JPS6229073A - Lead storage battery - Google Patents

Lead storage battery

Info

Publication number
JPS6229073A
JPS6229073A JP60167960A JP16796085A JPS6229073A JP S6229073 A JPS6229073 A JP S6229073A JP 60167960 A JP60167960 A JP 60167960A JP 16796085 A JP16796085 A JP 16796085A JP S6229073 A JPS6229073 A JP S6229073A
Authority
JP
Japan
Prior art keywords
coagulant
lead
thousands
electrolyte
molecular weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60167960A
Other languages
Japanese (ja)
Inventor
Tadashi Yoneda
米田 忠司
Yasunao Wada
和田 容尚
Ichiro Ishiyama
一郎 石山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP60167960A priority Critical patent/JPS6229073A/en
Publication of JPS6229073A publication Critical patent/JPS6229073A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • H01M10/08Selection of materials as electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To much lengthen the life of a lead storage battery, by adding a high-molecular organic coagulant of several thousands to scores of thousands in molecular weight to an electrolyte. CONSTITUTION:A high-molecular organic coagulant of several thousands to scores of thousands in molecular weight is added to an electrolyte. The coagulant is a cationic coagulant, a cationic and anionic coagulant or an anionic coagulant having a cation dissociation group. Hydrophilic layers around fine PbO2 grains drifting in the electrolyte are removed to assist the grains to come into contact with each other to grow larger. The grains are thus quickly removed from electrode plates to preclude the production of spongy lead to prevent an internal short circuit.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は鉛蓄電池の寿命特性の改善に関するものでちる
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to improving the life characteristics of lead-acid batteries.

従来の技術 処韮常抽の夷合亜田μmで唯仄壬物祈小少ルはよく知ら
れている。陽極活物質(PbO,)は充放電の繰り返し
により、徐々に微細化してゆき、物理的強度や電気的接
触か低下する。活物質であるpbOt  (二酸化鉛)
も酸素欠損型不完全結晶から完全結晶に近づいでいく。
It is well known that the traditional technology of the iris and tassels is the same as that of the conventional technique. As the anode active material (PbO,) is repeatedly charged and discharged, it gradually becomes finer and its physical strength and electrical contact deteriorate. Active material pbOt (lead dioxide)
The crystal also approaches a perfect crystal from an oxygen-deficient incomplete crystal.

発明が解決しようとする問題点 鉛蓄電池は、一般に充電末期には陽極よりO。The problem that the invention aims to solve Lead-acid batteries generally have more O than the anode at the end of charging.

ガス、また陰極よりH,ガスを発生する。これらのガス
は極板の表面と内部より発生する。特に陽極より発生す
るO、ガスは、前記したPbO2の微細粒子を極板群外
へ排出する。
Gas and H gas are generated from the cathode. These gases are generated from the surface and inside of the electrode plate. In particular, the O gas generated from the anode discharges the above-mentioned PbO2 fine particles to the outside of the electrode plate group.

この排出されたPbO,微粒子は電槽内を漂った後沈降
する。しかし非常に小さケ微粒子千 (0,l tt m以内)では沈降迄に時間がかかり、
長時間漂っている微粒子は陰極に接近する機会も多くな
り、吸着されるものも多く鬼る。吸着されたものは充電
中に金属鉛に陰極で還元される。金属鉛は多孔性を有し
た海綿状の形をとり陽極に向って伸びる。陽極に海綿状
鉛が到達すると内部短絡が発生する。内部短絡は通常、
充公使用した電池によく認められるが、比較的新しい状
態の電池でもしばしば認められる。この内部短絡が発生
すると、充電効率が低下し蓄電池の出力低下を生じ、こ
の現象が発生すると早期に使用不能となる。
The discharged PbO and fine particles float inside the battery container and then settle. However, very small particles (within 0,100 m) take time to settle.
Particles that have been floating for a long time have more opportunities to approach the cathode, and many of them are absorbed. The adsorbed material is reduced to metallic lead at the cathode during charging. Metallic lead has a porous, spongy shape that extends toward the anode. When spongy lead reaches the anode, an internal short circuit occurs. Internal short circuits are usually
This is often observed in batteries that have been recharged, but is also often observed in relatively new batteries. When this internal short circuit occurs, the charging efficiency decreases and the output of the storage battery decreases, and when this phenomenon occurs, the battery becomes unusable at an early stage.

内部短絡を防止することは蓄電池の宿願性向上をはかる
ことになる。
Preventing internal short circuits will improve the performance of storage batteries.

本発明は前記したP b(l微粒子が主因である海綿状
鉛の発生を防止するもので蓄′市池の寿命改善に関する
ものでちる。
The present invention is concerned with improving the lifespan of storage ponds by preventing the generation of spongy lead, which is mainly caused by the above-mentioned Pb(l) particles.

