JPS62290864A - Vacuum deposition device - Google Patents

Vacuum deposition device

Info

Publication number
JPS62290864A
JPS62290864A JP13387486A JP13387486A JPS62290864A JP S62290864 A JPS62290864 A JP S62290864A JP 13387486 A JP13387486 A JP 13387486A JP 13387486 A JP13387486 A JP 13387486A JP S62290864 A JPS62290864 A JP S62290864A
Authority
JP
Japan
Prior art keywords
vapor deposition
top end
induction coil
molten part
deposition material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13387486A
Other languages
Japanese (ja)
Inventor
Yasushi Nakajima
靖志 中島
Masayoshi Sasaki
佐々木 正義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP13387486A priority Critical patent/JPS62290864A/en
Publication of JPS62290864A publication Critical patent/JPS62290864A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To execute stable vapor deposition at a high vapor deposition speed with a high degree of freedom in the selection of materials for vapor deposition and good purity of a formed thin film by providing an induction coil around the top end of the circular cylindrical material for vapor deposition, melting the top end and providing a means for maintaining the specified height of the top end of the material. CONSTITUTION:The material 21 for vapor deposition consisting of a material which is worked to a circular cylindrical shape and permits induction heating is perpendicularly installed by a holder 23 having a vertical moving mechanism 22 in a vacuum vessel 20 and the top end of the material 21 is heated by passing high-frequency current to the induction coil 24 disposed around the top end of the material 21. The spacing between the material 21 and the coil 24, the magnitude of the above-mentioned current, etc., are most adequately selected to separate the material 21 in to the molten part where only the top end thereof is melted and the non-molten part. The molten part is held in the upper part of the material 21 while the spilling of the melt is prevented by the surface tension of the material 21. The high-purity vapor deposited film is thus obtd. since a wide evaporation area is obtainable, stable and high vapor deposition speed is obtd.

Description

【発明の詳細な説明】 3、発明の詳細な説明 (産業上の利用分野) 本発明は、真空蒸着装置に係り、特に、金属薄膜の形成
のための蒸着材料の加熱方法に関するものである。
Detailed Description of the Invention 3. Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a vacuum evaporation apparatus, and particularly to a method of heating evaporation material for forming a metal thin film.

(従来の技術) 従来、金属薄膜を形成する方法としては、(1)CVD
   (Chemical   Vapor  Dep
osition)   /1: 、  (2)  スパ
ッタリング法、(3)真空蒸着法等が挙げられる。
(Prior art) Conventionally, methods for forming metal thin films include (1) CVD.
(Chemical Vapor Dep.
(2) sputtering method, (3) vacuum evaporation method, etc.

以下、これらの方法について説明する。These methods will be explained below.

上記(1)のCVD法について機運すると、ソースガス
として気化した金属の有機化合物を容器中へ導入し、そ
の容器中に設置された母体を加熱する。
When the CVD method described in (1) above is used, a vaporized metal organic compound is introduced into a container as a source gas, and a base body placed in the container is heated.

すると、ソースガスは母体表面上で熱分解され、その内
の金属が母体表面に付着し、薄膜が形成される。
Then, the source gas is thermally decomposed on the surface of the base, and the metal in it adheres to the surface of the base, forming a thin film.

次に、上記(2)のスパッタリング法について機運する
と、第3図に示されるように、真空容器1中において直
流高電圧の電源9から供給される電界と、これに直交す
る磁界を磁界発生rA2から供給する。一方、真空容器
1中にArガス3を導入すると、Arプラズマ4が発生
する。このプラズマがターゲット5表面のスパッタリン
グ材料6をスパツクし、これがターゲットと対向して設
置された電極7上の被蒸着材料8の表面に付着すること
により薄膜が形成される。
Next, regarding the sputtering method (2) above, as shown in FIG. Supplied from. On the other hand, when Ar gas 3 is introduced into the vacuum container 1, Ar plasma 4 is generated. This plasma spatters the sputtering material 6 on the surface of the target 5, which adheres to the surface of the material to be deposited 8 on the electrode 7 placed opposite the target, thereby forming a thin film.

