JPS5827624B2 - Collection and reuse method of anode active material for silver oxide batteries - Google Patents

Collection and reuse method of anode active material for silver oxide batteries

Info

Publication number
JPS5827624B2
JPS5827624B2 JP53044765A JP4476578A JPS5827624B2 JP S5827624 B2 JPS5827624 B2 JP S5827624B2 JP 53044765 A JP53044765 A JP 53044765A JP 4476578 A JP4476578 A JP 4476578A JP S5827624 B2 JPS5827624 B2 JP S5827624B2
Authority
JP
Japan
Prior art keywords
silver oxide
active material
silver
anode active
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53044765A
Other languages
Japanese (ja)
Other versions
JPS54137633A (en
Inventor
憲昭 坂本
健一 篠田
知也 村田
敬 土田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP53044765A priority Critical patent/JPS5827624B2/en
Publication of JPS54137633A publication Critical patent/JPS54137633A/en
Publication of JPS5827624B2 publication Critical patent/JPS5827624B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Description

【発明の詳細な説明】 本発明は放電済みの酸化銀電池の陽極活物質を回収して
再使用する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for recovering and reusing the anode active material of a discharged silver oxide battery.

従来、酸化□電池の陽極活物質としては酸化銀単独或い
は酸化銀と二酸化マンガンの混合物が用いられている。
Conventionally, silver oxide alone or a mixture of silver oxide and manganese dioxide has been used as the positive electrode active material for □ oxide batteries.

l〜かし、酸化銀単独では、電池の放電末期において起
電力が急激に落ち込むため、電池の出力電圧の低下に基
づいて所謂容量ぎれを予知することができない。
However, when silver oxide is used alone, the electromotive force drops sharply at the end of battery discharge, so it is not possible to predict so-called capacity exhaustion based on the decrease in battery output voltage.

このため、特に最近の電子腕時計用の電源として用いら
れる酸化銀電池では、放電末期時の起電力の低下を緩や
かにするために、陽極活物質と1〜で酸化銀と二酸化マ
ンガンの混合物を使用する傾向が強くなっている。
For this reason, especially in silver oxide batteries used as power sources for recent electronic watches, a mixture of silver oxide and manganese dioxide is used as an anode active material in order to slow down the drop in electromotive force at the end of discharge. There is a growing tendency to do so.

従って、このように極めて多量に消費される酸化銀電池
から高価な□を回収再使用することが考えられているが
、従来の回収再使用法では図のフローチャー ト右側に
示すように、放電済みの金属銀と低級二酸化マンガンお
よび黒鉛を含む陽極合剤から、1ず硝酸を加えて濾過す
ることで黒鉛を分離し、硝酸銀と硝化マンガンを含有す
る濾液に地化ナトリウムを加え硝酸銀を塩化銀に置換1
.5、これを沈澱物とI〜で抽出[−1浄化・還元のに
程を経て高価な金属銀だけを回収し、回収(7た金属銀
を酸化l−酸化銀とi〜で再使用するのが一般的であっ
た。
Therefore, it has been considered to recover and reuse the expensive □ from silver oxide batteries, which are consumed in extremely large amounts. However, in the conventional recovery and reuse method, as shown on the right side of the flowchart in the figure, First, nitric acid is added and filtered to separate the graphite from the anode mixture containing finished metallic silver, lower manganese dioxide, and graphite, and sodium geode is added to the filtrate containing silver nitrate and manganese nitride to separate the silver nitrate from silver chloride. Replaced with 1
.. 5. Extract this with the precipitate and I~ [-1 After the purification and reduction process, recover only the expensive metallic silver and recover it (7) Reuse the recovered metallic silver with l-silver oxide and i~ was common.

1〜かI〜、このような従来の方法だと金属銀と低級二
酸化マンガンを分離することに多くの時間と費用がかか
り、効率が悪く回収費がかさむため充分に省資源の目的
を達することができなかった。
1~ or I~, such conventional methods require a lot of time and money to separate metallic silver and lower manganese dioxide, are inefficient, and increase recovery costs, so the goal of resource conservation cannot be fully achieved. I couldn't do it.

