JPS6229072A - Method and device for recovering valuable substance of run-down dry cell - Google Patents

Method and device for recovering valuable substance of run-down dry cell

Info

Publication number
JPS6229072A
JPS6229072A JP60166825A JP16682585A JPS6229072A JP S6229072 A JPS6229072 A JP S6229072A JP 60166825 A JP60166825 A JP 60166825A JP 16682585 A JP16682585 A JP 16682585A JP S6229072 A JPS6229072 A JP S6229072A
Authority
JP
Japan
Prior art keywords
waste dry
dry batteries
mercury
zinc
slag
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60166825A
Other languages
Japanese (ja)
Other versions
JPH0348624B2 (en
Inventor
Teru Uenishi
上西 輝
Kiyoshi Suzuki
淑 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NOMURA KOSAN KK
Original Assignee
NOMURA KOSAN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NOMURA KOSAN KK filed Critical NOMURA KOSAN KK
Priority to JP60166825A priority Critical patent/JPS6229072A/en
Publication of JPS6229072A publication Critical patent/JPS6229072A/en
Publication of JPH0348624B2 publication Critical patent/JPH0348624B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/52Reclaiming serviceable parts of waste cells or batteries, e.g. recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Processing Of Solid Wastes (AREA)
  • Primary Cells (AREA)

Abstract

PURPOSE:To recover mercury, iron and a zinc material without causing pollution, by sorting run-down dry cells in terms of their form, size and weight, and using a rotary kiln as a roaster. CONSTITUTION:Run-down dry cells are sorted into unit-1 dry cells, unit-2 dry cells, unit-3 dry cells, manganese dry cells, alkali manganese dry cells and the like, in terms of their form, size and weight, by a form sorter 12 and a weight sorter 13 before the iron sheath of each dry cell is removed by a disassembly machine 14 and recovered as iron scrap by magnetic sorting. The remaining body of the dry cell is crushed by a crush/mix machine 15 so that contained substances such as the positive electrode depolarizing mix in the remaining body are separated and pulverised. The remaining substances are then charged into a rotary kiln 31 through a substance storage bin 16 so that mercury is evaporated below the melting point of zinc. the mercury is then treated by a condensation and waste gas disposal equipment and a waste water disposal equipment including a cyclone 41. Burnt remains are cooled by a cooler 32 so that iron scraps are recovered by a crusher 62 and a magnetic sorter 63, weighing is performed by a weighing bin 64 and zinc remains are recovered.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、使用済みの廃乾電池より有価物を回収する廃
乾電池の有価物回収方法及びその装置に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method and apparatus for recovering valuables from used dry batteries, for recovering valuables from used dry batteries.

〈従来の技術〉 最近の社会は、電化製品の技術的進歩に伴い、企業のみ
ならず一般家庭での乾電池類の使用は年年増加し、加え
て従来のマンガン乾電池よりもより放電容量が大きく、
電圧変動が少なく、そして高率放電に適するアルカリマ
ンガン乾電池の使用量の増加は特に著しいものである。
<Conventional technology> In recent years, with the technological advancement of electrical appliances, the use of dry cell batteries has been increasing year by year, not only in businesses but also in households. ,
The increase in the use of alkaline manganese dry batteries, which have little voltage fluctuation and are suitable for high rate discharge, is particularly remarkable.

このような乾電池の多くは負極に亜鉛を用いており、放
電時には負極より水素ガスが発生するが、これを抑制す
るために水銀や水銀化合物を用いている。この有害な水
銀を含む廃乾電池は、家庭から廃棄物として各自治体が
収集し、直接埋立処分場に埋め立てられるか、可燃物と
共に焼却処分されている。この結果として最近の調査報
告では埋め立てられた場合、水銀による土壌の汚染は数
ppmから数+ppntという箇所が発見され、更にこ
れ等の埋立地の多くでメチル水銀さえも検出されている
。このような状況のもとで、各自治体の中では廃乾電池
を分別して収集する傾向が強まり、その処理に対応する
には、水銀を除去して無害化することばもとよりこれら
を構成する有価物を有効的に回収する必要がある。
Many of these dry batteries use zinc for the negative electrode, and hydrogen gas is generated from the negative electrode during discharge, but mercury or mercury compounds are used to suppress this. Waste dry batteries containing this harmful mercury are collected by local governments as waste from households and are either buried directly in landfills or incinerated along with combustible materials. As a result of this, recent research reports have found that soil contamination with mercury ranges from several ppm to several + ppnt in landfills, and even methylmercury has been detected in many of these landfills. Under these circumstances, there is a growing trend among local governments to separate and collect waste batteries, and in order to handle them, it is necessary to not only remove mercury and render them harmless, but also to remove the valuable materials that make up these batteries. It is necessary to collect it effectively.

しかして、従来より水銀含有廃棄物を処理する方法とし
て、水銀含有廃棄物を竪型多段焙焼式へレスホフ炉で焙
焼し、発生する排ガスをコンデンサーにて冷却して水銀
を回収し、水銀を回収した後の排ガスは、薬液洗滌、電
気集塵機によろミスト等の除去を行い、清浄化した後、
大気中に放散し、また、処理過程で生ずる余剰水は、蒸
発炉で処理していた。また、上記へレスホフ炉を出た焼
滓は、調湿してダストを押さえ、鉄筋コンクリート製埋
設槽に埋立処理していた。
Therefore, conventional methods for treating mercury-containing waste include roasting the mercury-containing waste in a vertical multi-stage roasting type Herreshof furnace, cooling the generated exhaust gas in a condenser, and recovering mercury. The collected exhaust gas is cleaned by chemical cleaning and electrostatic precipitator to remove mist, etc.
Excess water released into the atmosphere and generated during the treatment process was treated in an evaporation furnace. In addition, the slag left from the Herreshof furnace was humidified to suppress dust, and then disposed of in a buried reinforced concrete tank.

上記、水銀含有廃棄物の処理方法及び装置を用いて従来
は回収廃乾電池より水銀を回収していた。
Conventionally, mercury has been recovered from recovered waste dry batteries using the above-mentioned method and apparatus for treating mercury-containing waste.