次に、上記(3)の真空蒸着法について機運すると、第
4図に示されるように、真空容器IO内の真空中におい
て、高圧電源17が供給される電子銃11から発生する
電子ビーム12により、るつぼ13内の1着材料14を
加熱し、これを蒸発源とする。そして、蒸発した金属は
蒸発源に対向して設置された被蒸着材料15表面に付着
し、薄膜を形成するものである。なお、上記電子銃にか
えて、抵抗加熱によってもよい、また、るつぼ13は冷
却水16によって冷却される。
Next, regarding the vacuum evaporation method described in (3) above, as shown in FIG. , the first material 14 in the crucible 13 is heated and used as an evaporation source. Then, the evaporated metal adheres to the surface of the material to be evaporated 15 placed opposite the evaporation source, forming a thin film. Note that, instead of the electron gun, resistance heating may be used, and the crucible 13 is cooled by cooling water 16.

(発明が解決しようとする問題点) しかし、上記(1)の方法では不純物が薄膜中に残留し
、上記(2)の方法においてもArガス中に含まれる不
撓ガス成分が膜質に影響を及ばず。また、上記(3)の
方法における材料を加熱蒸発させるための抵抗加熱では
、加熱ボート材料より高融点の芸者材料及びボート材料
と反応する蒸着材rIを用いることはできない。また、
るつぼ中の材料を電子ビーム照射により加熱する場合に
は、上記のような問題はある程度解決されているものの
るつぼ材料からの不純物の混入は避けることはできない
(Problems to be Solved by the Invention) However, in the method (1) above, impurities remain in the thin film, and in the method (2) above, the inflexible gas component contained in the Ar gas may affect the film quality. figure. Furthermore, in the resistance heating for heating and vaporizing the material in method (3) above, it is not possible to use the Geisha material, which has a higher melting point than the heating boat material, and the vapor deposition material rI, which reacts with the boat material. Also,
When the material in the crucible is heated by electron beam irradiation, although the above problems have been solved to some extent, the contamination of impurities from the crucible material cannot be avoided.

更に、電子ビームによる加熱ではシリコン等を蒸着しよ
うとする場合、材ね融液の突沸かしばしば発生し、安定
な蒸着が難しいという問題があった。
Furthermore, when heating with an electron beam is used to deposit silicon or the like, there is a problem in that bumping of the molten material often occurs, making stable deposition difficult.

また、るつぼは冷却せねばならず、真空容器内に冷却用
の配管の設置が必要で構造が?、1f雑になる等の問題
があった。
Also, the crucible must be cooled, and cooling piping must be installed inside the vacuum container, making the structure difficult. , there were problems such as the 1f becoming rough.

本発明は、上記問題点を除去し、薄膜材料選択の自由度
が高く、形成薄膜の純度が良好であり、蒸着速度が優れ
た、しかも構造の単純な真空蒸着装置を提供することを
目的とする。
An object of the present invention is to eliminate the above-mentioned problems and provide a vacuum evaporation apparatus with a simple structure, which has a high degree of freedom in selecting thin film materials, has good purity in the formed thin film, and has an excellent evaporation rate. do.

(問題点を解決するための手段) 本発明は、上記問題点を解決するために、真空蒸着装置
において、誘電加熱が可能であり、棒状に加工した蒸着
材料を鉛直に設置し、その上端の周囲に誘導加熱するた
めの誘導コイルを設け、円柱状の蒸着材料の上端を消費
するに従って上昇させ、その高さを一定に保つ毅横を設
けるようにしたものである。
(Means for Solving the Problems) In order to solve the above-mentioned problems, the present invention provides a vacuum evaporation apparatus in which dielectric heating is possible, a evaporation material processed into a rod shape is installed vertically, and the upper end of the evaporation material is installed vertically. An induction coil for induction heating is provided around the cylindrical evaporation material, the upper end of the cylindrical vapor deposition material is raised as it is consumed, and a support plate is provided to keep the height constant.