また、酸化銀と二酸化マンガンの混合物を酸化銀電池の
陽極活物質として用いる場合、この混合状態によって放
電特注特に負荷時の閉路電圧のバラツキが大きいことが
指摘されている。
Furthermore, it has been pointed out that when a mixture of silver oxide and manganese dioxide is used as an anode active material in a silver oxide battery, the state of the mixture causes large variations in the closed circuit voltage, especially during load.

本発明は斜上の欠点を改善するためになされたもので、
その目的は放電済みの酸化銀電池から陽極活物質を効率
良く経済的に回収し、放電容量並びに閉路電圧が優れバ
ラツキの少ない陽極活物質を提供するにある。
The present invention was made in order to improve the drawbacks of slanting.
The purpose is to efficiently and economically recover the anode active material from discharged silver oxide batteries, and to provide an anode active material with excellent discharge capacity and closed circuit voltage with little variation.

即ち、本発明に係る酸化銀電池用陽極活物質の回収再使
用法に依れば、酸化銀と二酸化マンガンを主体とした放
電済みの陽極合剤を硝酸に溶解させ、濾過工程によって
黒沿等の導電材を分離し、PKに苛性ンーダ冶液を加え
て銀とマンガンの酸化物を共沈させ、との共沈物に乾燥
後導電剤を混合するのである。
That is, according to the method for recovering and reusing an anode active material for silver oxide batteries according to the present invention, a discharged anode mixture mainly composed of silver oxide and manganese dioxide is dissolved in nitric acid, and a filtration process is performed to produce Kuroori, etc. The conductive material is separated, a caustic powder solution is added to the PK to co-precipitate silver and manganese oxides, and after drying, a conductive agent is mixed into the co-precipitate.

好適な一実施例に依れば、酸化銀と二酸化マンガンを主
体とした放電済みの陽極合剤100kgを硝酸に溶解さ
せ、濾過工程によって黒鉛等の導電剤を分離し、この炉
液に約20〜25wt%の苛注ソーダ溶液2501を加
え攪拌反応させることによって銀とマンガンの酸化物を
共沈させ、との共沈物を濾過洗浄後約100’Cで乾燥
させる。
According to a preferred embodiment, 100 kg of a discharged anode mixture mainly composed of silver oxide and manganese dioxide is dissolved in nitric acid, conductive agents such as graphite are separated by a filtration process, and about 20 kg of the discharged anode mixture is dissolved in this furnace liquid. ~25 wt % caustic soda solution 2501 is added and reacted with stirring to coprecipitate silver and manganese oxides, and the coprecipitate is filtered and washed and then dried at about 100'C.

次いで、このようにして得た銀とマンガンの共沈酸化物
に導電剤として黒鉛を添加[−充分混合した後、圧延造
粒、節工程を経て所望の粒径の陽極合剤を得、成型プレ
スによりペレット状に成形し酸化銀電池の陽極として用
いる。
Next, graphite is added as a conductive agent to the co-precipitated oxide of silver and manganese obtained in this way [-After thorough mixing, an anode mixture with a desired particle size is obtained through rolling granulation and knotting processes, and molded. It is pressed into a pellet and used as an anode for a silver oxide battery.

次に、上記実施例に係る共沈酸化物を用いてペレット状
に成形した陽極合剤を、電解蔽として40wt%苛性カ
リ水溶液、陰極活物質として粒状汞化亜鉛を使用したJ
IS G13タイプの電池に適用し、次の電池特性の測
定を行った。
Next, an anode mixture formed into pellets using the coprecipitated oxide according to the above example was prepared using a 40 wt % caustic potassium aqueous solution as an electrolytic shield and granular zinc chloride as a cathode active material.
The method was applied to an IS G13 type battery, and the following battery characteristics were measured.

1、 20°C,−10°Cにおける100Ω負荷時の
閉路電圧の測定 本発明に係る共沈酸化物を陽極活物質として用いた電池
をA、従来の酸化銀と二酸化マンガンを混合した陽極活
物質を用いた電池をBとし次表1゜2に測定結果を示す
1. Measurement of closed circuit voltage under 100Ω load at 20°C and -10°C A battery using the coprecipitated oxide according to the present invention as an anode active material is A, a conventional anode active material mixed with silver oxide and manganese dioxide A battery using the substance is designated as B, and the measurement results are shown in Table 1.2.