問題点を解決するための手段 電解液中に漂うpbo、微粒子は正の電荷に帯電し、粒
子の周囲には親水層を形成している。
Means for Solving the Problem PBO fine particles floating in the electrolyte are positively charged and form a hydrophilic layer around the particles.

このため、微粒子同士が衝突して次第に大きな粒子とガ
ることを妨害している。時間を経ると電解液中のH’−
h (プロトン、カチオン)によって微粒子周囲の親水
層が除去され微粒子は互いに接触し、大きくなる。本発
明は、この現象を更に早め、pbo、微粒子が陰極に吸
着する機会を心<シ、すみやかに極板群周囲から除去す
るだめに、電解液中に数千〜数万の分子量を有する有機
高分子凝集剤を添加するものである。
This prevents fine particles from colliding with each other and gradually collapsing into larger particles. Over time, H'- in the electrolyte
The hydrophilic layer around the fine particles is removed by h (protons, cations), and the fine particles come into contact with each other and grow larger. The present invention further speeds up this phenomenon, prevents the opportunity for PBO and fine particles to be adsorbed to the cathode, and in order to promptly remove them from around the electrode plate group, organic compounds having a molecular weight of several thousand to tens of thousands are added to the electrolyte. A polymer flocculant is added.

実施例 本発明の一実施例を説明する。Example An embodiment of the present invention will be described.

第1図に、20°Cでp bo、微粒子(l μm以下
)をSp、Grl、280中に11/矛添加した懸濁液
に、各種の高分子凝集剤を1m?/形添加して充分超音
波振動を加えた後静置した時の沈降速度(cm /分)
を示した。
Figure 1 shows that 1 m of various polymer flocculants are added to a suspension of p bo, fine particles (1 μm or less) in Sp, Grl, 280 at 20°C. Sedimentation velocity (cm/min) when left to stand after adding /form and applying sufficient ultrasonic vibration
showed that.

し 沈降速度は30an移動する時間を測定も算出した。カ
チオン性高分子凝集剤がもっとも沈降速度が大きいこと
がわかる。単穴るアニオン性有機高分子凝集剤は強酸性
下では1(f4−によって放電してしまいノニオン性と
なってしまうため効果が富いと思われる。
The sedimentation rate was also calculated by measuring the time it took to move 30 an. It can be seen that the cationic polymer flocculant has the highest sedimentation rate. Single-hole anionic organic polymer flocculants are thought to be highly effective under strong acidity because they discharge due to 1(f4-) and become nonionic.

有機高分子凝集剤は、フロックを形成するが大!2もの
は狭い電槽内では微粒子の沈降を妨げるため、凝集剤の
分子量とフロックの大きさを調べた。
Organic polymer flocculants form large flocs! Since both of these prevent fine particles from settling in a narrow container, we investigated the molecular weight of the flocculant and the size of the flocs.

第2図はカチオン性有機高分子凝集剤を使用した場合を
示したが、分子量が小さいほどフロックは小さく穴るこ
とかわかった。大きさとしでは小さい程好ましいことか
ら分子量としではせいぜい数千から数万程度が良い。分
子量とフロックの大きさは他の数種の有機高分子凝集剤
においても同一傾向でちった。
Figure 2 shows the case where a cationic organic polymer flocculant was used, and it was found that the smaller the molecular weight, the smaller the holes in the flocs. In terms of size, the smaller the better, so in terms of molecular weight, it is best to have a molecular weight of several thousand to tens of thousands at most. The molecular weight and floc size were the same for several other organic polymer flocculants.

第3図は電池容量t o o、thの実際の鉛蓄電池に
凝集剤を添加して寿命試験を行なった結果を示した。
FIG. 3 shows the results of a life test in which a flocculant was added to an actual lead-acid battery having a battery capacity of t o, th.

1回の充電放電条件は次の通りでちる。The conditions for one charge and discharge are as follows.

放  電:60Aで1時間 充  電:20Aで3,6時間(120憾)電池温度:
30±5°C カチオン性有機高分子凝集剤例えばポリエチレンイミン
を2mFt/−e添加したものは、無添加のものに比べ
約304向上し、また100サイクル以降の容量の低下
が認められない。軽微な内部短絡による充電効率の低下
が抑制されたためでちる。
Discharge: 1 hour at 60A Charge: 3.6 hours at 20A (120℃) Battery temperature:
30±5°C The one to which 2 mFt/-e of a cationic organic polymer flocculant such as polyethyleneimine is added has an improvement of about 304 compared to the one without addition, and no decrease in capacity is observed after 100 cycles. This is because the decline in charging efficiency due to minor internal short circuits has been suppressed.