その従来のフローシステムを第7図に、系統図を第8図
に示す。
The conventional flow system is shown in FIG. 7, and the system diagram is shown in FIG. 8.

回収廃乾電池は倉庫11に貯蔵され、各種混合のまま解
砕混合機15に入れて破砕及び押し潰しを行い、原料貯
留ビン16に貯留される。原料は原料貯留ビン16から
フィーダー(図示せず)でヘレスホフ炉21に投入され
る。上記へレスホフ炉21は第9図に示すように、円筒
型鋼板外胴に耐火煉瓦を裏張りしたもので、内部を水平
またはわずかに勾配のある煉瓦棚21bを置く、軸21
dより各段に歯のついたアーム21cを出しており、原
料貯留ビン16より供給され、ホッパー21aよりチャ
ージされた原料の各段煉瓦棚21b上の装入物を攪拌す
ると同時に水平移動させる。原料は上部より連続的に装
入されて、各煉瓦棚21bの中心部より円周方向と、そ
の逆方向を交互に繰り返しながら移動し、下部に落下し
て焼滓出口21hより排出される。炉の中央部付近にバ
ーナー21eが挿入され、炉内を加熱焙焼する。2次空
気は空気’ll’21 fより吹き込まれ、軸21dを
通り各段に供給される。排ガスは炉頂からA方向に排出
サレる。21gは上記軸21dとこれに取り付けたアー
ム21cを回転させる原動機である。第8図の焙焼設備
20はへレスホフ炉21で構成される。上記へレスホフ
炉21を出た焼滓は埋立処分場へ運搬され埋め立てられ
る。
The collected waste dry batteries are stored in a warehouse 11, put into a crushing mixer 15 in various mixed state, crushed and crushed, and stored in a raw material storage bin 16. The raw material is fed from the raw material storage bin 16 into the Herreshof furnace 21 by a feeder (not shown). As shown in FIG. 9, the Herreshof furnace 21 has a cylindrical steel plate outer shell lined with refractory bricks, and a horizontal or slightly sloped brick shelf 21b is placed inside the shaft 21.
An arm 21c with teeth at each stage is protruded from d, and the raw material supplied from the raw material storage bin 16 and charged from the hopper 21a is stirred and horizontally moved on each stage of the brick shelf 21b. The raw material is continuously charged from the upper part, moves from the center of each brick shelf 21b while alternately repeating the circumferential direction and the opposite direction, falls to the lower part, and is discharged from the slag outlet 21h. A burner 21e is inserted near the center of the furnace to heat and roast the inside of the furnace. The secondary air is blown from the air 'll' 21f and is supplied to each stage through the shaft 21d. Exhaust gas is discharged from the top of the furnace in direction A. 21g is a prime mover that rotates the shaft 21d and the arm 21c attached thereto. The roasting equipment 20 shown in FIG. 8 is composed of a Herreshof furnace 21. The slag leaving the Herreshof furnace 21 is transported to a landfill site and reclaimed.

〈発明が解決しようとする問題点〉 しかして、上記従来の廃乾電池の有価物回収方法及びそ
の装置は下記の如き欠点があった。
<Problems to be Solved by the Invention> However, the above-mentioned conventional method and apparatus for recovering valuables from waste dry batteries have the following drawbacks.

(a)  種類、大きさの異なる廃乾電池を解砕混合機
15でただ単に解砕混合してヘレスホフ炉21に入れる
ので、水銀の含有状態による適正な焙焼条件が設定でき
ず、解砕混合された原料の大きさが不揃いであるので、
水銀を含む物質に均一に熱を伝達するのが困難である。
(a) Since waste dry batteries of different types and sizes are simply crushed and mixed in the crushing mixer 15 and put into the Herreshof furnace 21, it is not possible to set appropriate roasting conditions depending on the mercury content, and the crushing and mixing Because the size of the processed raw materials is uneven,
It is difficult to uniformly transfer heat to materials containing mercury.

(b)  廃乾電池は鉄の外皮で覆われているので、解
砕混合機15で処理して分離しても、ヘレスホフ炉21
に亜鉛と共にチャージされるので、水銀を含む物質と共
に加熱する際、亜鉛と鉄は亜鉄酸亜鉛を形成することが
あり、原料にするには不適である。さらに、外皮の鉄板
は熱効率にも悪い影響を及ぼす。
(b) Since waste dry batteries are covered with an iron shell, even if they are processed and separated in the crushing mixer 15, they cannot be processed in the Herreshof furnace 21.
When heated with materials containing mercury, zinc and iron can form zinc ferrite, making it unsuitable as a raw material. Furthermore, the steel plate on the outer skin has a negative effect on thermal efficiency.

(C)  へレスホフ炉21での焙焼は原料の動キが少
ないため、熱を受けとる原料表面の水銀は揮発するが、
亜鉛が互いに接触した状態から適度な溶融で結びつき、
団塊が生ずる傾向になり水銀が揮発し難くなり、亜鉛を
含む焼滓中の水銀の残存率が高くなる。
(C) Since there is little movement of the raw material during roasting in the Herreshof furnace 21, the mercury on the surface of the raw material that receives heat evaporates;
Zinc is bonded by moderate melting from a state where it is in contact with each other,
Nodules tend to form, making it difficult for mercury to volatilize, and the residual rate of mercury in the slag containing zinc increases.

(d)  へレスホフ炉21を出な焼滓は、亜鉛と二酸
化マンガンが主体を占め、亜鉛はほぼ50%近い含有率
を示すが、これを埋立処分することは、有価物の大部分
を捨て去ることとなり、埋設槽の費用をも含めると資源
の損失につながる。
(d) The slag leaving the Herreshof furnace 21 is mainly composed of zinc and manganese dioxide, with a zinc content of almost 50%, but disposing of it in a landfill would throw away most of the valuables. Therefore, if the cost of buried tanks is included, it will lead to a loss of resources.