尚、A、B共に酸化銀と二酸化マンカン鮫よび導電剤と
しての黒鉛の含有比率は同一である。
Incidentally, in both A and B, the content ratios of silver oxide, manguin dioxide, and graphite as a conductive agent are the same.

表1.20℃における100Ω負荷時の閉路電圧
n−=100表2.−40°CKむ
ける1、000負荷時の閉路電圧
n−=100表1,2から明らかなように、本発明に
係る共沈酸化物を陽極活物質として用いた酸化銀電池の
平均閉路電圧(X)は従来のそれよりも高い値が得られ
、またその標準偏差も従来のそれよりも小さく、バラツ
キが少なかった。
Table 1. Closed circuit voltage with 100Ω load at 20℃
n-=100 Table 2. Closed circuit voltage at 1,000 load towards -40°CK
n-=100 As is clear from Tables 1 and 2, the average closed circuit voltage (X) of the silver oxide battery using the coprecipitated oxide according to the present invention as the anode active material is higher than that of the conventional one. , and its standard deviation was smaller than that of the conventional method, with less variation.

これは、共沈によって得た酸化銀と二酸化マンガン混合
物の方が、単に酸化銀と二酸化マンガンを機械的に混合
した従来のものよりも、ペレット成形時の充填密度が高
くなり、このため粒子間の接触状態が良くなって電池の
内部抵抗を小さくしていると考えられる。
This is because the mixture of silver oxide and manganese dioxide obtained by coprecipitation has a higher packing density during pellet formation than the conventional mixture of silver oxide and manganese dioxide, which is a mechanical mixture of silver oxide and manganese dioxide. It is thought that this improves the contact condition between the two and reduces the internal resistance of the battery.

また、標準偏差が小さいのは、共沈によって得た酸化銀
と二酸化マンガン混合物の方が、従来の混合物よりも、
その混合状態が良く、両物質の分散のバラツキが小さい
ためと考えられる。
In addition, the standard deviation is smaller for the silver oxide and manganese dioxide mixture obtained by coprecipitation than for the conventional mixture.
This is thought to be because the mixing state is good and the dispersion of both substances is small.

このように、この発明に係る共沈酸化物は、これを電池
の混合陽極物質として用いると、別個に用意した酸化銀
と二酸化マンガンとを単に混合したものを用いた場合に
比べて、電池の注能釦よび品質を大幅に向ヒさせること
ができたのである。
As described above, when the coprecipitated oxide according to the present invention is used as a mixed anode material for a battery, the battery's performance is improved compared to when a mixture of separately prepared silver oxide and manganese dioxide is used. This made it possible to significantly improve the function and quality of the buttons.

■、 20℃にむける6、5にΩ負荷時の放電容量の測
定 本発明に係る共沈酸化物を用いた酸化銀電池Aと従来の
酸化銀と二酸化マンガンを混合した陽極活物質を用いた
酸化銀電池Bの20℃での6,5にΩ連続放電にトける
放電容量を表3に示す。
■Measurement of discharge capacity under a 6.5 Ω load at 20°C Silver oxide battery A using the coprecipitated oxide according to the present invention and a conventional positive electrode active material made of a mixture of silver oxide and manganese dioxide Table 3 shows the discharge capacity of silver oxide battery B in continuous discharge at 6.5 Ω at 20°C.

表3. 6.5にΩ連続放電にむける放電容量n=10
0 表3からも明らかなように、この発明に係る共沈酸化物
を用いた電池Aの放電容量は、従来の混合物を用いた電
池Bに比べて約5%良くなっている。
Table 3. 6.5 Discharge capacity n=10 for Ω continuous discharge
0 As is clear from Table 3, the discharge capacity of Battery A using the coprecipitated oxide according to the present invention is about 5% better than Battery B using the conventional mixture.

これも、この発明に係る共沈酸化物の成形時の充填密度
が、従来のそれよりも大きくなり、このため単位体積あ
たりの陽極活物質の充填量が大きくなったためと考えら
れる。
This is also considered to be because the packing density of the coprecipitated oxide according to the present invention during molding is greater than that of the conventional one, and therefore the amount of anode active material packed per unit volume is increased.