の内部に塗りつけたりしても同様の効果を生むことは当
然である。
Naturally, the same effect can be produced by applying it to the inside of the body.

発明の効果 上述したように、本発明により鉛蓄電池の寿命特性が著
しく改善される点工業的価値甚だ大なるものである。
Effects of the Invention As described above, the present invention has great industrial value in that the life characteristics of lead-acid batteries are significantly improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は各種凝集剤によるPbO,微粒子の沈降速度に
及ぼす影響を示す比較図、第2図は凝集剤の分子量とフ
ロックの大きさとの関係を示す比較図、第3図は本発明
1こ基づく寿命試験結果を示す特性図でちる。
Figure 1 is a comparative diagram showing the influence of various flocculants on the sedimentation rate of PbO and fine particles, Figure 2 is a comparative diagram showing the relationship between the molecular weight of flocculants and the size of flocs, and Figure 3 is a diagram showing the relationship between the molecular weight of flocculants and the size of flocs. A characteristic diagram showing the life test results based on this figure is shown below.

Claims (1)

【特許請求の範囲】 1、電解液中に分子量が数千〜数万の有機高分子凝集剤
を添加したことを特徴とする鉛蓄電池。 2、有機高分子凝集剤としてカチオン性および両性およ
びカチオン解離基を含むアニオン性タイプを用いること
を特徴とする特許請求の範囲第1項記載の鉛蓄電池。 3、カチオン性無機凝集剤を添加することを特徴とする
特許請求の範囲第2項記載の鉛蓄電池。
[Scope of Claims] 1. A lead-acid battery characterized in that an organic polymer flocculant having a molecular weight of several thousand to tens of thousands is added to an electrolytic solution. 2. The lead-acid battery according to claim 1, wherein a cationic type, an amphoteric type, and an anionic type containing a cation dissociative group are used as the organic polymer flocculant. 3. The lead-acid battery according to claim 2, wherein a cationic inorganic flocculant is added.
JP60167960A 1985-07-30 1985-07-30 Lead storage battery Pending JPS6229073A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60167960A JPS6229073A (en) 1985-07-30 1985-07-30 Lead storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60167960A JPS6229073A (en) 1985-07-30 1985-07-30 Lead storage battery

Publications (1)

Publication Number Publication Date
JPS6229073A true JPS6229073A (en) 1987-02-07

Family

ID=15859229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60167960A Pending JPS6229073A (en) 1985-07-30 1985-07-30 Lead storage battery

Country Status (1)

Country Link
JP (1) JPS6229073A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100406886B1 (en) * 2001-06-04 2003-11-21 한국타이어 주식회사 Electrolyte Composition for Lead Storage Battery
WO2013058058A1 (en) 2011-10-18 2013-04-25 新神戸電機株式会社 Lead storage battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100406886B1 (en) * 2001-06-04 2003-11-21 한국타이어 주식회사 Electrolyte Composition for Lead Storage Battery
WO2013058058A1 (en) 2011-10-18 2013-04-25 新神戸電機株式会社 Lead storage battery
EP2770574A4 (en) * 2011-10-18 2015-04-08 Shin Kobe Electric Machinery Lead storage battery

Similar Documents

Publication Publication Date Title
JP4396527B2 (en) Lead acid battery
JP6045329B2 (en) Lead acid battery
JP2017526115A (en) Electrolytic copper foil and method for producing the same, current collector for lithium secondary battery including the electrolytic copper foil, and lithium secondary battery
JP2021531619A (en) Negative electrode active material for lithium secondary battery and secondary battery containing it
JP2003151617A (en) Lead-acid battery
JPS6229073A (en) Lead storage battery
JP7333301B2 (en) secondary battery
JP2712400B2 (en) Lead storage battery
JPS61281461A (en) Alkaline zinc storage battery
JPS5864757A (en) Lead accumulator for power
JPH0794205A (en) Sealed type lead-acid battery
JP3046860B2 (en) Lithium secondary battery
JPH08130001A (en) Separator for storage battery and sealed lead-acid battery using this separator
JPS61264675A (en) Positive plate of clad type lead-acid battery
JP3482671B2 (en) Sealed lead-acid battery
JPH0479111B2 (en)
JP3671402B2 (en) Lead storage battery charge control method
JP2024501901A (en) Proton conductive synthetic additives for battery electrolytes
JP2001160422A (en) Charging control method of lead storage battery
JPH0268857A (en) Manufacture of lead acid battery
JPS6047376A (en) Lead storage battery
JPS63237365A (en) Enclosed type lead storage battery
JPS59112570A (en) Lead storage battery
JP2002134158A (en) Control valve type lead-acid battery
JPH0562704A (en) Sealed lead-acid battery