本発明は上述した事情に鑑みてなされたもので、廃乾電
池を処理し、これに含まれる有害物である水銀を除去し
て、水銀をはじめ鉄層、亜鉛原料を有価資源として有効
的かつ運転操業上無公害で安全衛生に影響なく回収する
廃乾電池の有価物回収方法及びその装置を提供せんとす
るものである。
The present invention was made in view of the above-mentioned circumstances, and it processes waste dry batteries, removes the harmful mercury contained therein, and effectively uses mercury, iron layer, and zinc raw materials as valuable resources. The purpose of the present invention is to provide a method and device for recovering valuable materials from waste dry batteries that are operationally non-polluting and do not affect health and safety.

く問題点を解決するための手段〉 そのため本発明は、廃乾電池を破砕混合した原料を焙焼
した排ガスより、凝縮・排ガス処理設備と排水処理設備
によって水銀を回収する廃乾電池の有価物回収方法にお
いて、回収した廃乾電池を型状選別機にかけて形状及び
寸法の差異により分別し、次に重量選別機にかけて同一
寸法の廃乾電池を原理的な違いによる製品の種類別に分
別し、分別した廃乾電池を寸法と種類の同じもの別に解
砕機にかけて鉄の外皮を除去回収し、次に解砕混合機で
破砕混合した後、ロータリーキルンで焙焼し・該ロータ
リーキルンの焼滓はクーラーにて冷却し、解砕機にかけ
た後、磁選機により鉄くずを回収し、残りの亜鉛、二酸
化マンガン等を含む亜鉛滓を回収することを特徴とする
廃乾電池の有価物回収方法と、廃乾電池を破砕混合した
原料を焙焼した排ガスより水銀を回収する凝縮・排ガス
処理設備と排水処理設備を有する廃乾電池の有価物回収
装置において、回収した廃乾f4池を形状及び寸法別に
分別する型状選別機と重量の相違により分別する重量選
別機と分別された廃乾電池の外皮を本体と分離する解体
機と該解体機より出た電池の本体を破砕及び押し潰す解
砕混合機とよりなる前処理設備と、上記解砕混合機で処
理した廃乾電池の本体を焙焼するロータリーキルンと該
ロータリーキルンを出た焼滓を冷却するクーラーとより
なる焙焼設備と、上記クーラーを出た焼滓を解砕する解
砕機と該解砕機の排出物より鉄くずを分離すると共に亜
鉛、二酸化マンガン等を含む亜鉛滓を回収する磁選機と
よりなる焼滓処理設備を有することを特徴とする廃乾電
池の有価物回収装置により構成される。
Means for Solving Problems> Therefore, the present invention provides a method for recovering valuables from waste dry batteries, in which mercury is recovered from exhaust gas obtained by roasting raw materials obtained by crushing and mixing waste dry batteries, using condensation/exhaust gas treatment equipment and wastewater treatment equipment. , the collected waste dry batteries are separated by type sorter based on differences in shape and size, then weight sorters are used to separate waste dry batteries of the same size into product types based on differences in principle, and the separated waste dry batteries are separated. The outer skin of the iron is removed and recovered using a crusher, and then crushed and mixed using a crushing mixer, and then roasted in a rotary kiln.The slag from the rotary kiln is cooled in a cooler, and then sent to the crusher. A method for recovering valuable materials from waste dry batteries, which is characterized by collecting iron scraps using a magnetic separator and recovering zinc slag containing remaining zinc, manganese dioxide, etc., and roasting raw materials obtained by crushing and mixing waste dry batteries. In a waste dry cell valuables recovery device that has a condensation/exhaust gas treatment facility that recovers mercury from burned exhaust gas and a wastewater treatment facility, there is a difference in weight between a shape sorter that separates the recovered waste dry F4 ponds by shape and size. Pre-treatment equipment consisting of a weight sorter for sorting, a disassembly machine for separating the outer shells of separated waste dry batteries from the main bodies, a crushing mixer for crushing and crushing the battery bodies discharged from the dismantling machine, and the above-mentioned disassembly. Roasting equipment consisting of a rotary kiln that roasts the main body of waste dry batteries treated with a mixer, a cooler that cools the slag that comes out of the rotary kiln, a crusher that crushes the slag that comes out of the cooler, and the cracker. Consisting of a device for recovering valuables from waste dry batteries, which is characterized by having a slag processing equipment consisting of a magnetic separator that separates iron scraps from the output of the crusher and recovers zinc slag containing zinc, manganese dioxide, etc. .

く作 用〉 廃乾電池は原理的な違いの製品の種類、形状及び大きさ
の差異により分別され、鉄の外皮は取り除いてロータリ
ーキルン31に投入されるので、水銀の含有状態による
適正な焙焼条件が設定可能であり、焙焼炉のロータリー
キルン31は原料が該キルンの回転により炉の内壁と共
に一定の位置まで昇って落下し炉内の傾斜と共に出口側
に移動するので、落下する原料と上昇する原料が衝突し
合い原料は互いに結合する乙となく粉状あるいは構成物
が単体として存在し単体は互いに表面をきづつけ合う。
〉 Waste dry batteries are sorted according to the product type, shape, and size that differ in principle, and the iron shell is removed and put into the rotary kiln 31, so that the proper roasting conditions depending on the mercury content are determined. can be set, and in the rotary kiln 31 of the roasting furnace, the raw material rises to a certain position along with the inner wall of the furnace due to the rotation of the kiln, falls, and moves to the exit side with the slope of the furnace, so that it rises with the falling raw material. The raw materials collide and the raw materials do not bond with each other, but powder or constituents exist as single bodies, and the single bodies scratch the surfaces of each other.

従って、水銀を含む亜鉛等の構成物は表面が活性化し合
い水銀が熱を吸収し易く、又揮発表面が大きくなり揮発
が効果よく行われる。
Therefore, the surfaces of components such as zinc containing mercury are activated, and the mercury easily absorbs heat, and the volatilization surface becomes large, so that volatilization is effectively performed.

さらに、ロータリーキルン31を出た焼滓はクーラー3
2を経て解砕機62にかけて解砕した後、磁選機63に
より鉄くずを分離するので亜鉛、二酸化マンガン等を含
む亜鉛滓が回収できる。
Furthermore, the slag leaving the rotary kiln 31 is stored in a cooler 3.
2 and then crushed by a crusher 62, iron scraps are separated by a magnetic separator 63, so that zinc slag containing zinc, manganese dioxide, etc. can be recovered.