(作用) 本発明によれば、真空蒸着装置において、誘電加熱が可
能であり、棒状に加工した蒸着材料を鉛直に設置し、そ
の上端の周囲に誘導加熱するための誘導コイルを設け、
円柱状の蒸着材料の上端を消費するに従って上昇させ、
その高さを一定に保つ機構を設けるようにしたので、草
着腹への不純物の混入が防止でき、かつ任意の融点の蒸
着材料を選択できる。また、大きく、かつ、安定な蒸着
速度が得られ、しかも、蒸着材!1の補充間隔を長くす
ることができる。
(Function) According to the present invention, in a vacuum evaporation apparatus, dielectric heating is possible, a evaporation material processed into a rod shape is installed vertically, and an induction coil for induction heating is provided around the upper end of the evaporation material.
The upper end of the cylindrical vapor deposition material is raised as it is consumed,
Since a mechanism is provided to keep the height constant, it is possible to prevent impurities from entering the weed pad and to select a vapor deposition material having an arbitrary melting point. In addition, a large and stable vapor deposition rate can be obtained, and what's more, it is a vapor deposition material! 1 replenishment interval can be lengthened.

(実施例) 以下、本発明の実施例について図面を参照しながら詳細
に説明する。
(Example) Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

第1図は本発明の一実施例を示す真空蒸着装置の全体構
成図、第2図は第1図の部分拡大断面図である。
FIG. 1 is an overall configuration diagram of a vacuum evaporation apparatus showing an embodiment of the present invention, and FIG. 2 is a partially enlarged sectional view of FIG. 1.

20は真空容器、21は蒸着材料、22は上下移動機構
、23は保持具、24は誘導コイル、25は高周波電源
、26はレーザ発振器、27は受光器、28はモータ、
29は被蒸着材料、30は受光器からの出力信号を受り
てモータを駆動する駆動回路、31はレーザ発振器の電
源である。
20 is a vacuum container, 21 is a vapor deposition material, 22 is a vertical movement mechanism, 23 is a holder, 24 is an induction coil, 25 is a high frequency power source, 26 is a laser oscillator, 27 is a light receiver, 28 is a motor,
29 is a material to be deposited; 30 is a drive circuit that receives an output signal from a light receiver to drive a motor; and 31 is a power source for a laser oscillator.

まず、高真空に排気されている真空容器20中に円柱状
に加工された、充電加熱が可能な物質からなる蒸着材#
421が上下移動を可能とした上下移動機構22を備え
る保持具23により鉛直に設置されている。この上下移
動機構22は蒸発により消費される蒸着材料21の上面
高さを常に一定に保つためのものである。誘導コイル2
4は蒸着材料21の上端周囲に接触することなく巻かれ
ており、これは高周波電源25に接続されて高周波誘導
加熱が可能となっている。
First, a vapor deposition material # made of a material that can be charged and heated is processed into a cylindrical shape in a vacuum container 20 that is evacuated to a high vacuum.
421 is installed vertically by a holder 23 equipped with a vertical movement mechanism 22 that allows vertical movement. This vertical movement mechanism 22 is for keeping the height of the top surface of the vapor deposition material 21 consumed by evaporation constant at all times. induction coil 2
4 is wound around the upper end of the vapor deposition material 21 without contacting it, and is connected to a high frequency power source 25 to enable high frequency induction heating.