なあ・、上記表1から表3に示すSは、統計学上 般に
使われている標準偏差を示すもので、その値は以下に示
す計算方法で求めたものである。
By the way, S shown in Tables 1 to 3 above indicates the standard deviation commonly used in statistics, and its value was determined using the calculation method shown below.

すなわち、各測定値(Xl、X2・・・・・・)とその
平均値(X)との差の二乗和を、偏差平方和あるいは平
方和と呼びSで現わす。
That is, the sum of squares of the differences between each measured value (Xl, X2, . . .) and its average value (X) is called the deviation sum of squares or sum of squares and is expressed by S.

そしてこの偏差平方和Sをデータ数nで割った平方根が
標準値差Sである。
The standard value difference S is the square root of this deviation sum of squares S divided by the number of data n.

この標準偏差Sは、データ個々のバラツキの度合いを現
わすものであり、例えば、X1=Xであればs=0とな
り、全くバラツキがないことになる。
This standard deviation S represents the degree of variation in individual data; for example, if X1=X, s=0, which means that there is no variation at all.

つ1す、Sの値が小さければ小さい程バラツキが小さい
First, the smaller the value of S, the smaller the variation.

従って、例えば表1について説明するとXの絶対値の違
いがあると同時に、標準偏差Sが、本発明の電池Aと従
来の電池Bとでは、約4倍異なり、Aの方が4倍程バラ
ツキが小さいといえる。
Therefore, for example, to explain Table 1, there is a difference in the absolute value of can be said to be small.

図は、この発明による方法でもって回収再使用する場合
の工程と、従来の方法でもって回収再使用する場合の工
程とを対比して示したもので、同図からも明らかなよう
に、この発明の方法によれば、従来の方法に比べて、き
わめて少ないかつ簡単な工程でもって、放電済陽極から
従来よりも高性能かつ高品質の電池を得ることができ、
従って省資源の目的も充分に達成することができる。
The figure compares the process of recovery and reuse using the method according to the present invention and the process of recovery and reuse using the conventional method. According to the method of the invention, a battery with higher performance and higher quality than before can be obtained from a discharged anode with extremely fewer and simpler steps than conventional methods,
Therefore, the purpose of resource saving can be fully achieved.

以上のように、この発明による酸化銀電池用陽極活物質
の回収再使用方法は、酸化銀と二酸化マンガンを主体と
した放電済の陽極合剤を硝酸に溶解させ、濾過工程によ
って黒鉛等の導電剤を分離し、炉液に苛性ソーダ尋液を
加えて銀とマンガンの酸化物を共沈させ、との共沈物に
乾燥後導電剤を混合することにより、放電済みの酸化銀
電池から陽極活物質を効率良く経済的に回収し、放電容
量並びに閉路電圧に優れバラツキの少ない陽極活物質を
得ることができ、従って省資源の目的も充分に達成する
ことができる。
As described above, the method for recovering and reusing the anode active material for silver oxide batteries according to the present invention is to dissolve the discharged anode mixture mainly composed of silver oxide and manganese dioxide in nitric acid, and then use conductive materials such as graphite through a filtration process. By separating the agent, adding caustic soda solution to the furnace liquid to coprecipitate silver and manganese oxides, and mixing the co-precipitate with a conductive agent after drying, anode activation can be performed from a discharged silver oxide battery. The material can be recovered efficiently and economically, and an anode active material having excellent discharge capacity and closed circuit voltage with little variation can be obtained, and therefore the purpose of resource saving can be fully achieved.

【図面の簡単な説明】[Brief explanation of drawings]

図は、この発明方法の一実施例を従来の方法と対比して
示したフローチャートである。
The figure is a flowchart showing an embodiment of the method of the present invention in comparison with a conventional method.

Claims (1)

【特許請求の範囲】[Claims] 1 酸化銀と二酸化マンガンを主体とした放電済みの陽
極合剤を硝酸に溶解させ、濾過工程によって黒沿等の導
電剤を分離し、P液に苛性アルカリ溶液を加えて銀とマ
ンガンの酸化物を共沈させ、との共沈物に乾燥後導電剤
を混合することを特徴どする酸化銀電池用陽極活物質の
回収再使用方法。
1 Dissolve the discharged anode mixture, which mainly consists of silver oxide and manganese dioxide, in nitric acid, separate the conductive agent such as black oxide through a filtration process, and add a caustic alkaline solution to the P solution to dissolve the oxides of silver and manganese. A method for recovering and reusing a positive electrode active material for a silver oxide battery, characterized by co-precipitating the and mixing the co-precipitate with a conductive agent after drying.
JP53044765A 1978-04-18 1978-04-18 Collection and reuse method of anode active material for silver oxide batteries Expired JPS5827624B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53044765A JPS5827624B2 (en) 1978-04-18 1978-04-18 Collection and reuse method of anode active material for silver oxide batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53044765A JPS5827624B2 (en) 1978-04-18 1978-04-18 Collection and reuse method of anode active material for silver oxide batteries

Publications (2)

Publication Number Publication Date
JPS54137633A JPS54137633A (en) 1979-10-25
JPS5827624B2 true JPS5827624B2 (en) 1983-06-10

Family

ID=12700505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53044765A Expired JPS5827624B2 (en) 1978-04-18 1978-04-18 Collection and reuse method of anode active material for silver oxide batteries

Country Status (1)

Country Link
JP (1) JPS5827624B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6229072A (en) * 1985-07-30 1987-02-07 Nomura Kosan Kk Method and device for recovering valuable substance of run-down dry cell

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT381807B (en) * 1984-04-10 1986-12-10 Voest Alpine Ag METHOD FOR RECOVERY OF METALS FROM USED GALVANIC ELEMENTS

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6229072A (en) * 1985-07-30 1987-02-07 Nomura Kosan Kk Method and device for recovering valuable substance of run-down dry cell

Also Published As

Publication number Publication date
JPS54137633A (en) 1979-10-25

Similar Documents

Publication Publication Date Title
JP2008013405A (en) Lithium-nickel-manganese-cobalt multiple oxide, method for producing the same, and application of the multiple oxide
JP2007091573A (en) Lithium-nickel-manganese-cobalt multiple oxide, method for producing the same, and application of the multiple oxide
JPH0837007A (en) Lithium-containing transition metal composite oxide, and its manufacture and use
CN105244561B (en) The method that high voltage multicomponent material is prepared as raw material using waste and old polynary dynamic lithium battery
WO2000006496A1 (en) Process for producing spinel type lithium manganate
CA1070379A (en) Active material for pressed nickel electrodes
JP4274630B2 (en) Method for producing spinel type lithium manganate
JPH1160243A (en) Nickel hydroxide, lithium nickelate, their production and lithium ion secondary battery using the lithium nickelate
US2683182A (en) Negative electrode for alkaline storage batteries and method of manufacturing the same
US3350198A (en) Cadmium metal sponge
JPS5827624B2 (en) Collection and reuse method of anode active material for silver oxide batteries
JP3315910B2 (en) Positive active material for lithium secondary battery and secondary battery using the same
CN114388831B (en) Alkaline zinc-manganese battery
US3617253A (en) Production of metal powders, particularly for use in electrodes and production of electrodes from these products
US1885451A (en) Process of preparing an active mass for cathodes of electric alkaline accumulators
US3966493A (en) Rechargeable mercury electrode
JP5626245B2 (en) Lithium-nickel-manganese-cobalt composite oxide, method for producing the same, and use thereof
JP3499181B2 (en) Method for producing spinel type lithium manganate
US1305251A (en) burgess
JPS6320916B2 (en)
CN108110214B (en) Preparation method of iron negative electrode and lithium salt modified ferric oxide
JPWO2002084765A1 (en) Method for producing active material for lithium secondary battery
JP3387876B2 (en) Method for producing spinel type lithium manganate
JP2847791B2 (en) Manufacturing method of nickel cadmium storage battery
JP4321000B2 (en) Positive electrode active material for lithium ion secondary battery comprising lithium manganese based composite oxide, method for producing the same, and use thereof