〈実施例〉 以下、添付図に基づいて本発明の一実施例を説明する。<Example> Hereinafter, one embodiment of the present invention will be described based on the accompanying drawings.

第1図は本発明の一実施例を示す廃乾電池の有価物回収
フローシステム図、第2図は同系統図である。
FIG. 1 is a flow system diagram for recovering valuable materials from waste dry batteries showing an embodiment of the present invention, and FIG. 2 is a diagram showing the same system.

回収廃乾電池は倉庫11に貯蔵され、各種混合のまま型
状選別機12に送られる。この型状選別機12は第3図
に示すように、整列フィーダー12aに供給された廃乾
電池は電磁式振動によって上記整列フィーダー12aの
溝の中を前方に送られ選別フィーダー12bに落ちる。
The collected waste dry batteries are stored in a warehouse 11 and sent to a type sorter 12 in various mixed forms. As shown in FIG. 3, in this type sorter 12, waste dry batteries supplied to an alignment feeder 12a are sent forward through the grooves of the alignment feeder 12a by electromagnetic vibration and fall into a sorting feeder 12b.

この時、ボタン型及び単4型易下の小さい廃乾電池は1
2eで示す2本の桟の間のスリットより下に落ち集めら
れる。次に単3型はスリット12dより、単体z型はス
リット12e及び単1型はスリット12fよりそれぞれ
下に落ちて集められる。最後に単1型が集められると、
その他の箱型の大きい廃乾電池は選別フィーダー12b
先端より落ちて集められる。上記選別フィーダー12b
は、整列フィーダー12 aと同様に電磁振動式フィー
ダー12gによって廃乾電池を送るようになっている。
At this time, the number of small waste dry batteries of button type and AAA type is 1.
It falls and is collected below the slit between the two bars shown as 2e. Next, the AA type falls below the slit 12d, the single Z type falls below the slit 12e, and the AA type falls below the slit 12f, and is collected. Finally, when the single type is collected,
Other large box-shaped waste batteries are sorted into the sorting feeder 12b.
It falls from the tip and is collected. The above sorting feeder 12b
The waste batteries are fed by an electromagnetic vibrating feeder 12g, similar to the alignment feeder 12a.

上記スリット12eで分別されたボタン型と単4.5型
は図示しない上記と同じ構造の型状選別機でさらに区別
する。
The button type and AAA type 4.5 type separated by the slit 12e are further distinguished by a type sorter (not shown) having the same structure as above.

上記型状選別機12により形状及び寸法別に分別された
廃乾電池の内、単1型、単2型、単3型の各筒型のもの
にはマンガン乾電池とアルカリマンガン乾電池の2種が
大半を占めており、これ等は同一型状であっても構成物
質の違いにより重さが違っているので、同−型状別に重
量選別機13により重量選別を行う。第4図に重量選別
機の斜視図を示す。
Of the waste dry batteries that are sorted by shape and size by the type sorter 12, most of the cylindrical AA, AA, and AA cylindrical batteries are of two types: manganese batteries and alkaline manganese batteries. Even if they are of the same shape, they have different weights due to differences in constituent materials, so weight sorting is performed by weight sorter 13 for each of the same shapes. FIG. 4 shows a perspective view of the weight sorter.

廃乾電池はフィーダー13aから送り込み、コンベヤー
13bで計量コンベヤー13cに載せられる。ここで一
定の範囲の重量を検知するように指定すると、この計量
コンベヤー13cでロードセルにより1個1個の重量を
検知して選別コンベヤー13dにて計量された各々の重
量に選り分ける。選り分ける装置にはフリッパ一式、エ
ヤジェット式等がある。
The waste dry batteries are fed from a feeder 13a and placed on a weighing conveyor 13c by a conveyor 13b. If it is specified that a certain range of weight is to be detected, the weighing conveyor 13c detects the weight of each piece using a load cell, and the sorting conveyor 13d sorts the weights into the respective weights. Sorting devices include a set of flippers and an air jet type.

上記型状選別Plk12と重量選別機13により形状、
寸法及び重量別に選別された廃乾電池は、例えば単1、
単2、単3等の各型とマンガン、アルカリマンガン等の
穏頚別に第5図に示す解体機14にかけて鉄の外皮を除
去する。外皮の除去は、刃又は砥石を用いて外皮を切断
する方法では、切断によって発生する熱で水銀が飛散し
、作業環境に悪影響が生じるのでそれを防ぐため、第5
図に示す解体機14を使用する。この構造は、廃乾電池
を同じ方向に整列させ、受は台の両側より支持棒14a
が圧力により押し出されて廃乾電池14bを支えると、
解体型14cが支持棒14aに沿って両側より出て解体
型14cを廃乾電池14bの極板を押さえる部分に当て
圧力で解体型14cを図に鎖線で示すように開く。外皮
14dは解体型14cによって外側に拡げられ本体14
eと分離する。これ等を下に落とし、磁選によって外皮
14dを鉄くずとして回収する。
Shape,
Waste dry batteries sorted by size and weight are, for example, AA batteries,
The outer skin of the iron is removed by disassembling machine 14 shown in FIG. 5 for each type such as AA and AA and mild type such as manganese and alkali manganese. In order to remove the outer skin, in order to prevent the method of cutting the outer skin using a blade or a grindstone, the heat generated by cutting causes mercury to scatter, which has a negative impact on the working environment.
A dismantling machine 14 shown in the figure is used. In this structure, the waste batteries are arranged in the same direction, and the receivers are mounted on support rods 14a from both sides of the stand.
is pushed out by pressure and supports the waste dry battery 14b,
The dismantling mold 14c comes out from both sides along the support rod 14a, and the dismantling mold 14c is applied to the part that presses the electrode plate of the waste dry battery 14b, and the dismantling mold 14c is opened as shown by the chain line in the figure. The outer skin 14d is expanded outwardly by the dismantled mold 14c to form the main body 14.
Separate from e. These are dropped and the outer skin 14d is collected as iron scrap by magnetic separation.