そこで、誘導コイル24に高周波電流を流すと、蒸着材
料21には誘R電流が流れ、これにより材料の上部が加
熱される。この時、蒸着材料の電気1氏抗と形状、誘導
コイル24との間隔、高周波電流の大きさを最適に選択
すると、第2図に示されるように、蒸着材料21の非蒸
着部分21bの上端部だけが溶融し、溶融部分21bが
得られる。そして、この78融部分21bは材料自身の
表面張力により、融液がこぼれることなく円柱状の蒸着
材料21の上部に保持される。従って、融液がるつぼ等
に接触することなく高純度の茎:4膜が得られるだけで
なく、広い蒸発面を得ることができるので、大きな7着
速度が得られる。また、加熱機構が材料と高周波コイル
だけであるので装置の大幅な簡素化が可能である。
Therefore, when a high frequency current is passed through the induction coil 24, an induced R current flows through the vapor deposition material 21, thereby heating the upper part of the material. At this time, if the electrical resistance and shape of the vapor deposition material, the distance from the induction coil 24, and the magnitude of the high-frequency current are optimally selected, the upper end of the non-evaporated portion 21b of the vapor deposition material 21 will appear as shown in FIG. Only that part is melted, and a melted part 21b is obtained. This 78 melted portion 21b is held on top of the columnar vapor deposition material 21 without the melt spilling due to the surface tension of the material itself. Therefore, not only can a highly purified stalk 4 film be obtained without the melt coming into contact with a crucible, etc., but also a wide evaporation surface can be obtained, resulting in a high deposition rate. Furthermore, since the heating mechanism consists only of the material and the high-frequency coil, the device can be significantly simplified.

蒸着材料21の高さはレーザ発振器26と受光器27の
組み合わせによる検出器を用いて検知し、モータ28で
上下移動機構22の移動制御を行うと精密な調整が可能
である。蒸発した材料原子は上方に設置された被蒸着材
料29に付着し、3膜が形成される。また、第2図に示
されるように、長い形状に加工された蒸着材料を用いる
ことで、蒸着材料の補充間隔を長くできるという効果も
奏することができる。
The height of the vapor-deposited material 21 is detected using a detector consisting of a combination of a laser oscillator 26 and a light receiver 27, and precise adjustment is possible by controlling the movement of the vertical movement mechanism 22 with a motor 28. The evaporated material atoms adhere to the vapor-deposited material 29 placed above, and three films are formed. Further, as shown in FIG. 2, by using a vapor deposition material processed into a long shape, it is possible to have the effect that the replenishment interval of the vapor deposition material can be lengthened.

なお、本発明は上記実施例に限定されるものではなく、
本発明の趣旨に基づいて種々の変形が可能であり、これ
らを本発明の範囲から排除するものではない。
Note that the present invention is not limited to the above embodiments,
Various modifications are possible based on the spirit of the present invention, and these are not excluded from the scope of the present invention.

(発明の効果) 以上、詳細に説明したように、本発明によれば、誘電加
熱が可能な物質からなる蒸着材料を円柱状に加工し、そ
の蒸着材料の上端部の周囲に誘導加熱用コイルを設けて
、その上端部を溶融し、かつ、その蒸着材料の上端の高
さを一定に保つ手段を設けるようにしたので、 (1)蒸着膜への不純物の混入を防止することができる
(Effects of the Invention) As described above in detail, according to the present invention, a vapor deposition material made of a substance capable of dielectric heating is processed into a cylindrical shape, and an induction heating coil is placed around the upper end of the vapor deposition material. By providing a means for melting the upper end of the vapor deposition material and keeping the height of the upper end of the vapor deposition material constant, (1) it is possible to prevent impurities from entering the vapor deposition film;

(2)任意の融点の蒸着材料を選択して、使用すること
ができる。
(2) A vapor deposition material having an arbitrary melting point can be selected and used.

(3)蒸着速度が速く、しかも安定な蒸着を行うことが
できる。
(3) The vapor deposition rate is high and stable vapor deposition can be performed.

(4)蒸着材料の補充間隔を長(するできる。(4) The replenishment interval of vapor deposition material can be lengthened.

