JPS62288341A - Air-fuel ratio control method for internal combustion engine - Google Patents
Air-fuel ratio control method for internal combustion engineInfo
- Publication number
- JPS62288341A JPS62288341A JP13155386A JP13155386A JPS62288341A JP S62288341 A JPS62288341 A JP S62288341A JP 13155386 A JP13155386 A JP 13155386A JP 13155386 A JP13155386 A JP 13155386A JP S62288341 A JPS62288341 A JP S62288341A
- Authority
- JP
- Japan
- Prior art keywords
- air
- fuel ratio
- value
- sensor
- detected
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 103
- 238000000034 method Methods 0.000 title claims description 14
- 238000002485 combustion reaction Methods 0.000 title claims description 5
- 238000001514 detection method Methods 0.000 claims abstract description 6
- 239000000203 mixture Substances 0.000 claims description 4
- 239000000498 cooling water Substances 0.000 abstract description 5
- 239000001301 oxygen Substances 0.000 description 34
- 229910052760 oxygen Inorganic materials 0.000 description 34
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 33
- 239000007789 gas Substances 0.000 description 10
- 230000004913 activation Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 230000003197 catalytic effect Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000002779 inactivation Effects 0.000 description 2
- 238000007493 shaping process Methods 0.000 description 2
- 101001106432 Homo sapiens Rod outer segment membrane protein 1 Proteins 0.000 description 1
- 101000860173 Myxococcus xanthus C-factor Proteins 0.000 description 1
- 102100021424 Rod outer segment membrane protein 1 Human genes 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 150000002926 oxygen Chemical class 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 239000006200 vaporizer Substances 0.000 description 1
Landscapes
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
Abstract
Description
【発明の詳細な説明】 3、発明の詳細な説明 炎丘且1 本発明は内燃エンジンの空燃比制御方法に関する。[Detailed description of the invention] 3. Detailed description of the invention Flame Hill 1 The present invention relates to an air-fuel ratio control method for an internal combustion engine.
1且i石
内燃エンジンの排気ガス浄化、燃費改善等のために排気
ガス中の酸素濃度を酸素濃度セン勺によって検出し、こ
の酸素m度センサの出力レベルに応じてエンジンへの供
給混合気の空燃比をフィードバック制御する空燃比制御
装置が知られている。In order to purify the exhaust gas of internal combustion engines and improve fuel efficiency, the oxygen concentration in the exhaust gas is detected by an oxygen concentration sensor, and the air-fuel mixture supplied to the engine is adjusted according to the output level of this oxygen concentration sensor. An air-fuel ratio control device that performs feedback control of an air-fuel ratio is known.
この空燃比制御装置として気化器絞り弁下流に連通ずる
吸気2次空気供給通路に電磁弁を設けて酸素amセンサ
の出力レベルに応じて電磁弁の開度すなわち吸気2次空
気供給聞を制御するフィードバック制御用吸気2次空気
供給力式の空燃比制御装置がある(例えば、特公昭55
−3533号)。As this air-fuel ratio control device, a solenoid valve is provided in the intake secondary air supply passage communicating downstream of the carburetor throttle valve, and the opening degree of the solenoid valve, that is, the intake secondary air supply range, is controlled according to the output level of the oxygen am sensor. There are air-fuel ratio control devices using intake secondary air supply force for feedback control (for example, the
-3533).
このような従来の空燃比制御装置においては、排気ガス
中の酸素濃度等の排気成分濃度を検出する排気成分濃度
センサの出力レベルから供給混合気の空燃比が目標空燃
比に対してリーン又はリッチのいずれであるかが判別さ
れ、その判別結果に応じて比例量及び積分層を設定して
吸気2次空気供給伍、又は燃料供給量をPI(比例積分
)制御することが通常である。In such conventional air-fuel ratio control devices, the air-fuel ratio of the supplied air-fuel mixture is lean or rich with respect to the target air-fuel ratio based on the output level of an exhaust component concentration sensor that detects the concentration of exhaust components such as oxygen concentration in exhaust gas. Normally, it is determined which one is, and a proportional amount and an integral layer are set according to the determination result to perform PI (proportional integral) control on the intake secondary air supply level or the fuel supply amount.
ところで、エンジンの低負荷運転時、特にアイドル運転
時には排気濃度が低下するために排気成分濃度センサが
冷却されるので同一濃度でも出力レベルが低下し不活性
状態になることがある。よって、アイドル運転から加速
して空燃比フィードバック制御を開始した直後に排気成
分濃度センサが活性状態でないために目標空燃比への正
確な空燃比制御ができず反って排気未燃焼有害成分が増
大する場合があるという問題点があった。By the way, when the engine is operating at a low load, especially when the engine is idling, the exhaust gas concentration decreases and the exhaust component concentration sensor is cooled, so even if the concentration remains the same, the output level may decrease and become inactive. Therefore, immediately after accelerating from idling and starting air-fuel ratio feedback control, the exhaust component concentration sensor is not activated, making it impossible to accurately control the air-fuel ratio to the target air-fuel ratio, resulting in an increase in unburned harmful components in the exhaust. There was a problem that there were cases.
m且1
そこで、本発明の目的は、低負荷運転がら空燃比フィー
ドバック制御をなず運転に移行した直後の排気未燃焼有
害成分の増大を防止することができる空燃比制御方法を
提供することである。m and 1 Therefore, an object of the present invention is to provide an air-fuel ratio control method that can prevent an increase in unburned harmful components in the exhaust immediately after switching to operation without air-fuel ratio feedback control during low-load operation. be.