上記解体機14にて外皮を除去した残りの本体14eの
集合である原料は解砕混合機15にて破砕及び押し潰し
をして筒状の本体中の正極合剤等の包含物質を筒より分
離し粉砕する。上記廃乾電池の本体14eは、マンガン
乾電池においては亜鉛の筒に囲まれ、アルカリマンガン
乾電池においては鉄製の筒の中に亜鉛が入れられている
。上記解砕混合機15は、パドル式と称され、第6図に
示すように長方形の上面解放で、溝形の本体15aの中
には羽根15cがついた軸15bが29配設されている
。この軸15b、15bは、一対の歯車15d、15d
で互いに反対方向に回転するようになっており、図示し
ないモータにより駆動される。廃乾電池の本体は第6図
の右方向から矢印方向にチャージされ、互いに反対方向
に回転する羽根15cにより破砕及び押し債されて左方
の破線矢印方向に下方の出口15eから押し出される。
The raw material, which is a collection of the remaining bodies 14e from which the outer skin has been removed in the dismantling machine 14, is crushed and crushed in a crushing mixer 15, and the substances contained in the cylindrical body, such as the positive electrode mixture, are removed from the cylinder. Separate and crush. The main body 14e of the waste dry battery is surrounded by a zinc cylinder in the case of a manganese dry battery, and zinc is placed in an iron cylinder in the case of an alkaline manganese dry battery. The crushing mixer 15 is called a paddle type, and as shown in FIG. 6, has a rectangular top surface that is open, and has a groove-shaped main body 15a in which 29 shafts 15b with blades 15c are disposed. . These shafts 15b, 15b are connected to a pair of gears 15d, 15d.
They rotate in opposite directions, and are driven by a motor (not shown). The main body of the waste dry cell is charged from the right direction in FIG. 6 in the direction of the arrow, crushed and pressed together by the blades 15c rotating in opposite directions, and is pushed out from the lower outlet 15e in the direction of the dashed arrow on the left.

押し出された原料は供給コンベヤー(図示せず)により
原料貯留ビン16に貯留される。上記型状選別機12か
ら原料貯留ビン16までを前処理設備10として第2図
に示す。
The extruded raw material is stored in a raw material storage bin 16 by a supply conveyor (not shown). FIG. 2 shows the pretreatment equipment 10 from the shape sorter 12 to the raw material storage bin 16.

上記原料貯留ビン16には廃乾電池の本体を破砕及び押
し潰した原料が型・寸法別及び構成物質の相違による種
類別に貯留され、ロータリーキルン31に図示しない定
量供給機でチャージされる。
In the raw material storage bin 16, raw materials obtained by crushing and crushing the main bodies of waste dry batteries are stored according to type, size, and type depending on the difference in constituent materials, and are charged into the rotary kiln 31 by a quantitative feeder (not shown).

チャージされた原料の内、水銀は亜鉛の融点419℃に
到るまでに沸点360℃でほとんど揮発し、上記ロータ
リーキルン31の入口側に設けられたダクト(図示せず
)を通り他の可燃物の燃焼ガス及び揮発成分あるいは水
分と共に排ガスとして第1図、第2図に示すサイクロン
41以下の凝縮・排ガス処理膜4II40及び排水処理
設備50で処理される。しかして、上記凝縮・排ガス処
理膜[40及び排水処理設備50は第7図の従来のフロ
ーシステム図と同じである。
Of the charged raw materials, most of the mercury volatilizes at a boiling point of 360°C before reaching the melting point of zinc, 419°C, and passes through a duct (not shown) installed at the inlet of the rotary kiln 31 to other combustible materials. It is treated as exhaust gas together with the combustion gas and volatile components or moisture in the condensation/exhaust gas treatment membrane 4II40 below the cyclone 41 and the wastewater treatment equipment 50 shown in FIGS. 1 and 2. The condensation/exhaust gas treatment membrane [40] and wastewater treatment equipment 50 are the same as in the conventional flow system diagram shown in FIG.

上記ダクトを通った排ガスはダストを除去するサイクロ
ン41及び乾式電気集塵機42を経てコンデンサー43
に導かれる。コンデンサー43では排ガスは常温まで温
度が下がるので、常温で水銀蒸気圧以上の水銀蒸気は凝
縮し、水銀が回収される。排ガス中の塩化物等の大気汚
染物質は次のガス洗浄塔44で適当な薬液にて気液接触
によって除去する。又、ミスト等は湿式電気集塵機45
で除くが、水銀は一部がガス化しているので、水銀を吸
着するキレ−1・樹脂を添着した活性炭槽の脱M塔46
を通過接触させて大気中に排ガスとして放出する。上記
サイクロン41から脱M塔までの設備を凝縮・排ガス処
理設備40として第2図に示す。このようにして排ガス
は環境保全に適合した状態で排出するので環境汚染の問
題は生じない。又、薬液に使用す水等は循環利用し、こ
れ等に吸収された水銀は排水処理PA52とフィルター
53を通して水銀固定剤にて処理して回収する。
The exhaust gas that has passed through the duct passes through a cyclone 41 that removes dust and a dry electrostatic precipitator 42, and then a condenser 43.
guided by. In the condenser 43, the temperature of the exhaust gas is lowered to room temperature, so mercury vapor having a pressure higher than mercury vapor pressure at room temperature is condensed, and mercury is recovered. Air pollutants such as chlorides in the exhaust gas are removed in the next gas scrubbing tower 44 by gas-liquid contact with an appropriate chemical solution. Also, for mist, etc., use a wet electrostatic precipitator 45.
However, some of the mercury is gasified, so the activated carbon tank's de-M tower 46 is impregnated with Kir-1 resin that adsorbs mercury.
It is released into the atmosphere as exhaust gas. The equipment from the cyclone 41 to the de-M tower is shown in FIG. 2 as a condensation/exhaust gas treatment equipment 40. In this way, the exhaust gas is discharged in a state compatible with environmental protection, so that no problem of environmental pollution occurs. In addition, the water used for the chemical solution is recycled, and the mercury absorbed therein is recovered by being treated with a mercury fixative through the waste water treatment PA 52 and the filter 53.

