo catalyst with high activity in hydrodesulfurization of dibenzothiophene
JP5943906B2 (en) Method and apparatus for producing light hydrocarbon oil
JP5687941B2 (en) Hydrocarbon oil cracking catalyst and hydrocarbon oil cracking method
Chernyak et al. Decisive Influence of SAPO-34 Zeolite on Light Olefin Selectivity in Methanol-Meditated CO2 Hydrogenation over Metal Oxide-Zeolite Catalysts
JP5881218B2 (en) Hydrocarbon oil cracking catalyst and hydrocarbon oil cracking method
JP5901061B2 (en) Method for producing hydrocarbon oil cracking catalyst and hydrocarbon oil cracking method
US11472700B2 (en) Catalyst and process for thermo-neutral reforming of petroleum-based liquid hydrocarbons
JP4942718B2 (en) Autothermal reforming catalyst
JP5539755B2 (en) Decomposition method of heavy hydrocarbon oil
JP5618315B2 (en) Oxide-added supported platinum catalyst for steam reforming of ethanol and oxide-added supported platinum catalyst for steam reforming of ethanol
US20060009665A1 (en) Hydrogenation of aromatics and olefins using a mesoporous catalyst
JPWO2010035710A1 (en) Desulfurizing agent, method for producing the same, and method for desulfurizing hydrocarbon oil
WO2011114670A1 (en) Heavy hydrocarbon oil cracking catalyst and heavy hydrocarbon oil cracking method
JP5979443B2 (en) Method for producing hydrogen
Bikbaeva Metal-sulfide materials for ethane conversion in presence of CO2
JP5631612B2 (en) Heavy hydrocarbon oil cracking catalyst
JP5530774B2 (en) Decomposition method of heavy hydrocarbon oil
Musamali Non-oxidative conversion of methane into carbon and petrochemicals over Fe, W, & Mo catalyst systems supported on activated carbon and HZSM-5
JP5901062B2 (en) Method for producing hydrocarbon oil cracking catalyst and hydrocarbon oil cracking method
Raseale Oxidative dehydrogenation of ethane with carbon dioxide over iron-nickel nano-alloys supported on metal oxide overlayers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12765456

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013507162

Country of ref document: JP

Kind code of ref document: A

Ref document number: 2831565

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12765456

Country of ref document: EP

Kind code of ref document: A1