本発明の空燃比制御方法は、エンジンの低負荷運転状態
に排気成分濃度検出値がl標値に対して小から大に、又
は大から小に反転した回数が所定回数以上に達したこと
を検出したときには空燃比補正値を所定値に固定しかつ
排気成分濃度検出値から排気成分濃度センサの不活性状
態を検出したときには排気成分m庇センサの活性状態を
検出するまでは空燃比制御を停止することを特徴として
いる。The air-fuel ratio control method of the present invention detects that the number of times the detected exhaust component concentration has reversed from small to large or from large to small with respect to the l target value has reached a predetermined number or more in a low-load operating state of the engine. When detected, the air-fuel ratio correction value is fixed at a predetermined value, and when the inactive state of the exhaust component concentration sensor is detected from the detected exhaust component concentration value, the air-fuel ratio control is stopped until the active state of the exhaust component m eaves sensor is detected. It is characterized by
実−JLJI 以下、本発明の実施例を図面を参照しつつ説明する。Real-JLJI Embodiments of the present invention will be described below with reference to the drawings.
第1図に示した本発明の一実施例たる車載内燃エンジン
の吸気2次空気供給装置においては、吸入空気が大気吸
入口1からエアクリーナ2、気化器3、そして吸気マニ
ホールド4を介してエンジン5に供給される。気化器3
には絞り弁6が設けられ、絞り弁6の上流にはベンチュ
リ7が形成されている。In the intake secondary air supply system for an on-vehicle internal combustion engine, which is an embodiment of the present invention shown in FIG. supplied to vaporizer 3
A throttle valve 6 is provided, and a venturi 7 is formed upstream of the throttle valve 6.
吸気マニホールド4とエアクリーナ2の空気吐出口近傍
とは吸気2次空気供給通路8によって連通されている。The intake manifold 4 and the vicinity of the air discharge port of the air cleaner 2 are communicated through an intake secondary air supply passage 8.
吸気2次空気供、給通路8にはリニア型の電磁弁9が設
けられている。電磁弁9の開度はそのソレノイド9aに
供給される電流値に比例して変化する。A linear solenoid valve 9 is provided in the intake secondary air supply and supply passage 8 . The opening degree of the solenoid valve 9 changes in proportion to the current value supplied to the solenoid 9a.
一方、10は吸気マニホールド4に設けられ吸気マニホ
ールド4内の絶対圧に応じたレベルの出力を発生する絶
対圧センサ、11はエンジン5のクランクシャフト(図
示せず)の回転に応じてパルスを発生するクランク角セ
ンサ、12はエンジン5の冷却水温に応じたレベルの出
力を発生する冷7JI水W!=ンサ、14はエンジン5
の排気マニホールド15に設けられ排気ガス中のM索濃
度に応じた出力するW!i素濃度センサである。酸素濃
度センサ14の配設位置より下流の排気マニホールド1
5には排気ガス中の有害成分の低減を促進させるために
触媒コンバータ33が設けられている。On the other hand, 10 is an absolute pressure sensor installed in the intake manifold 4 and generates an output at a level corresponding to the absolute pressure inside the intake manifold 4, and 11 generates a pulse in accordance with the rotation of the crankshaft (not shown) of the engine 5. The crank angle sensor 12 is a cold 7JI water sensor that generates an output level according to the cooling water temperature of the engine 5! = Nsa, 14 is engine 5
W! is installed in the exhaust manifold 15 of the exhaust gas and outputs an output according to the M-wire concentration in the exhaust gas. It is an i elementary concentration sensor. Exhaust manifold 1 downstream from the location of oxygen concentration sensor 14
5 is provided with a catalytic converter 33 to promote the reduction of harmful components in exhaust gas.
電磁弁9、絶対圧ゼンIJ−10、クランク角センサ1
1、水温センサ12及び酸素m1度センサ14は制御回
路20に接続されている。制御回路20には更に車両の
速度に応じたレベルの出力を発生する車速センサ16と
、ポテンショメータからなり、絞り弁6の開度に応じた
レベルの出力を発生する絞り弁開度センサ17とが接続
されている。Solenoid valve 9, absolute pressure sensor IJ-10, crank angle sensor 1
1. The water temperature sensor 12 and the oxygen m1 degree sensor 14 are connected to the control circuit 20. The control circuit 20 further includes a vehicle speed sensor 16 that generates an output level that corresponds to the speed of the vehicle, and a throttle valve opening sensor 17 that is composed of a potentiometer and generates an output level that corresponds to the opening degree of the throttle valve 6. It is connected.