また、薬液内の一部塩類にも亜鉛の一部が含まれている
ため、これを回収するのと水を排出しないようにドライ
ヤー54を使用し、そのためのボイラー55が設けであ
る。クーリングタワー51はガス洗浄塔に使用する薬液
温度を下げろためのものである。
In addition, since some of the salts in the chemical solution also contain some zinc, a dryer 54 is used to recover this and to prevent water from being discharged, and a boiler 55 is provided for this purpose. The cooling tower 51 is used to lower the temperature of the chemical solution used in the gas scrubbing tower.

上記クーリングタワー51からボイラー55までの設備
を排水設備50として第2図に示す。
The equipment from the cooling tower 51 to the boiler 55 is shown in FIG. 2 as a drainage equipment 50.

上記ロータリキルンは有害な水銀ガスのリーク防止のシ
ールを施しであるが、その他の構造は一般的に使用され
ているものと同しである。炉入口からチャージされた原
料は、バーナー(図示せず)による燃料の燃焼熱により
加熱され、炉内の傾斜と共に焼滓が排出され、排ガスは
上述のダクトに排出される。上記ロータリーキルンを出
た焼滓は高mであるので、ロータリークーラー32aと
グーリングコンベヤー32bで構成されるクーラー32
で冷却するが、先ずロータリークーラー32aにて空気
と熱交換して冷却され、焼滓が出口側に移動する間に3
00〜400℃に温度が下がり、クーリングコンベヤー
32bにチャージされる。
The above-mentioned rotary kiln is equipped with a seal to prevent the leakage of harmful mercury gas, but the other structure is the same as that commonly used. The raw material charged from the furnace entrance is heated by the heat of combustion of fuel by a burner (not shown), the slag is discharged along with the slope of the furnace, and the exhaust gas is discharged to the above-mentioned duct. Since the slag leaving the rotary kiln has a height of m, a cooler 32 consisting of a rotary cooler 32a and a Guring conveyor 32b is used.
First, the rotary cooler 32a exchanges heat with air to cool the slag, and while the slag moves to the outlet side, the
The temperature drops to 00 to 400°C, and the cooling conveyor 32b is charged.

上記熱交換して加熱した空気は、ロータリーキルン31
の二次空気として利用することにより、エネルギーの節
減を計る。上記クーリングコンベヤー32bは、セーキ
ングコンベヤー(振動コンベヤー)で、外部より冷却す
るジャケット付のものを使用し、焼滓は移動中に冷却す
る。上記ロータリーキルン31、ロータリークーラー3
2a1クーリングコンベヤー32bを燃焼設備30とし
て第2図に示す。上記クーリングコンベヤー32bで冷
却された焼滓は一旦焼滓貯留槽61に入れる。
The air heated by the heat exchange is transferred to the rotary kiln 31.
Save energy by using it as secondary air. The cooling conveyor 32b is a saking conveyor (vibration conveyor) equipped with a jacket for cooling from the outside, and the slag is cooled during movement. Above rotary kiln 31, rotary cooler 3
The 2a1 cooling conveyor 32b is shown in FIG. 2 as the combustion equipment 30. The slag cooled by the cooling conveyor 32b is temporarily put into the slag storage tank 61.

焼滓にはアルカリマンガン乾電池の筒型の鉄製品、又一
部原料中に入る鉄製品があり、これ等には亜鉛、マンガ
ン等の他の構成物質が付着しているので解砕機62で分
離しTi1選機63にて鉄くずを回収する。上記解砕機
62はケージミル型式のものが使用される。鉄を除去し
た焼滓は秤量ビン64に入れ計量された後、亜鉛滓とし
て回収される。
The slag includes cylindrical iron products for alkaline manganese dry batteries and some iron products that are included in the raw materials.Since these have other constituent substances such as zinc and manganese attached, they are separated by a crusher 62. The iron scrap is collected by the Ti1 sorter 63. The crusher 62 used is of a cage mill type. The slag from which iron has been removed is placed in a weighing bin 64 and weighed, and then recovered as zinc slag.

この亜鉛滓は亜鉛と二酸化マンガンが主体を占める乙と
になり、亜鉛はほぼ50%近い含有率を示す。上記焼滓
貯留槽61から秤量ピン64までの設備を焼滓処理設備
60として第2図に示す。
This zinc slag is mainly composed of zinc and manganese dioxide, and the zinc content is nearly 50%. The equipment from the slag storage tank 61 to the weighing pin 64 is shown in FIG. 2 as the slag processing equipment 60.

〈発明の効果〉 以上詳細に説明した本発明の廃乾電池の有価物回収方法
及びその装置によれば、下記の如き効果を奏する。
<Effects of the Invention> According to the method and apparatus for recovering valuables from waste dry batteries of the present invention described in detail above, the following effects are achieved.

■ 前処理設備により廃乾電池を形状・寸法別及び構成
物質の相違により分別し、それぞれ別個に処理すると共
に外皮を鉄くずとして回収するので、有価物でも有害な
水銀を確実に除去回収できる。
■ Use pre-treatment equipment to separate waste dry batteries by shape, size, and constituent materials, treat each battery separately, and recover the outer skin as scrap iron, making it possible to reliably remove and collect harmful mercury even though it is a valuable item.

■ 焙焼設備にロータリーキルンを使用するので水銀が
効果的に揮発し、回収効率が良い。
■ Since a rotary kiln is used for the roasting equipment, mercury is effectively volatilized and recovery efficiency is high.