という効果が得られる。This effect can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す真空蒸着装置の全体構成
図、第2図はその部分拡大断面図、第3図は従来のスバ
フタの説明図、第4図は従来の真空蒸着の説明図である
。 20・・・真空容器、21・・・蒸着材料、22・・・
上下移動機構、23・・・保持具、24・・・誘導コイ
ル、25・・・高周波電源、26・・・レーザ発振器、
27・・・受光器、28・・・モータ29・・・被蒸着
材料。30・・・駆動回路、31・・・高周波電源。
Fig. 1 is an overall configuration diagram of a vacuum evaporation apparatus showing an embodiment of the present invention, Fig. 2 is a partially enlarged sectional view thereof, Fig. 3 is an explanatory diagram of a conventional baffle filter, and Fig. 4 is an explanation of a conventional vacuum evaporation apparatus. It is a diagram. 20... Vacuum container, 21... Evaporation material, 22...
Vertical movement mechanism, 23... Holder, 24... Induction coil, 25... High frequency power supply, 26... Laser oscillator,
27... Light receiver, 28... Motor 29... Material to be deposited. 30... Drive circuit, 31... High frequency power supply.

Claims (1)

【特許請求の範囲】 (a)誘電加熱が可能であり、円柱状に加工され、かつ
鉛直に設置される蒸着材料と、 (b)該蒸着材料の上端の周囲に配設される誘導コイル
と、 (c)該誘導コイルの高さを一定に保つ手段とを具備す
ることを特徴とする真空蒸着装置。
[Claims] (a) A vapor deposition material that is capable of dielectric heating, processed into a cylindrical shape, and installed vertically; (b) An induction coil disposed around the upper end of the vapor deposition material. (c) means for keeping the height of the induction coil constant.
JP13387486A 1986-06-11 1986-06-11 Vacuum deposition device Pending JPS62290864A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13387486A JPS62290864A (en) 1986-06-11 1986-06-11 Vacuum deposition device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13387486A JPS62290864A (en) 1986-06-11 1986-06-11 Vacuum deposition device

Publications (1)

Publication Number Publication Date
JPS62290864A true JPS62290864A (en) 1987-12-17

Family

ID=15115089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13387486A Pending JPS62290864A (en) 1986-06-11 1986-06-11 Vacuum deposition device

Country Status (1)

Country Link
JP (1) JPS62290864A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007073235A (en) * 2005-09-05 2007-03-22 Osaka Univ Evaporation source and method of supplying steam outside

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007073235A (en) * 2005-09-05 2007-03-22 Osaka Univ Evaporation source and method of supplying steam outside

Similar Documents

Publication Publication Date Title
US6086945A (en) Method of forming polycrystalline silicon thin layer
EP0720206B1 (en) Plasma processing method and plasma processing apparatus
EP0308658B1 (en) Apparatus and method for evaporating metallic films
US4351855A (en) Noncrucible method of and apparatus for the vapor deposition of material upon a substrate using voltaic arc in vacuum
US5785763A (en) Electron-gun evaporation system having evaporation-source stream regulator
CA2476855C (en) Method and device for coating a substrate
JPS62290864A (en) Vacuum deposition device
JP3901336B2 (en) Operation method of ion plating apparatus
Deshpandey et al. Evaporation processes
JP2000026953A (en) Plasma treating method and plasma treating device
EP0305202A2 (en) Vacuum evaporation and deposition
Frey Vacuum Evaporation
JPH03215661A (en) Ion plating device
JPH08225927A (en) Crucible for evaporation
JPH0892734A (en) Evaporation of mg
JP2000282223A (en) Device and method for film formation
JPS62180067A (en) Method and apparatus for electron beam vapor deposition
JPH0798865A (en) Apparatus for production of magnetic recording medium
JPH0417668A (en) Vapor deposition method
JPS6144175A (en) Magnetron sputtering device
JP2000239834A (en) Device and method for film formation
JPS6250460A (en) Vaporizing method
Chaudhary Knudsen Type Vacuum Evaporation Source.
JPH0210225B2 (en)
JPH06212408A (en) Metallic composition for melt evaporation and method for melt-evaporating metal