制御回路20は第2図に示すように絶対圧センサ10、
水温センサ12、M素濃度センサ14、車速センサ16
及び絞り弁開度センサ17の各出力レベルを変換するレ
ベル変換回路21と、レベル変換回路21を経た各セン
サ出力の1つを選択的に出力するマルチブレクリ゛22
と、このマルチプレクサ22から出力される信号をディ
ジタル信号に変換するA/D変換器23と、クランク角
センサ11の出力信号を波形整形する波形整形回路24
と、波形整形回路24からパルスとして出力されるTD
C信号の発生間隔をクロックパルス発生回路(図示せず
)から出力されるクロックパルス数によって計測するカ
ウンタ25と、電磁弁9を開弁駆動する駆動回路28と
、プログラムに従ってディジタル演算を行なうCPLI
(中央演算回路)29と、各種の処理プログラム及び
データが予め書ぎ込まれたROM30と、RAM31と
からなっている。電磁弁9のソレノイド9aは駆動回路
28の駆動トランジスタ及び電流検出用抵抗(共に図示
1ず)に直列に接続されてその直列回路の両端間に電源
電圧が供給される。マルチプレクサ22、A/D変換器
23、カウンタ25、駆動回路28、CPU29、RO
M30及びRAM31は入出力バス32によって互いに
接続されている。The control circuit 20 includes an absolute pressure sensor 10, as shown in FIG.
Water temperature sensor 12, M element concentration sensor 14, vehicle speed sensor 16
and a level conversion circuit 21 that converts each output level of the throttle valve opening sensor 17, and a multi-branch converter 22 that selectively outputs one of the outputs of each sensor that has passed through the level conversion circuit 21.
, an A/D converter 23 that converts the signal output from the multiplexer 22 into a digital signal, and a waveform shaping circuit 24 that shapes the waveform of the output signal of the crank angle sensor 11.
and TD output as a pulse from the waveform shaping circuit 24.
A counter 25 that measures the generation interval of the C signal by the number of clock pulses output from a clock pulse generation circuit (not shown), a drive circuit 28 that drives the solenoid valve 9 to open, and a CPLI that performs digital calculations according to a program.
(central processing circuit) 29, a ROM 30 in which various processing programs and data are written in advance, and a RAM 31. The solenoid 9a of the electromagnetic valve 9 is connected in series with a drive transistor and a current detection resistor (both not shown) of a drive circuit 28, and a power supply voltage is supplied across the series circuit. Multiplexer 22, A/D converter 23, counter 25, drive circuit 28, CPU 29, RO
M30 and RAM31 are connected to each other by an input/output bus 32.
かかる構成においては、A/D変換器23から吸気マニ
ホールド4内の絶対圧、冷tJJ水温、排気ガス中の酸
素濃度、車速及び絞り弁開度の情報が択一的に、またカ
ウンタ25からエンジン回転数を表わす情報がCPU2
9に入出力バス32を介して各々供給される。CPU2
9は後述の如く所定円11”r+(例えば、50m5e
c)毎に内部割込信号を発生するようにされており、割
込信号に応じて電磁弁9のソレノイド9aへの供給電流
値DOLI7をデータとして算出し、その算出した供給
電流値DOUTを駆動回路28に供給する。駆動回路2
8はソレノイド9aに流れる電流値が供給電流1直DO
LJ丁になるようにツレlイド9aに流れる電流値を閏
ループ制御する。In such a configuration, information on the absolute pressure in the intake manifold 4, cold tJJ water temperature, oxygen concentration in exhaust gas, vehicle speed, and throttle valve opening is selectively transmitted from the A/D converter 23, and information on the engine is transmitted from the counter 25. Information representing the number of rotations is sent to CPU2
9 via the input/output bus 32. CPU2
9 is a predetermined circle 11”r+ (for example, 50m5e) as described below.
c) An internal interrupt signal is generated every time, and in response to the interrupt signal, the supply current value DOLI7 to the solenoid 9a of the solenoid valve 9 is calculated as data, and the calculated supply current value DOUT is driven. Supplied to circuit 28. Drive circuit 2
8, the current value flowing through the solenoid 9a is the supply current 1 direct DO
A leap loop control is performed on the value of the current flowing through the slider 9a so that the current value becomes LJ.
次に、かかる本発明による空燃比制御方法の手順を第3
図に示したCPU29の動作フロー図に従って詳細に説
明する。Next, the steps of the air-fuel ratio control method according to the present invention will be described in the third step.
A detailed explanation will be given according to the operation flow diagram of the CPU 29 shown in the figure.
CPtJ29は、先ず、割込信号発生毎に不活性フラグ
Fsが1に等しいか否かを判別する(ステップ51)。The CPtJ 29 first determines whether the inactivation flag Fs is equal to 1 each time an interrupt signal is generated (step 51).
Fs =1のときには、酸素濃度センサ14が不活性状
態であったことを表わすので酸素濃度センサ14によっ
て検出された酸素濃度1−02を読み込みその酸素濃度
LO2が所定値L1(例えば、酸素濃度センサ14の出
力電圧レベルで0.7V)より大であるか否かを判別す
る(ステップ52)。LO2≦11ならば、酸素濃度セ
ンサ14の活性化が完了していないとして電磁弁9を閉
弁して空燃比フィードバック制御を停止するために供給
電流値DOLJTを0に等しくする(ステップ53)。When Fs = 1, it means that the oxygen concentration sensor 14 is in an inactive state, so the oxygen concentration 1-02 detected by the oxygen concentration sensor 14 is read and the oxygen concentration LO2 is set to a predetermined value L1 (for example, the oxygen concentration sensor 14 is in an inactive state. 14 (output voltage level of 0.7 V) (step 52). If LO2≦11, it is assumed that the activation of the oxygen concentration sensor 14 has not been completed, and the solenoid valve 9 is closed and the supply current value DOLJT is set equal to 0 to stop the air-fuel ratio feedback control (step 53).
なお、エンジン始動時には不活性フラグFsには酸素濃
度センサ14の不活性状態を表わす1がヒツトされる。Note that when the engine is started, the inactivity flag Fs is set to 1, which indicates that the oxygen concentration sensor 14 is in an inactive state.
Lo2>L+ならば、mlst度センサ14の活性化が
完了したとして不活性フラグFsをOに等しクシ(ステ
ップ54)、車両の運転状態(エンジンの運転状態を含
む)が空燃比フィードバック(F/B)制御条件を充足
しているか否かを判別する〈ステップ55)。またステ
ップ51においてFs −0のときには酸素濃度センサ
14は既に活性状態にあると判別されているのでステッ
プ55の判別を直ちに実行する。この判別は吸気マニホ
ールド内絶対圧、冷却水温、車速、絞り弁開度及びエン
ジン回転数から決定され、例えば、低車速時及び低冷却
水温時には空燃比フィードバック制御条件が充足されて
いないとされる。ここで、空燃比フィードバック制御条
件を充足しないと判別したならば、ステップ53の実行
により電磁弁9を閉弁して空燃比フィードバック制御を
停止するために供給電流値DouvをOに等しくする。If Lo2>L+, it is assumed that the activation of the mlst degree sensor 14 has been completed, and the inactivation flag Fs is set equal to O (step 54), and the operating state of the vehicle (including the operating state of the engine) is changed to the air-fuel ratio feedback (F /B) Determine whether the control conditions are satisfied (step 55). Further, when Fs -0 in step 51, it is determined that the oxygen concentration sensor 14 is already in the active state, so the determination in step 55 is immediately executed. This determination is made based on the intake manifold absolute pressure, cooling water temperature, vehicle speed, throttle valve opening, and engine speed. For example, it is determined that the air-fuel ratio feedback control conditions are not satisfied at low vehicle speeds and low cooling water temperatures. Here, if it is determined that the air-fuel ratio feedback control conditions are not satisfied, step 53 is executed to close the solenoid valve 9 and make the supply current value Douv equal to O in order to stop the air-fuel ratio feedback control.
一方、空燃比フィードバック制御条件を充足すると判別
したならば、電磁弁9への供給電流値の基準電流値Da
A S Eを設定する(ステップ56)。ROM30
には第4図に示すように吸気マニホールド内絶対圧PB
Aとエンジン回転数Neとから定まる基準電流値Da
A S EがDeAseデータマツプとして予め書き込
まれているので、CPU29は絶対圧PsAとエンジン
回転数Neとを読み込み、読み込んだ各個に対応する基
準電流値DBASEをDBASεデータマツプから検索
する。次に、gin度センサ14によって検出された酸
素濃度酸素61度LO2が目標空燃比に対応する目標値
LRE r:より小であるか否かを判別する(ステップ
57)。On the other hand, if it is determined that the air-fuel ratio feedback control conditions are satisfied, the reference current value Da of the current value supplied to the solenoid valve 9 is
ASE is set (step 56). ROM30
As shown in Figure 4, the absolute pressure inside the intake manifold PB
Reference current value Da determined from A and engine speed Ne
Since ASE has been written in advance as a DeAse data map, the CPU 29 reads the absolute pressure PsA and the engine speed Ne, and searches the DBASε data map for the reference current value DBASE corresponding to each read value. Next, it is determined whether the oxygen concentration 61 degrees LO2 detected by the gin degree sensor 14 is smaller than the target value LREr: corresponding to the target air-fuel ratio (step 57).
LO2<LREFの場合には、空燃比がリーンであるの
で空燃比フラグFAFが0に等しいか否かを判別する(
ステップ58)。FAF=Oならば、空燃比がリーン状
態を継続していると見做して空燃比フラグFAFの状態
を維持し、FA F ” 1ならば、空燃比がリッチか
らリーンに反転したと見做して空燃比フラグFAFを0
に等しくする(ステップ59)。Lつ2≧しREFの場
合には、空燃比がリッチであるので空燃比フラグFAF
が1に等しいか否かを判別する(ステップ60)。FA
;=1ならば、空燃比がリッチ状態を継続していると見
做して空燃比フラグ「Aドの状態を維持し、FA F
=Oならば、空燃比がリーンからリッヂに反転したと見
做して空燃比フラグFAFを1に等しくする(ステップ
61)。このように空燃比が反転したときにはアイドル
運転状態か否かを判別するくステップ62)。アイドル
運転状態は例えば、絞り弁開度θth、又tよ吸気マニ
ホールド自給対圧PBAから判別し、絞り弁開度θ[h
が所定開度θ1以下のとき、又は吸気−?二ホールド内
絶対圧PBAか所定圧P1以下のときアイドル運転時と
判断する。アイドル運転状態でない場合には変WINを
整数N+ (例えば、3)に等しくすることによりリ
セットしくステップ63)、IQ素濃度LO2が目標空
燃比に対応する目標値LREFより小であるか否かを判
別する(ステップ64)。If LO2<LREF, the air-fuel ratio is lean, so it is determined whether the air-fuel ratio flag FAF is equal to 0 (
Step 58). If FAF=O, it is assumed that the air-fuel ratio continues to be in a lean state and the state of the air-fuel ratio flag FAF is maintained, and if FAF is 1, it is assumed that the air-fuel ratio has reversed from rich to lean. and set the air-fuel ratio flag FAF to 0.
(step 59). If L2≧REF, the air-fuel ratio is rich, so the air-fuel ratio flag FAF
is equal to 1 (step 60). F.A.
; If = 1, it is assumed that the air-fuel ratio continues to be in a rich state, and the air-fuel ratio flag is maintained at "A" and FA
If =O, it is assumed that the air-fuel ratio has reversed from lean to ridge, and the air-fuel ratio flag FAF is set equal to 1 (step 61). When the air-fuel ratio is reversed in this way, it is determined whether or not the engine is in an idling state (step 62). The idle operating state is determined, for example, from the throttle valve opening θth, or from the intake manifold self-supply pressure PBA, and the throttle valve opening θ[h
is less than the predetermined opening θ1, or the intake -? When the absolute pressure PBA in the second hold is less than the predetermined pressure P1, it is determined that the engine is idling. If it is not in the idle operating state, the variable WIN is reset by making it equal to an integer N+ (for example, 3) (step 63), and it is determined whether the IQ elementary concentration LO2 is smaller than the target value LREF corresponding to the target air-fuel ratio. It is determined (step 64).
LO2<LREFならば、空燃比が目標空燃比よりリー
ンであるので空燃比補正値をなす空燃比フィードバック
補正係数KO2から所定比例ff1Pを減口しその算出
値を新たに補正係数゛KO2とする(ステップ65)、
、LO2≧LP5Fならば、空燃比が目標空燃比よりリ
ッチであるので空燃比フィードバック補正係数KO2か
ら所定比例mpを加算しその算出値を新たに補正係数K
O2とする(ステップ67)。ステップ65又は67に
J3いて補正係数KO2の口出後、ステップ56におい
て設定した基準電流値0BAsEに補正係数に02を乗
算しその乗算結果を供給電流値DOU「としくステップ
68)、供給電流1iflDoU1を駆動回路28に対
して出力する(ステップ69)。If LO2<LREF, the air-fuel ratio is leaner than the target air-fuel ratio, so a predetermined proportion ff1P is subtracted from the air-fuel ratio feedback correction coefficient KO2 forming the air-fuel ratio correction value, and the calculated value is newly set as the correction coefficient ``KO2''. step 65),
, if LO2≧LP5F, the air-fuel ratio is richer than the target air-fuel ratio, so a predetermined proportional mp is added to the air-fuel ratio feedback correction coefficient KO2, and the calculated value is set as a new correction coefficient K.
O2 (step 67). After outputting the correction coefficient KO2 in step 65 or 67, the reference current value 0BAsE set in step 56 is multiplied by the correction coefficient 02, and the multiplication result is set as the supply current value DOU (step 68), supply current 1iflDoU1 is output to the drive circuit 28 (step 69).
一方、アイドル運転状態である場合には変数Nから1を
減算しそのn出値を新たな変数Nとしくステップ70)
、その算出した変数NがOに等しいか否かを判別する(
ステップ71)。N≠Oならば、アイドル運転を開始し
てから所定時間が経過しておらず安定したアイドル運転
状態に達していないので空燃比フィードバック制御を行
なうだめにステップ64ないし69の実行により供給電
流値DOUTを算出して駆動回路28に対して出力する
。N=Oならば、時間的には安定したアイドル運転状態
に達しており、空燃比フィードバック制御を行なうと反
ってエンジン回転数の変動等を起して不安定になるので
補正係数KO2を所定値に+ (例えば、空燃比を1
4.7に制御する為の補正係数KO2の最新値)に固定
しくステップ72)、M素濃度センザ14によって検出
された酸素濃度102が所定値L2 (例えば、酸素
濃度センサ14の出力電圧レベルで0.3V)より小で
あるか否かを判別する(ステップ73)。L02≧L2
のときには酸素濃度センサ14はアイドル運転中に不活
性状態になっていないとしてに02=に+によるオーブ
ンループの空燃比制御を行なうためにステップ68.6
9の実行により供給電流値DOUTを算出して駆動回路
28に対して出力する。LO2<12のときには酸素濃
度センサ14はアイドル運転中に不活性状態になったと
して不活性フラグFsに1をヒツトしくステップ7/l
)、?ft1l弁9を閉弁して空燃比フィードバック制
御を停止するために供給電流値DOUTを0に等しくす
る(ステップ53)。On the other hand, if it is in an idling state, 1 is subtracted from the variable N and the output value of n is set as a new variable N (step 70).
, determine whether the calculated variable N is equal to O (
Step 71). If N≠O, the predetermined time has not passed since the start of idling and a stable idling state has not been reached, so steps 64 to 69 are executed to reduce the supply current value DOUT in order to perform air-fuel ratio feedback control. is calculated and output to the drive circuit 28. If N=O, a stable idling state has been reached in terms of time, and if air-fuel ratio feedback control is performed, the engine speed will fluctuate and become unstable, so the correction coefficient KO2 should be set to a predetermined value. (For example, if the air-fuel ratio is 1
At step 72), the oxygen concentration 102 detected by the M elementary concentration sensor 14 is fixed at a predetermined value L2 (for example, the output voltage level of the oxygen concentration sensor 14). 0.3V) (step 73). L02≧L2
At this time, the oxygen concentration sensor 14 is assumed not to be in an inactive state during idling operation, and step 68.6 is performed to control the air-fuel ratio of the oven loop using 02=+.
By executing step 9, the supply current value DOUT is calculated and outputted to the drive circuit 28. When LO2<12, the oxygen concentration sensor 14 is assumed to be inactive during idling, and the inactive flag Fs is set to 1 in step 7/l.
),? The supply current value DOUT is made equal to 0 in order to close the ft1l valve 9 and stop the air-fuel ratio feedback control (step 53).
ステップ58ないし60において空燃比が反転していな
いと判別されたときには酸素濃度LO2が目標空燃比に
対応する目標値LREFより小であるか否かを判別する
(ステップ75)。LO2<LREFならば、空燃比が
目標空燃比よりり一層であるので空燃比フィードバック
補正係数K。When it is determined in steps 58 to 60 that the air-fuel ratio is not inverted, it is determined whether the oxygen concentration LO2 is smaller than the target value LREF corresponding to the target air-fuel ratio (step 75). If LO2<LREF, the air-fuel ratio is higher than the target air-fuel ratio, so the air-fuel ratio feedback correction coefficient K.
2から所定積分♀■を減算しその算出値を新たに補正係
数KO2とする(ステップ76)。LO2≧LREFな
らば、空燃比フィードバック補正係数KO2から所定積
分子ftlを加緯しその算出値を新たに補正係数Koz
とする(ステップ77)。A predetermined integral ♀■ is subtracted from 2 and the calculated value is newly set as a correction coefficient KO2 (step 76). If LO2≧LREF, add a predetermined product numerator ftl from the air-fuel ratio feedback correction coefficient KO2 and use the calculated value as a new correction coefficient Koz.
(Step 77).
ステップ76又は77において補正係数KO2の算出後
、ステップ68.69の実行により供給電流値DOLI
Tを算出して駆動回路28に対して出力する。After calculating the correction coefficient KO2 in step 76 or 77, the supply current value DOLI is adjusted by executing steps 68 and 69.
T is calculated and output to the drive circuit 28.
駆動回路28は電磁弁9のソレノイド9aに流れる電流
値を電流検出用抵抗によって検出してぞの検出電流値と
供給電流値DOU丁とを比較し、比較結果に応じて駆動
トランジスタをオンオフすることによりソレノイド9a
に電流を供給する。The drive circuit 28 detects the current value flowing through the solenoid 9a of the solenoid valve 9 using a current detection resistor, compares the detected current value with the supplied current value DOU, and turns the drive transistor on and off according to the comparison result. Solenoid 9a
supply current to.
よって、ソレノイド9aには供給電流値DOLITの電
流が流れ、ソレノイド9aに流れる電流値に比例した量
の吸気2次空気が吸気マニホールド4内に供給されるの
である。また供給電流値DouT/fiOの場合には電
磁弁9が閉弁して吸気2次空気の供給が停止される。Therefore, a current having the supply current value DOLIT flows through the solenoid 9a, and an amount of secondary intake air proportional to the current value flowing through the solenoid 9a is supplied into the intake manifold 4. Further, in the case of the supply current value DouT/fiO, the solenoid valve 9 is closed and the supply of intake secondary air is stopped.
かかる本発明の空燃比制御方法を適用した装置にJ3い
ては、酸素濃度から検出した空燃比が目標空燃比に対し
て反転したときにアイドル運転状態ならば、アイドル運
転状態になってから所定時間経過していないときにはP
I(微分積分)制御により補正係数KO2を定めて空燃
比フィードバック制御が行なわれる。アイドル運転状態
になってから所定時間経過したときには酸素濃度センサ
14の出力から酸素濃度センサ14の不活性状態を判別
し、不活性状態でないならば、補正係数に02が所定値
に1に固定されてオープンループの空が行なわれ、不活
性状態ならば、不活性フラグFSに1がセラ1−されて
空燃比制御が停止ざ机る。In the apparatus J3 to which the air-fuel ratio control method of the present invention is applied, if the air-fuel ratio detected from the oxygen concentration is reversed with respect to the target air-fuel ratio and is in an idling operating state, the apparatus is in an idling operating state for a predetermined period of time after entering an idling operating state. If no elapsed time, P
A correction coefficient KO2 is determined by I (differential-integral) control, and air-fuel ratio feedback control is performed. When a predetermined period of time has elapsed since the idling operation, the inactive state of the oxygen concentration sensor 14 is determined from the output of the oxygen concentration sensor 14, and if the oxygen concentration sensor 14 is not in an inactive state, the correction coefficient is set to 02 and fixed to a predetermined value of 1. Open loop emptying is performed, and if it is in an inactive state, the inactive flag FS is set to 1 and the air-fuel ratio control is about to stop.
これによりアイドル運転からステップ55にJ3ける空
燃比フィードバック制御条件を充足する運転状態に移行
した場合にFs=1ならば、酸素濃度センサの活性化が
完了するまでは空燃比制御が停止されるのである。As a result, if Fs = 1 when transitioning from idling to an operating state that satisfies the air-fuel ratio feedback control conditions in J3 in step 55, air-fuel ratio control will be stopped until activation of the oxygen concentration sensor is completed. be.
またエンジンに供給されるa合気の空燃比が14.7に
なるように補正係数KO2を固定することにより酸素濃
度センナ14が活性状態ならば、酸素濃度センサ14に
よって1!7られる酸素濃度Lo2は[2より小になる
ことはないので不活性状態の判別ができる。空燃比制御
の停止時には電(6弁9が閉弁されて供給混合気の空燃
比はリッチとなるので酸素濃度センサ14が活性状態な
らば、酸素m度センサ14によって得られる酸素濃度L
o2はLlより大になることから活性判別が可能である
。Furthermore, if the oxygen concentration sensor 14 is in an active state by fixing the correction coefficient KO2 so that the air-fuel ratio of the a-air gas supplied to the engine is 14.7, the oxygen concentration Lo2 will be increased by 1!7 by the oxygen concentration sensor 14. is never smaller than [2, so the inactive state can be determined. When air-fuel ratio control is stopped, valve 9 is closed and the air-fuel ratio of the supplied mixture becomes rich, so if oxygen concentration sensor 14 is active, oxygen concentration L obtained by oxygen m degree sensor 14
Since o2 is larger than Ll, it is possible to determine the activity.
なお、上記した本発明の実施例においては、リニア型の
電磁弁を備えた空燃比制御装置について説明したが、電
磁開閉弁を吸気2次空気供給通路に備え所定周期毎に電
磁開閉弁の開弁時間TauT(=基準開弁時間Ts A
S E X補正係数KO2)を算出しその開弁時間T
OUTだけ電磁開閉弁を開弁させる空燃比制御装置にも
本発明を適用することができる。In the above-described embodiments of the present invention, an air-fuel ratio control device equipped with a linear solenoid valve has been described. Valve time TauT (=standard valve opening time Ts A
SEX correction coefficient KO2) is calculated and its valve opening time T
The present invention can also be applied to an air-fuel ratio control device that opens an electromagnetic on-off valve only at OUT.
また、上記した本発明の実施例においては、吸気2次空
気供給方式の空燃比制御装置に本発明の空燃比制御方法
を適用したが、インジェクタによって燃料を噴射供給し
その噴射堡を制御する方式の装置にも本発明を適用する
ことができるのである。In addition, in the embodiments of the present invention described above, the air-fuel ratio control method of the present invention was applied to an air-fuel ratio control device using an intake secondary air supply method, but a method in which fuel is injected and supplied by an injector and the injection hole is controlled is used. The present invention can also be applied to this device.
几12と1里
以上の如く、本発明の空燃比制御方法においては、エン
ジンの低負荷運転状態に排気成分濃度検出値が目標値に
対して小から大に、又は大から小に反転した回数が所定
回数以上に達したことを検出したときには空燃比補正値
を所定値に固定し空燃比をオーブンループで制御するの
で空燃比のハンチングを防止1゛ることができ、アイド
ル運転時等の運転状態の安定化を図ることができる。ま
た空燃比補正値を所定値に固定した後、排気成分濃度検
出値から排気成分濃度センサの不活性状態を検出したと
きには、その後、排気成分濃度センサの活性化が完了す
るまでは他の空燃比フィードバック制御条件を満足して
いても空燃比制御を開始しないので従来のような排気未
燃焼有害成分の増大を防止することができるのである。As shown in 几 12 and 1 ri, in the air-fuel ratio control method of the present invention, the number of times the detected exhaust component concentration value reverses from small to large or from large to small with respect to the target value in the low-load operating state of the engine When it is detected that the air-fuel ratio has reached a predetermined number of times or more, the air-fuel ratio correction value is fixed at a predetermined value and the air-fuel ratio is controlled by an oven loop, which prevents hunting of the air-fuel ratio and improves performance during idle operation, etc. The state can be stabilized. In addition, after fixing the air-fuel ratio correction value to a predetermined value, if the inactive state of the exhaust component concentration sensor is detected from the detected exhaust component concentration value, the other air-fuel ratios will be changed until activation of the exhaust component concentration sensor is completed. Since air-fuel ratio control is not started even if the feedback control conditions are satisfied, it is possible to prevent the increase in unburned harmful components in the exhaust gas as in the conventional method.
第1図は本発明の空燃比制御方法を適用した空燃比制御
装置を示す概略図、第2図は第1図の装置中の制御回路
の具体的構成を示すブロック図、第3図はCPUの動作
を示すフロー図、第4図はROM1.:書き込まれたデ
ータマツプを示す図である。
主要部分の符号の説明
2・・・・・・エアクリーナ
3・・・・・・気化器
4・・・・・・吸気マニホールド
6・・・・・・絞り弁
7・・・・・・ベンチュリ
8・・・・・・吸気2次空気供給通路
9・・・・・・リニア型電磁弁
10・・・・・・絶対圧ヒン1す
11・・・・・・クランク角センサ
12・・・・・・冷却水温センサ
14・・・・・・酸素濃度センサ
15・・・・・・排気マニホールド
17・・・・・・絞り弁開度センサ
33・・・・・・触媒コンバータ
出願人 本田技研工業株式会社
代理人 弁理士 藤村元彦
第1図FIG. 1 is a schematic diagram showing an air-fuel ratio control device to which the air-fuel ratio control method of the present invention is applied, FIG. 2 is a block diagram showing a specific configuration of a control circuit in the device in FIG. 1, and FIG. 3 is a CPU FIG. 4 is a flowchart showing the operation of ROM1. : A diagram showing a written data map. Explanation of symbols of main parts 2... Air cleaner 3... Carburetor 4... Intake manifold 6... Throttle valve 7... Venturi 8 ......Intake secondary air supply passage 9...Linear type solenoid valve 10...Absolute pressure hinge 111...Crank angle sensor 12... ... Cooling water temperature sensor 14 ... Oxygen concentration sensor 15 ... Exhaust manifold 17 ... Throttle valve opening sensor 33 ... Catalytic converter applicant Honda Motor Co., Ltd. Agent Co., Ltd. Patent Attorney Motohiko Fujimura Figure 1
Claims (2)
センサによって検出された排気成分濃度検出値と目標値
とを比較し、その比較結果に応じて空燃比補正値を設定
し、エンジンに供給される混合気の空燃比をその設定し
た空燃比補正値に応じてフィードバック制御する空燃比
制御方法であって、エンジンの低負荷運転状態に前記排
気成分濃度検出値が前記目標値に対して小から大に、又
は大から小に反転した回数が所定回数以上に達したこと
を検出したときには前記空燃比補正値を所定値に固定し
かつ前記排気成分濃度検出値から前記排気成分濃度セン
サの不活性状態を検出したときには前記排気成分濃度セ
ンサの活性状態を検出するまでは空燃比制御を停止する
ことを特徴とする空燃比制御方法。(1) Compare the exhaust component concentration detection value detected by the exhaust component concentration sensor installed in the exhaust system of the internal combustion engine with the target value, set the air-fuel ratio correction value according to the comparison result, and supply it to the engine. The air-fuel ratio control method performs feedback control of the air-fuel ratio of the air-fuel mixture according to the set air-fuel ratio correction value, wherein the detected exhaust component concentration value is smaller than the target value in a low-load operating state of the engine. When it is detected that the number of times the air-fuel ratio has changed from large to large or from large to small has reached a predetermined number or more, the air-fuel ratio correction value is fixed to a predetermined value, and the error of the exhaust component concentration sensor is determined based on the detected exhaust component concentration value. An air-fuel ratio control method characterized in that when an active state is detected, air-fuel ratio control is stopped until an active state of the exhaust component concentration sensor is detected.
記排気成分濃度センサが不活性状態であると判断するこ
とを特徴とする特許請求の範囲第1項記載の空燃比制御
方法。(2) The air-fuel ratio control method according to claim 1, wherein when the detected exhaust component concentration value is smaller than a predetermined value, it is determined that the exhaust component concentration sensor is in an inactive state.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13155386A JPS62288341A (en) | 1986-06-06 | 1986-06-06 | Air-fuel ratio control method for internal combustion engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13155386A JPS62288341A (en) | 1986-06-06 | 1986-06-06 | Air-fuel ratio control method for internal combustion engine |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62288341A true JPS62288341A (en) | 1987-12-15 |
Family
ID=15060763
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13155386A Pending JPS62288341A (en) | 1986-06-06 | 1986-06-06 | Air-fuel ratio control method for internal combustion engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62288341A (en) |
-
1986
- 1986-06-06 JP JP13155386A patent/JPS62288341A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH04342847A (en) | Air fuel ratio control device of internal combustion engine | |
JPS6215750B2 (en) | ||
US4753208A (en) | Method for controlling air/fuel ratio of fuel supply system for an internal combustion engine | |
JPS62157252A (en) | Method of feedback controlling air-fuel ratio of internal combustion engine | |
JPS62288341A (en) | Air-fuel ratio control method for internal combustion engine | |
JPS62265442A (en) | Air-fuel ratio controlling method for internal combustion engine | |
JPS61187570A (en) | Intake secondary air feeder of internal-combustion engine | |
JPS62162748A (en) | Air-fuel ratio control for internal-combustion engine | |
JP2790899B2 (en) | Air-fuel ratio control method for internal combustion engine | |
JPH01113552A (en) | Air-fuel ratio control device for internal combustion engine | |
JPS61237858A (en) | Control device for air-fuel ratio in internal-combustion engine | |
JPS623159A (en) | Intake secondary air supply device for internal-combustion engine | |
JPH03290035A (en) | Air fuel ratio control method for internal combustion engine | |
JPS63134835A (en) | Air-fuel ratio control device for internal combustion engine | |
JP2609230B2 (en) | Air-fuel ratio control method for internal combustion engine | |
JP2518260B2 (en) | Air-fuel ratio control device for internal combustion engine | |
JPS63215810A (en) | Air-fuel ratio controlling device for internal combustion engine | |
JPS5996452A (en) | Partial lean control method for air-fuel ratio of internal-combustion engine | |
JPS5838353A (en) | System for controlling air-fuel ratio of internal- combustion engine | |
JPS5832931A (en) | Electronic fuel injection device for internal-combustion engine | |
JPH01300034A (en) | Air-fuel ratio controller of internal combustion engine | |
JPS62126261A (en) | Supply device for intake secondary air in internal combustion engine | |
JPS6232337B2 (en) | ||
JPH0491341A (en) | Method for controlling air-fuel ratio of internal combustion engine | |
JPS61272437A (en) | Exhaust gas purifying device for engine |