■ 解砕機と磁選機を組み合わせた焼滓処理設備により
、廃乾電池から再資源化として利用可能な有価物の鉄く
ず、亜鉛、二酸化マンガン等を回収できる。
■ Slag processing equipment that combines a crusher and magnetic separator can recover valuable materials such as iron scrap, zinc, and manganese dioxide that can be recycled from waste dry batteries.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す廃乾電池の有価物回収
フローシステム図、第2図は同系統図、第3図は本発明
の有価物回収装置に使用する型状選別機の斜視図、第4
図は同重量選別機の斜視図、第5図(a)、(b)はそ
れぞれ同解体機の解体動作を示す平面図及び側面図、第
6図は同解砕混合機の斜視図、第7図は従来の廃乾電池
の有価ξグ回収フローシステム図、第8図は同系統図、
第9図は従来使用されたヘレスホフ炉の縦断面図である
。 10・前処理設備、11 倉庫、 12・・型状選別機、13・・重量選別機、14 解体
機、14d・外皮、14e  本体、15 解砕混合機
、20,30  焙焼設備、21 ヘレスホフ炉、 31 ・ロータリーキルン、32・クーラー、32a 
 ・ロータリークーラー、 32b  クーリングコンベヤー、 40 ・凝縮・排ガス処理設備、 50 ・排水処理設備、60 焼滓処理設備、62 ・
解砕機、63 ・磁選機、
Fig. 1 is a flow system diagram for recovering valuables from waste dry batteries showing an embodiment of the present invention, Fig. 2 is a diagram of the same system, and Fig. 3 is a perspective view of a type sorter used in the valuables recovery device of the present invention. Figure, 4th
The figure is a perspective view of the same weight sorter, Figures 5(a) and (b) are a plan view and side view showing the dismantling operation of the same dismantling machine, respectively, and Figure 6 is a perspective view of the same crushing mixer. Figure 7 is a flow diagram of a conventional waste dry battery valuable collection flow system, Figure 8 is a diagram of the same system,
FIG. 9 is a longitudinal sectional view of a conventionally used Herreshof furnace. 10. Pretreatment equipment, 11. Warehouse, 12.. Shape sorter, 13.. Weight sorter, 14. Dismantling machine, 14d. Shell, 14e. Main body, 15. Crushing mixer, 20, 30. Roasting equipment, 21. Herreshof. Furnace, 31 ・Rotary kiln, 32 ・Cooler, 32a
・Rotary cooler, 32b Cooling conveyor, 40 ・Condensation/exhaust gas treatment equipment, 50 ・Wastewater treatment equipment, 60 Slag treatment equipment, 62 ・
Crushing machine, 63 ・Magnetic separator,

Claims (2)

【特許請求の範囲】[Claims] (1)廃乾電池を破砕混合した原料を焙焼した排ガスよ
り、凝縮・排ガス処理設備と排水処理設備によって水銀
を回収する廃乾電池の有価物回収方法において、回収し
た廃乾電池を型状選別機にかけて形状及び寸法の差異に
より分別し、次に重量選別機にかけて同一寸法の廃乾電
池を原理的な違いによる製品の種類別に分別し、分別し
た廃乾電池を寸法と種類の同じもの別に解体機にかけて
鉄の外皮を除去回収し、次に解砕混合機で破砕混合した
後、ロータリーキルンで焙焼し、該ロータリーキルンの
焼滓はクーラーにて冷却し、解砕機にかけた後、磁選機
により鉄くずを回収し、残りの亜鉛、二酸化マンガン等
を含む亜鉛滓を回収することを特徴とする廃乾電池の有
価物回収方法。
(1) In the method for recovering valuables from waste dry batteries, in which mercury is recovered from the exhaust gas obtained by roasting raw materials made by crushing and mixing waste dry batteries, using condensation/exhaust gas treatment equipment and wastewater treatment equipment, the collected waste dry batteries are passed through a mold sorter. They are sorted according to differences in shape and size, and then put into a weight sorter to separate waste dry batteries of the same size into product types based on differences in principle. The outer skin is removed and collected, then crushed and mixed in a crushing mixer, and then roasted in a rotary kiln. The slag from the rotary kiln is cooled in a cooler, passed through a crusher, and iron scraps are recovered by a magnetic separator. , a method for recovering valuables from waste dry batteries, characterized by recovering zinc slag containing remaining zinc, manganese dioxide, etc.
(2)廃乾電池を破砕混合した原料を焙焼した排ガスよ
り水銀を回収する凝縮・排ガス処理設備と排水処理設備
を有する廃乾電池の有価物回収装置において、回収した
廃乾電池を形状及び寸法別に分別する型状選別機と重量
の相違により分別する重量選別機と分別された廃乾電池
の外皮を本体と分離する解体機と該解体機より出た電池
の本体を破砕及び押し潰す解砕混合機よりなる前処理設
備と、上記解砕混合機で処理した廃乾電池の本体を焙焼
するロータリーキルンと該ロータリーキルンを出た焼滓
を冷却するクーラーとよりなる焙焼設備と、上記クーラ
ーを出た焼滓を解砕する解砕機と該解砕機の排出物より
鉄くずを分離すると共に亜鉛、二酸化マンガン等を含む
亜鉛滓を回収する磁選機とよりなる焼滓処理設備を有す
ることを特徴とする廃乾電池の有価物回収装置。
(2) The recovered waste dry batteries are separated by shape and size in the waste dry cell valuables recovery equipment, which has condensation/exhaust gas treatment equipment and wastewater treatment equipment to recover mercury from the exhaust gas produced by roasting raw materials made by crushing and mixing waste dry batteries. A weight sorter separates waste dry batteries based on differences in weight, a dismantling machine separates the outer shells of separated waste dry batteries from the main body, and a crushing mixer crushes and crushes the main bodies of the batteries discharged from the dismantler. a rotary kiln for roasting the main body of the waste dry battery treated with the crushing mixer; a torrefaction equipment comprising a cooler for cooling the slag leaving the rotary kiln; and a roasting equipment for the slag leaving the cooler. A waste dry battery characterized by having a slag processing equipment comprising a crusher for crushing the battery, and a magnetic separator for separating iron scraps from the discharge of the crusher and recovering zinc slag containing zinc, manganese dioxide, etc. valuables recovery equipment.
JP60166825A 1985-07-30 1985-07-30 Method and device for recovering valuable substance of run-down dry cell Granted JPS6229072A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60166825A JPS6229072A (en) 1985-07-30 1985-07-30 Method and device for recovering valuable substance of run-down dry cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60166825A JPS6229072A (en) 1985-07-30 1985-07-30 Method and device for recovering valuable substance of run-down dry cell

Publications (2)

Publication Number Publication Date
JPS6229072A true JPS6229072A (en) 1987-02-07
JPH0348624B2 JPH0348624B2 (en) 1991-07-25

Family

ID=15838361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60166825A Granted JPS6229072A (en) 1985-07-30 1985-07-30 Method and device for recovering valuable substance of run-down dry cell

Country Status (1)

Country Link
JP (1) JPS6229072A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0284135A2 (en) * 1987-03-26 1988-09-28 Metallgesellschaft Ag Process for recovering small batteries
EP0580241A3 (en) * 1992-07-22 1994-07-27 Philips Electronics Nv Apparatus and method for determining the type of a battery or accumulator
WO1994019838A1 (en) * 1993-02-25 1994-09-01 Titalyse S.A. Used battery and cell sorting method and apparatus
WO1994025992A1 (en) * 1993-05-03 1994-11-10 Firstec S.A. Method and device for sorting scrap batteries and accumulators
WO1995035583A1 (en) * 1994-06-20 1995-12-28 Ct Umwelttechnih Ag Battery recycling process, in particular for dry batteries
US6329096B2 (en) * 1996-03-05 2001-12-11 Canon Kabushiki Kaisha Process and apparatus for recovering components of sealed type battery
JP2012129054A (en) * 2010-12-15 2012-07-05 Sawaya:Kk Waste battery processing method and waste battery sorting machine and waste battery processing apparatus
JP2013530485A (en) * 2010-03-16 2013-07-25 アクサー リミテッド Battery recycling method
JP2018026279A (en) * 2016-08-10 2018-02-15 太平洋セメント株式会社 Method for recovery of valuables from wasted lithium ion battery, and method for preparing data base
CN111235393A (en) * 2020-03-18 2020-06-05 郑州子然环保科技有限公司 Equipment for removing and recycling mercury for waste batteries

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49103884A (en) * 1973-01-19 1974-10-01
JPS5278032A (en) * 1975-12-24 1977-07-01 Suwa Seikosha Kk Method of recovering silver in silver battery
JPS5730273A (en) * 1980-07-29 1982-02-18 Dowa Mining Co Ltd Disposal of button type waste battery
JPS5827624B2 (en) * 1978-04-18 1983-06-10 富士電気化学株式会社 Collection and reuse method of anode active material for silver oxide batteries

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH655081A5 (en) * 1981-07-30 1986-03-27 Sulzer Ag METHOD FOR PRODUCING DEUTERIUM-ENRICHED WATER WHEN RECOVERING HYDROGEN.

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49103884A (en) * 1973-01-19 1974-10-01
JPS5278032A (en) * 1975-12-24 1977-07-01 Suwa Seikosha Kk Method of recovering silver in silver battery
JPS5827624B2 (en) * 1978-04-18 1983-06-10 富士電気化学株式会社 Collection and reuse method of anode active material for silver oxide batteries
JPS5730273A (en) * 1980-07-29 1982-02-18 Dowa Mining Co Ltd Disposal of button type waste battery

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0284135A2 (en) * 1987-03-26 1988-09-28 Metallgesellschaft Ag Process for recovering small batteries
EP0284135A3 (en) * 1987-03-26 1990-01-31 Metallgesellschaft Ag Process for recovering small batteries
EP0580241A3 (en) * 1992-07-22 1994-07-27 Philips Electronics Nv Apparatus and method for determining the type of a battery or accumulator
WO1994019838A1 (en) * 1993-02-25 1994-09-01 Titalyse S.A. Used battery and cell sorting method and apparatus
WO1994025992A1 (en) * 1993-05-03 1994-11-10 Firstec S.A. Method and device for sorting scrap batteries and accumulators
WO1995035583A1 (en) * 1994-06-20 1995-12-28 Ct Umwelttechnih Ag Battery recycling process, in particular for dry batteries
US6329096B2 (en) * 1996-03-05 2001-12-11 Canon Kabushiki Kaisha Process and apparatus for recovering components of sealed type battery
JP2013530485A (en) * 2010-03-16 2013-07-25 アクサー リミテッド Battery recycling method
US8979006B2 (en) 2010-03-16 2015-03-17 Akkuser, Ltd Battery recycling method
JP2012129054A (en) * 2010-12-15 2012-07-05 Sawaya:Kk Waste battery processing method and waste battery sorting machine and waste battery processing apparatus
JP2018026279A (en) * 2016-08-10 2018-02-15 太平洋セメント株式会社 Method for recovery of valuables from wasted lithium ion battery, and method for preparing data base
CN111235393A (en) * 2020-03-18 2020-06-05 郑州子然环保科技有限公司 Equipment for removing and recycling mercury for waste batteries
CN111235393B (en) * 2020-03-18 2020-11-03 江苏英能新能源科技有限公司 Equipment for removing and recycling mercury for waste battery

Also Published As

Publication number Publication date
JPH0348624B2 (en) 1991-07-25

Similar Documents

Publication Publication Date Title
JP4438329B2 (en) Method for treating waste containing organic matter
CN106958827A (en) A kind of dangerous waste incinerator slag total system
JPS6229072A (en) Method and device for recovering valuable substance of run-down dry cell
KR101232058B1 (en) Organic waste recycling system using twice drying method
CN102357516A (en) Linkage process of municipal waste pre-treatment and cement kiln resource comprehensive utilization and system thereof
CN114094221A (en) Efficient automatic disassembling and recycling system and method for ternary lithium battery
CN105945028B (en) Consumer waste incineration regeneration technique
CN102218440B (en) E-waste disassembling recovery processing method
JP6186159B2 (en) Waste treatment equipment
CN112536313A (en) Treatment method of industrial waste salt containing organic pollutants
CN114497789A (en) Economical ternary lithium battery disassembling and recycling system and method
KR20230110485A (en) Lithium ion battery recycling method, apparatus and system
JP4948235B2 (en) Incineration fly ash treatment method
CN1124438C (en) Integrated treatment system for city domestic refuse
JPH09170733A (en) Waste treatment facility
CN113210404A (en) Hazardous waste&#39;s processing system
CN113494711A (en) High-temperature roasting solid waste treatment device and method
CN216354402U (en) Economical ternary lithium battery disassembling and recycling system
TWI829579B (en) Methods of making derived fuels from waste
JP2502172B2 (en) Dust collection dust treatment method
CN112453011A (en) Garbage treatment method
JP7228968B2 (en) Exhaust gas treatment method and its system
JPH11158476A (en) Production of fuel from waste
CN107490009A (en) Chemical spent material incinerator
CN207316918U (en) Chemical spent material incinerator

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees