JPS62265442A - Air-fuel ratio controlling method for internal combustion engine - Google Patents

Air-fuel ratio controlling method for internal combustion engine

Info

Publication number
JPS62265442A
JPS62265442A JP10930686A JP10930686A JPS62265442A JP S62265442 A JPS62265442 A JP S62265442A JP 10930686 A JP10930686 A JP 10930686A JP 10930686 A JP10930686 A JP 10930686A JP S62265442 A JPS62265442 A JP S62265442A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
control
value
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10930686A
Other languages
Japanese (ja)
Inventor
Akira Fujimura
章 藤村
Masataka Chikamatsu
近松 正孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP10930686A priority Critical patent/JPS62265442A/en
Publication of JPS62265442A publication Critical patent/JPS62265442A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To stabilize the rotation of an engine by stopping a P-control and obtaining an air-fuel ratio controlling value only by means of an I-control when an idling condition is detected, at the time of making a PI (proportional-plus- integral) control of the secondary air feeding quantity of intake air in accordance with the detected result of air-fuel ratio. CONSTITUTION:When an engine 5 is operated, it is judged by a control circuit 20 whether an air-fuel ratio feedback control condition is satisfied or not and, when judged yes, a reference current value is retrieved in accordance with the outputs of an absolute pressure sensor 10 and a crank angle sensor 11. And, the output of an O2 sensor 14 is composed with a reference value corresponding to a target air-fuel ratio and, when it is detected that the output of the O2 sensor is changed form a larger value than its target value to a smaller value or the other way around, at least one of a P-control and an I-control is carried out. In this case, if the idling condition of an engine is detected, and air-fuel ratio controlling value is obtained only by means of the I-control, to feedback control the air-fuel ratio of a mixture.

Description

【発明の詳細な説明】 反101M 本発明は内だエンジンの空燃比ゐII W方法に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for determining the air-fuel ratio of internal combustion engines.

血」Uえ」 内燃エンジンの排気ガス浄化、燃費改善前のために排気
ガス中の酸素濃度を酸素Q度センサによって検出し、こ
の酸素濃度センナの出力レベルに応じてエンジンへの供
給混合気の空燃比をフィードバック制御する空燃比制御
装置が知られている。
Before purifying the exhaust gas of an internal combustion engine and improving fuel efficiency, the oxygen concentration in the exhaust gas is detected by an oxygen Q degree sensor, and the air-fuel mixture supplied to the engine is adjusted according to the output level of this oxygen concentration sensor. An air-fuel ratio control device that performs feedback control of an air-fuel ratio is known.

この空燃比制御装置として気化器絞り弁下流に連通ずる
吸気2次空気供給通路に電磁弁を設けて^々素澗度セン
fすの出ノjレベルに応じて電磁弁の開度すなわら吸気
2次空気供給ωを制U(lするフィードバック制!21
1用吸気2次空気供給方式の空燃比ゐII 1211装
置がある(例えば、特公昭55−3533号)、。
As this air-fuel ratio control device, a solenoid valve is provided in the intake secondary air supply passage communicating downstream of the carburetor throttle valve, and the opening degree of the solenoid valve is adjusted according to the output level of the air temperature sensor f. Feedback system to control the intake secondary air supply ω!21
There is an air-fuel ratio II 1211 device with an intake secondary air supply system for 1 (for example, Japanese Patent Publication No. 55-3533).

このような従来の空燃比ル制御装置においては、酸素濃
度センサの出力レベルから供給混合気の空燃比が目標空
燃比に対してリーン又はリッチのいずれであるかが判別
され、その判別結果に応じて比例ω及び債分吊をδコ定
して吸気2次空気供給吊をPI(比例積分)制御するこ
とが通常である。
In such conventional air-fuel ratio control devices, it is determined from the output level of the oxygen concentration sensor whether the air-fuel ratio of the supplied air-fuel mixture is lean or rich with respect to the target air-fuel ratio, and depending on the determination result, It is usual to perform PI (proportional integral) control of the intake secondary air supply by determining the proportional ω and the proportional integral by δ.

ところで、エンジンのアイドル運転時には排気流量が定
常運転時等に比べて少なくなるので酸素濃度センサ等の
排気成分温度センサの温度が低下し、これにより酸素濃
度センサの検出感度が低下する。また気化器等からエン
ジンに供給される混合気量が少ないのでアイドル運転時
に排気浄化性能の向上のために上記したP I fil
l Iaを行なうと、酸素濃度センサによって検出され
た空燃比がり一ンからリッチへ、又はリッチからリーン
へ反転する反転周期が長くなる。この結果、空燃比変動
幅が大きくなり、エンジン回転数の変動をIa来すると
いう問題点があった。
By the way, when the engine is idling, the exhaust flow rate is lower than when the engine is in steady operation, so the temperature of an exhaust component temperature sensor such as an oxygen concentration sensor is lowered, and the detection sensitivity of the oxygen concentration sensor is thereby lowered. Also, since the amount of air-fuel mixture supplied to the engine from the carburetor etc. is small, the P I fil mentioned above is used to improve exhaust purification performance during idling operation.
When IIa is performed, the reversal period in which the air-fuel ratio detected by the oxygen concentration sensor is reversed from one-liter to rich or from rich to lean becomes longer. As a result, there is a problem in that the range of air-fuel ratio fluctuation becomes large, resulting in a fluctuation in engine speed Ia.

凡旦J口iヱ そこで、本発明の目的は、アイドル運転時のエンジン回
転数の安定化を図ることができる空燃比制御方法を提供
することである。
Therefore, an object of the present invention is to provide an air-fuel ratio control method that can stabilize the engine rotational speed during idling operation.

本発明の空燃比制御方法は、エンジンのアイドル運転状
態を検出したときには積分制御のみによって空燃比制御
値を得ることを特徴としている。
The air-fuel ratio control method of the present invention is characterized in that when the idle operating state of the engine is detected, the air-fuel ratio control value is obtained only by integral control.

災−」L一旦 以下、本発明の実施例を図面を参照しつつ説明する。Disaster-” L Once Embodiments of the present invention will be described below with reference to the drawings.

第1図に示した本発明の空燃比制御方法を適用した車載
内燃エンジンの吸気2次空気供給方式の空燃比制御lI
装買にJ3いては、吸入空気が大気吸入口1からエアク
リーナ2、気化器3、そして吸気マニホールド4を介し
てエンジン5に供給される。
Air-fuel ratio control lI of the intake secondary air supply system of an on-vehicle internal combustion engine applying the air-fuel ratio control method of the present invention shown in FIG.
When equipped with J3, intake air is supplied to the engine 5 from an atmospheric air intake port 1 via an air cleaner 2, a carburetor 3, and an intake manifold 4.

気化器3には絞り弁6が設けられ、絞り弁6の上流には
ベンチュリ7が形成されている。
The carburetor 3 is provided with a throttle valve 6, and a venturi 7 is formed upstream of the throttle valve 6.

吸気マニホールド4とエアクリーナ2の空気吐出口近傍
とは吸気2次空気供給通路8によって連通されている。
The intake manifold 4 and the vicinity of the air discharge port of the air cleaner 2 are communicated through an intake secondary air supply passage 8.

吸気2次空気供給通路8にはリニア型の電磁弁9が設け
られている。電磁弁9の開度はそのソレノイド9aに供
給される゛市流直に比例して変化する。
A linear solenoid valve 9 is provided in the intake secondary air supply passage 8 . The degree of opening of the solenoid valve 9 changes in proportion to the direct current supplied to the solenoid 9a.

一方、10は吸気マニホールド4に設けられ吸気マニホ
ールド4内の絶対圧に応じたレベルの出力を発生する絶
対圧センサ、11はエンジン5のクランクシャフト(図
示せず)の回転に応じてパルスを発生するクランク角セ
ンサ、12はエンジン5の冷却水温に応じたレベルの出
力を発生する冷IJ水温センサ、14はエンジン5の排
気マニホールド15に設けられ排気ガス中の醗素溌度に
応じた出力電圧を発生する酸素濃度センサである。
On the other hand, 10 is an absolute pressure sensor installed in the intake manifold 4 and generates an output at a level corresponding to the absolute pressure inside the intake manifold 4, and 11 generates a pulse in accordance with the rotation of the crankshaft (not shown) of the engine 5. 12 is a cold IJ water temperature sensor that generates an output at a level corresponding to the cooling water temperature of the engine 5; 14 is a cold IJ water temperature sensor that is installed in the exhaust manifold 15 of the engine 5 and outputs a voltage that corresponds to the solubility in the exhaust gas; This is an oxygen concentration sensor that generates

酸素濃度センサ14の配設位置より下流の排気マニホー
ルド15には排気ガス中の有害成分の低減を促進させる
ために触媒コンバータ33が設けられている。電磁弁9
、絶対圧センサ10.クランク角センサ11、水温セン
サ12及び酸素濃度センサ14は制御回路20に接続さ
れている。制御回路20には更に車両の速度に応じたレ
ベルの出力を発生する車速センサ16と、ポテンショメ
ータからなり、絞り弁6の開度に応じたレベルの出力を
発生する絞り弁開lセンサ17とが接続されている。
A catalytic converter 33 is provided in the exhaust manifold 15 downstream of the oxygen concentration sensor 14 in order to promote reduction of harmful components in the exhaust gas. Solenoid valve 9
, absolute pressure sensor 10. The crank angle sensor 11, water temperature sensor 12, and oxygen concentration sensor 14 are connected to a control circuit 20. The control circuit 20 further includes a vehicle speed sensor 16 that generates an output level that corresponds to the speed of the vehicle, and a throttle valve opening sensor 17 that is composed of a potentiometer and generates an output level that corresponds to the opening degree of the throttle valve 6. It is connected.

制御回路20は第2図に示すように絶対圧センサ−10
、水温センサ12、酸素濃度センサ14、車速センサ1
6及び絞り弁開度センlす17の各出力レベルを変換す
るレベル変換回路21と、レベル変換回路21を経た各
センサ出力の1つを選択的に出力するマルチブレクリ2
2と、このマルチブレクリ22から出力される信号をデ
ィジクル信号に変換するA/D変換i’!!i23と、
クランク角センサ11の出力信号を波形整形する波形整
形回路24と、波形整形回路24からパルスとして出力
されるTDC信号の発生間隔をクロックパルス発生回路
(図示せず)から出力されるクロックパルス数によって
計測するカウンタ25と、電磁弁9を聞弁駆1FIJす
る駆動回路28と、プログラムに従ってディジタル演幹
を行なうCPU (中央演算回路)2つと、各種の処理
プログラム及びデータが予め占き込まれたROM30と
、RAM31とがらなっている。電磁弁9のソレノイド
9aは駆動回路28の駆動1−ランジスタ及び電流検出
用抵抗(共に図示せず)に直列に接続されてその直列回
路の両端間に電源電圧が供給される。マルチブレクリ−
22、ハ/・′D変換器23、カウンタ25、駆動回路
28、CPU29、ROM30及びRA M311;L
入出力バス32にJ、ってHいに接続されている。
The control circuit 20 includes an absolute pressure sensor 10 as shown in FIG.
, water temperature sensor 12, oxygen concentration sensor 14, vehicle speed sensor 1
a level conversion circuit 21 that converts the respective output levels of the throttle valve opening sensor 6 and the throttle valve opening sensor 17; and a multi-break controller 2 that selectively outputs one of the outputs of each sensor that has passed through the level conversion circuit 21.
2, and an A/D converter i'! that converts the signal output from the multi-branch 22 into a digital signal. ! i23 and
The waveform shaping circuit 24 shapes the output signal of the crank angle sensor 11, and the generation interval of the TDC signal output as a pulse from the waveform shaping circuit 24 is determined by the number of clock pulses output from a clock pulse generation circuit (not shown). A counter 25 for measuring, a drive circuit 28 for controlling the solenoid valve 9, two CPUs (central processing circuits) for performing digital processing according to the program, and a ROM 30 pre-loaded with various processing programs and data. and RAM31. The solenoid 9a of the electromagnetic valve 9 is connected in series with a drive 1 transistor and a current detection resistor (both not shown) of the drive circuit 28, and a power supply voltage is supplied across the series circuit. multi breakley
22, H/'D converter 23, counter 25, drive circuit 28, CPU 29, ROM 30 and RAM 311; L
J and H are connected to the input/output bus 32.

かかる構成においては、A/D変換器23から吸気マニ
ホールド4内の絶対圧、冷却水温、排気ガス中の酸素濃
度、車速及び絞り弁開度の情報が択一的に、またカウン
タ25からエンジン回転数を表わす情報がCPU29に
入出力バス32を介して各々供給される。CPU29は
後)本の如く所定円f91T+(例えば、50m5ec
)毎に内部に1迷信号を発生するようにされており、割
込信号に応じて電磁弁9のソレノイド9aへの供給電流
値DOUTをデータとして算出し、その0出した供給電
流値DOLITを駆動回路28に供給する。駆動回路2
8はソレノイド9aに流れる電流値が供給電流値DOU
Tになるようにソレノイド9aに流れる電流値を閉ルー
プ制御する。
In this configuration, the A/D converter 23 selectively transmits information on the absolute pressure in the intake manifold 4, the cooling water temperature, the oxygen concentration in the exhaust gas, the vehicle speed, and the throttle valve opening, and the counter 25 selectively transmits information on the engine rotation. Information representing the numbers is supplied to the CPU 29 via an input/output bus 32, respectively. The CPU 29 is set to a predetermined circle f91T+ (for example, 50m5ec) like a book.
), a stray signal of 1 is generated internally for every interrupt signal, and the supply current value DOUT to the solenoid 9a of the solenoid valve 9 is calculated as data, and the supply current value DOLIT that is 0 is calculated as data. The signal is supplied to the drive circuit 28. Drive circuit 2
8, the current value flowing through the solenoid 9a is the supply current value DOU
The current value flowing through the solenoid 9a is controlled in a closed loop so that the current value becomes T.

次に、かかる本発明による空燃比制御方法の手順を第3
図に示したCPU29の動作フロー図に従って詳細に説
明する。
Next, the steps of the air-fuel ratio control method according to the present invention will be described in the third step.
A detailed explanation will be given according to the operation flow diagram of the CPU 29 shown in the figure.

CPU29は、先ず、割込信号発生毎に車両の運転状]
フ(エンジンの運転状態を含む)が空燃比フィードバッ
ク(F 、/ B )制御系V1.を充足しているか否
かを判別する(ステップ51)。この判別は吸気マニホ
ールド内絶対汁、冷却水温、車速及びエンジン回転数か
ら決定され、例えば、低車速時及び低冷7J]水温11
.1には空燃比フィードバック制御条件が充足されてい
ないとされる1、ここで、空燃比フィードバック制御条
イ′[を充足しないと判別したならば、電磁ブt9を閉
弁して空燃比フィードバック制御を停止するために供給
電流1i1ff D OLJ Tを○に等しくする(ス
テップ52)。一方、空燃比フィードバック制り11条
件を充足すると判別したならば、電磁弁9への供給電流
値のv準電流値DEIASEを設定する(ステップ53
)、ROM30には第4図に示すように吸気マニホール
ド内絶対Ff、PBAとエンジン回転数Neとから定ま
るJ1Z準電流1直De A S EがDBASEデー
タマツプとして予め書き込まれているので、CPU29
は絶対圧PEAとエンジン回転数Neとを読み込み、読
み込んだ各値に対応する基4L電流1直Da A S 
EをDBAsEデータマツプから検索する。次に、酸素
濃度センサ14の出力電仔VO2を酸素濃度センサとし
て読み込みその出力電圧VO2が目標空燃比に対応する
基準値VRE Fより小であるが否かを判別する(ステ
ップ54)。VO2<VREFの場合には、空燃比がリ
ーンであるので空燃比フラグFAFがOに等しいか否か
を判別する(ステップ55〉。FA F−0ならば、空
燃比がリーン状態を継続していると見做し、FAF=1
ならば、空燃比がリッチからリーンに反転したと見做す
。VO2≧VREFの場合には、空燃比がリッチである
ので空燃比フラグFAFが1に等しいか否かを判別する
(ステップ56)。FAF=1ならば、空燃比がリッチ
状態を継続していると見做し、FAE=Oならば、空燃
比がリーンがらリッチに反転したと見做ず。このように
空燃比が反転したときには変数Nを整数N+  (例え
ば、3)に等しくすることによりリセットしくステップ
57)、アイドル運転状態か否かを判別する(ステップ
58)。アイドル運転状態は例えば、絞り弁開度θth
、又は吸気マニホールド内絶対圧PEAから判別し、絞
り弁開度θthが所定開度01以下のとぎ、又は吸気マ
ニホールド内絶対汗PBAが所定圧1)I以下のときア
イドル運転時と判断する。
First, the CPU 29 checks the driving status of the vehicle every time an interrupt signal is generated]
air-fuel ratio feedback (F,/B) control system V1. It is determined whether or not the conditions are satisfied (step 51). This determination is determined from the absolute fluid in the intake manifold, the cooling water temperature, the vehicle speed, and the engine rotation speed. For example, at low vehicle speed and low cold 7J]
.. 1, it is said that the air-fuel ratio feedback control condition is not satisfied. Here, if it is determined that the air-fuel ratio feedback control condition a'[ is not satisfied, the electromagnetic button t9 is closed and the air-fuel ratio feedback control is performed. The supply current 1i1ff D OLJ T is made equal to ◯ to stop the current (step 52). On the other hand, if it is determined that the air-fuel ratio feedback system 11 conditions are satisfied, the v quasi-current value DEIASE of the current value supplied to the solenoid valve 9 is set (step 53
), as shown in FIG. 4, the J1Z quasi-current 1-direction De ASE determined from the absolute Ff in the intake manifold, PBA, and the engine speed Ne is written in advance as a DBASE data map in the ROM 30, so the CPU 29
reads the absolute pressure PEA and engine speed Ne, and calculates the base 4L current 1st line Da A S corresponding to each read value.
Search for E from the DBAsE data map. Next, the output voltage VO2 of the oxygen concentration sensor 14 is read as an oxygen concentration sensor and it is determined whether the output voltage VO2 is smaller than the reference value VREF corresponding to the target air-fuel ratio (step 54). If VO2<VREF, the air-fuel ratio is lean, so it is determined whether the air-fuel ratio flag FAF is equal to O (step 55). If FA F-0, the air-fuel ratio continues to be in a lean state. Assuming that there is, FAF=1
If so, it is assumed that the air-fuel ratio has reversed from rich to lean. If VO2≧VREF, the air-fuel ratio is rich, so it is determined whether the air-fuel ratio flag FAF is equal to 1 (step 56). If FAF=1, it is assumed that the air-fuel ratio continues to be rich, and if FAE=O, it is not assumed that the air-fuel ratio has changed from lean to rich. When the air-fuel ratio is reversed in this way, the variable N is reset by making it equal to an integer N+ (for example, 3) (step 57), and it is determined whether or not the engine is in an idling state (step 58). The idle operating state is, for example, the throttle valve opening θth
, or when the intake manifold absolute pressure PEA is determined, and when the throttle valve opening θth is less than the predetermined opening 01, or when the intake manifold absolute sweat PBA is less than the predetermined pressure 1)I, it is determined that the engine is idling.

アイドル運転状態でない場合に(よ酸素濃度セント±1
4の出力電圧VO2が目標空燃比に対応する基準1直V
RE r:より小ぐあるか否かを判別する(ステップ5
つ)。Vo2<VnEpならば、空燃比が目標空燃比よ
りリーンであるので空燃比フラグFA+:を01.:等
しくシ(ステップ60)、空燃比フィードバック補正係
数KO2から所定比+x+ :n pを減0しその算出
値を新たにi1j正係数KQ2とする(ステップ61)
。VO2≧VRar/、;らぼ、空燃比が目標空燃比よ
りリッチであるので空燃比フラグFAFを1に等しくシ
くステップ62)、空燃比フィードバック補正係数KO
2がら所定比例ff1Pを加算しその算出圃を新たに補
正係数K。
When not in idle operation (Oxygen concentration cent ±1
4 output voltage VO2 corresponds to the target air-fuel ratio.
RE r: Determine whether there is a smaller one (step 5
). If Vo2<VnEp, the air-fuel ratio is leaner than the target air-fuel ratio, so the air-fuel ratio flag FA+: is set to 01. : Equally (step 60), the predetermined ratio +x+ :n p is subtracted by 0 from the air-fuel ratio feedback correction coefficient KO2, and the calculated value is newly set as the i1j positive coefficient KQ2 (step 61).
. VO2≧VRar/; Since the air-fuel ratio is richer than the target air-fuel ratio, the air-fuel ratio flag FAF is set equal to 1 (Step 62), the air-fuel ratio feedback correction coefficient KO
Add a predetermined proportion ff1P to 2 and use the calculated field as a new correction coefficient K.

2とTる(ステップ63)、ステップ61又は63にJ
3いて補正系FJ K 02の()出後、ステップ53
において設定した基準電流賄De A S Eに補正係
数Ko2を東点しその重態結果を供給電流値DOUTと
しくステップ64)、供給電流値Dou下を駆動回路2
8に対して出力する(ステップ65)。またステップ5
8においてアイドル運転状態であると判別した場合には
直ちにステップ64を実行して供給電流値D o u 
r @算出する。
2 and T (step 63), J to step 61 or 63
3 and after the correction system FJ K 02 () appears, step 53
The correction coefficient Ko2 is applied to the reference current supply DeASE set in Step 64), and the critical state result is set as the supply current value DOUT.
8 (step 65). Also step 5
If it is determined in step 8 that the engine is in an idling state, step 64 is immediately executed and the supply current value D o u
r @calculate.

一方、ステップ53ないし56において空燃比が反転1
ノていないと判別されたときには吸気マニホールド内絶
対圧PBAを読み込みその絶対圧PB△が410 mm
11gより大であるか否かを判別する(ステップ66)
、P8A≦410 mm11gならば、低負荷であるの
で変数Nを整数N1に等しくすることによりリセットし
くステップ67)、また単位積分子lJi I nを初
期圃11に等しクシ(ステップ68) 、Pa A >
410II1ml1gならば、4rX 負?m テtx
いので変v!INがO(、:′yrしいか否かを判別す
る(ステップ69)。N≠0ならば、変数Nから1を減
算しその→出値を新たな変数Nとしくステップ7o)、
単位積分Φ1.を初期値Itに等しくする(ステップ6
8)。N=Oならば、前回の中位積分mlnを■。−1
として読み出しその単位積分子fi−1旧に係数に+ 
 (例えば、1.1)を乗(′Iしてそのp出値を今回
の中位積分子filnとしくステップ71)、今回の単
位積分母Inがガードlfl I c以上か否かを判別
する(ステップ72)。In≧tcならば、今回の単(
Q積分量I。をガード値1cに等しくシ(ステップ73
)、In <Icならば、ステップ71において算出さ
れた中位積分In I nを保持する。
On the other hand, in steps 53 to 56, the air-fuel ratio is reversed to 1.
When it is determined that there is no air pressure, the absolute pressure PBA in the intake manifold is read and the absolute pressure PB△ is 410 mm.
Determine whether it is greater than 11g (step 66)
, P8A≦410 mm11g, the load is low, so reset the variable N by making it equal to the integer N1 (step 67), and set the unit product numerator lJi I n equal to the initial field 11 (step 68), Pa A>
If 410II 1ml 1g, 4rX negative? m te tx
Ino so weird v! Determine whether IN is O(,:'yr) (step 69). If N≠0, subtract 1 from variable N and set its → output value as new variable N (step 7o),
Unit integral Φ1. is equal to the initial value It (step 6
8). If N=O, the previous intermediate integral mln is ■. -1
Read its unit product numerator fi-1 as the coefficient +
(For example, 1.1) is multiplied by ('I) and the p output value is set as the current intermediate product numerator filn (step 71), and it is determined whether or not the current unit integral integral In is greater than or equal to the guard lfl I c. (Step 72). If In≧tc, the current single (
Q integral quantity I. is equal to the guard value 1c (step 73
), if In < Ic, the intermediate integral In I n calculated in step 71 is retained.

単位積分φ]nが定まると、酸素温度センサ14の出力
型I′1Fvo2が目標空だ比に対応する基準値VRE
 Fより小であるか否かを判別する(ステップ74)。
When the unit integral φ]n is determined, the output type I'1Fvo2 of the oxygen temperature sensor 14 becomes the reference value VRE corresponding to the target empty ratio.
It is determined whether or not it is smaller than F (step 74).

VO2<VREFならば、空燃比が目標空燃比よりリー
ンであるので空燃比フラグFAFをOl、:等しクシ(
ステップ75)、前回の出力電圧■02n−1と今回の
出力電圧VO2との変化量ΔVO2(=VO2Vo2n
−+)が所定値Δ■02H(負の埴)より小であるか否
かを判別する(ステップ76)。ΔVO2<Δ■o2H
ならば、空燃比のリーン化が継続しているので補正係数
に02からm位積分子fi I nを減算しその弾出1
直を今回の補正係数KO2とする(ステップ77)。Δ
VO2≧ΔV02Hならば、空燃比のリーン化具合が低
下したので単位積分追I。の増加を防止するために単位
積分子fil。を初期値11に等しくしくステップ78
)、そしてステップ77の実行により補正係数KO2か
ら単位積分子fiInを減算しその算出1直を今回の補
正係数KO2とする。ステップ74においてVO2≧V
RE Fならば、空燃比が目標空燃比よりリッチである
ので空燃比フラグFA・を1に等しクシくステップ79
)、前回の出力電圧V O2n−+と今回の出力電圧V
O2との変化h1△Vo 2  (=Vo 2−VO2
n−+)が所定値Δ■02し (正の値)より大である
か否かを判別する(ステップ80)。ΔVO2>ΔVO
2Lならば、空燃比のリッチ化が継続しているので補正
係数KO2に単位積分量Inを加算しその口出値を今回
の補正係数KO2とする(ステップ81)。
If VO2<VREF, the air-fuel ratio is leaner than the target air-fuel ratio, so set the air-fuel ratio flag FAF to Ol, :=
Step 75), the amount of change ΔVO2 (=VO2Vo2n) between the previous output voltage ■02n-1 and the current output voltage VO2
-+) is smaller than a predetermined value Δ■02H (negative value) (step 76). ΔVO2<Δ■o2H
Then, since the air-fuel ratio continues to lean, the m-order product numerator fi I n is subtracted from 02 to the correction coefficient, and its ejection 1
KO2 is set as the current correction coefficient KO2 (step 77). Δ
If VO2≧ΔV02H, the leanness of the air-fuel ratio has decreased, so add unit integral I. To prevent an increase in the unit product fil. is equal to the initial value 11 in step 78.
), and by executing step 77, the unit product numerator fiIn is subtracted from the correction coefficient KO2, and the calculated first shift is set as the current correction coefficient KO2. In step 74, VO2≧V
If RE F, the air-fuel ratio is richer than the target air-fuel ratio, so the air-fuel ratio flag FA is set equal to 1 and step 79 is executed.
), previous output voltage V O2n-+ and current output voltage V
Change with O2 h1△Vo 2 (=Vo 2 - VO2
It is determined whether n-+) is greater than a predetermined value Δ■02 (positive value) (step 80). ΔVO2>ΔVO
If it is 2L, the enrichment of the air-fuel ratio continues, so the unit integral amount In is added to the correction coefficient KO2, and the resulting value is set as the current correction coefficient KO2 (step 81).

ΔV○2≦ΔV02しならば、空燃比のリッチ化具合が
低下したので中位積分11゜の増加を防止するためにi
11位積分子fl + nを初期値11に苦しくしくス
テップ82)、そしてステップ81の実行により補正係
数KO2に単位積分m I nを加算しその(1出値を
今回の補正係数KO2とする。
If ΔV○2≦ΔV02, the degree of enrichment of the air-fuel ratio has decreased, so in order to prevent the middle integral from increasing by 11°, i
The 11th-order product numerator fl + n is set to the initial value 11 (step 82), and by executing step 81, the unit integral m I n is added to the correction coefficient KO2, and the output value is set as the current correction coefficient KO2.

このように、ステップ77又は81にJ5いて補正(f
+数KO2を決定すると、ステップ64.65の実行に
より供給電流値Douvとし、供給電流1i11Dou
vを駆動回路28に対して供給する。
In this way, in step 77 or 81, J5 corrects (f
After determining the + number KO2, the supply current value Douv is set by executing steps 64 and 65, and the supply current 1i11Dou
v is supplied to the drive circuit 28.

駆りJ回路28は電磁弁9のソレノイド9aに流れる電
流値を電流検出用抵抗によって検出してその検出電流値
と供給電流値DOUTとを比較し、比較結果に応じて駆
動トランジスタをオンオフすることによりソレノイド9
aに電流を供給する。
The drive J circuit 28 detects the current value flowing through the solenoid 9a of the solenoid valve 9 using a current detection resistor, compares the detected current value with the supplied current value DOUT, and turns on and off the drive transistor according to the comparison result. Solenoid 9
Supply current to a.

よって、ソレノイド9aには供給電流値DOLJTの電
流が流れ、ソレノイド9aに流れる電流値に比例した量
の吸気2次空気が吸気マニホールド4内に供給されるの
である。また供給電流1直DouTがOの場合にはM 
[a弁9が111弁して吸気2次空気の供給が口出され
る。
Therefore, a current having the supply current value DOLJT flows through the solenoid 9a, and an amount of secondary intake air proportional to the current value flowing through the solenoid 9a is supplied into the intake manifold 4. In addition, when the supply current 1-direction DouT is O, M
[Valve a 9 closes to valve 111, and intake secondary air is supplied.

かかる本発明の空燃比i、111211方法を適用した
装置においては、酸素濃度から検出した空燃比が目標空
燃比に対して反転したときにアイドル運転状態でないな
らば、先ず、補正係数KO2の比例量を反転方向と逆の
空燃比方向に変化させ、それに続いて補正係数KO2の
積分mを徐々に変化さゼるPI(比例積分)制御が行な
われる。このPI副制御時リッチ又はリーン状態が継続
しかつ低負荷でなければ、空燃比反転後は供給混合気の
空燃比の変化に対する応答性の向上を図るために第5図
に示すように単位当りの積分量が時間経過に従って増加
され、その後、空燃比の単位時間当りの変化が緩やかに
なると空燃比反転までは反転後のオーバーシュートを防
止するために積分量が初期値11に固定される。よって
、供給混合気の空燃比が目標空燃比にほぼ安定している
とぎには空燃比の反転周期が中くなるので単位当りの積
分aの増加は行なわれない。一方、アイドル運転時には
空燃比制御によるエンジン回転数の変動を防止するため
に補正係数KO2の積分量のみを徐々に変化させるI制
御が行なわれる。
In an apparatus to which the air-fuel ratio i, 111211 method of the present invention is applied, if the air-fuel ratio detected from the oxygen concentration is reversed with respect to the target air-fuel ratio and is not in an idling operating state, first, the proportional amount of the correction coefficient KO2 is PI (proportional-integral) control is performed in which the air-fuel ratio is changed in the air-fuel ratio direction opposite to the reversal direction, and then the integral m of the correction coefficient KO2 is gradually changed. During this PI sub-control, if the rich or lean state continues and the load is not low, after the air-fuel ratio is reversed, the air-fuel ratio per unit is increased as shown in Figure 5 in order to improve the responsiveness to changes in the air-fuel ratio of the supplied mixture. The integral amount is increased as time passes, and thereafter, when the change in the air-fuel ratio per unit time becomes gradual, the integral amount is fixed at the initial value 11 until the air-fuel ratio is reversed to prevent overshoot after the reversal. Therefore, as long as the air-fuel ratio of the supplied air-fuel mixture is approximately stable at the target air-fuel ratio, the inversion period of the air-fuel ratio becomes intermediate, so that the integral a per unit is not increased. On the other hand, during idling, I control is performed in which only the integral amount of correction coefficient KO2 is gradually changed in order to prevent fluctuations in engine speed due to air-fuel ratio control.

なお、上記した本発明の実施例においては、ステップ7
1におけるIn =に+  ・11−1の演篇により単
位当りの積分(dが変化するようになっているが、これ
に限らず、In =に+ ’  ・I n−+の如く単
位当りのに分、Iaを変化させても良いのである。
Note that in the embodiment of the present invention described above, step 7
The integral per unit (d is designed to change depending on the operation of In = + ・11-1 in 1, but it is not limited to this). It is also possible to change Ia every minute.

また、上記した本発明の実施例においては、リニア型の
電磁弁を備えた空燃比制御装置について説明したが、電
磁開閉弁を吸気2次空気供給通路に協え所定周期毎に電
磁開閉弁の開弁面間TouT(=基準開弁時間TOA 
S E X補正係HKo2)を口出しその量弁時間TO
UTだけ電磁開閉弁を611弁さUる空燃比制御装置に
も本発明を適用することができる。
Furthermore, in the above-described embodiments of the present invention, an air-fuel ratio control device equipped with a linear solenoid valve has been described. TouT between valve opening surfaces (=standard valve opening time TOA
SEX correction staff HKo2) and its amount valve time TO
The present invention can also be applied to an air-fuel ratio control device in which only UT has 611 electromagnetic on-off valves.

更に、上記した本発明の実施例においては、吸気2次空
気供給方式の空燃比制御g首に本発明の空燃比制御方法
を適用したが、インジェクタによって燃料を噴射供給し
その噴射迅を制御する方式の装置にも本発明を適用する
ことができるのである。
Further, in the embodiment of the present invention described above, the air-fuel ratio control method of the present invention is applied to the air-fuel ratio control g head of the intake secondary air supply system, but the fuel is injected and supplied by the injector and the injection speed is controlled. The present invention can also be applied to devices of this type.

λ」Jと廟ヌ 以上の如く、本発明の空燃比制御方法においては、エン
ジンのアイドル運転状態を検出したときにはP制闘を停
止してI 1tlJ御のみによって空燃比制in [を
得て供給混合気の空燃比を徐々に変化させるので空燃比
の変動がPI制御した場合に比して小さくなり、エンジ
ン回転数を安定化させることができるのである。
As described above, in the air-fuel ratio control method of the present invention, when the idle operating state of the engine is detected, the P control is stopped and the air-fuel ratio control is obtained and supplied only by the I1tlJ control. Since the air-fuel ratio of the air-fuel mixture is gradually changed, fluctuations in the air-fuel ratio are smaller than in the case of PI control, and the engine speed can be stabilized.

4、♂いの命中な説明 第1図は本発明の空燃比制御方法を適用した空燃比制御
装置を示す概略図、第2図は第1図の装置中の制御回路
の具体的構成を示すブロック図、第3図はCPUの動作
を示すフロー図、第4図はROMに書き込まれたデータ
マツプを示す図、第5図は単位積分量Inの変化特性を
示す図である。
4. Explanation of how to hit the target Figure 1 is a schematic diagram showing an air-fuel ratio control device to which the air-fuel ratio control method of the present invention is applied, and Figure 2 shows the specific configuration of the control circuit in the device shown in Figure 1. 3 is a flowchart showing the operation of the CPU, FIG. 4 is a diagram showing a data map written in the ROM, and FIG. 5 is a diagram showing the change characteristics of the unit integral amount In.

主要部分の符号の説明 2・・・・・・エアクリーナ 3・・・・・・気化器 4・・・・・・吸気マニホールド 6・・・・・・絞り弁 7・・・・・・ベンチュリ 8・・・・・・吸気2次空気供給通路 9・・・・・・リニア型電磁弁 10・・・・・・絶対圧センサ 11・・・・・・クランク角センサ 12・・・・・・冷却水温センサ 14・・・・・・酸素濃度センサ 15・・・・・・排気マニホールド 17・・・・・・絞り弁開度センサ 33・・・・・・触媒コンバータ 出願人   本田技研工業株式会社 代理人   弁理士  藤利元彦 第4図 r、 p、m 第5図Explanation of symbols of main parts 2...Air cleaner 3... vaporizer 4...Intake manifold 6... Throttle valve 7...Venturi 8...Intake secondary air supply passage 9...Linear type solenoid valve 10... Absolute pressure sensor 11...Crank angle sensor 12... Cooling water temperature sensor 14...Oxygen concentration sensor 15...Exhaust manifold 17... Throttle valve opening sensor 33...Catalytic converter Applicant: Honda Motor Co., Ltd. Agent: Patent Attorney: Motohiko Fujitoshi Figure 4 r, p, m Figure 5

Claims (1)

【特許請求の範囲】[Claims] 内燃エンジンの排気系に設けられた排気成分濃度センサ
によって検出された排気成分濃度検出値と目標空燃比に
対応する基準値と比較し、該比較結果から前記排気成分
濃度検出値が前記目標値より大から小に、又は小から大
に反転したことを検出したときに空燃比制御値を変化さ
せる比例制御と、所定周期毎に前記比較結果に応じて前
記空燃比制御値を増減させる積分制御との少なくとも一
方を行ない、エンジンに供給される混合気の空燃比を前
記空燃比制御値に応じて補正する空燃比制御方法であっ
て、エンジンのアイドル運転状態を検出したときには前
記積分制御のみによって前記空燃比制御値を得ることを
特徴とする空燃比制御方法。
The exhaust component concentration detection value detected by the exhaust component concentration sensor provided in the exhaust system of the internal combustion engine is compared with a reference value corresponding to the target air-fuel ratio, and from the comparison result, the exhaust component concentration detection value is lower than the target value. Proportional control that changes the air-fuel ratio control value when detecting a reversal from large to small or from small to large, and Integral control that increases or decreases the air-fuel ratio control value at predetermined intervals according to the comparison result. The air-fuel ratio control method corrects the air-fuel ratio of the air-fuel mixture supplied to the engine according to the air-fuel ratio control value by performing at least one of the following: An air-fuel ratio control method characterized by obtaining an air-fuel ratio control value.
JP10930686A 1986-05-12 1986-05-12 Air-fuel ratio controlling method for internal combustion engine Pending JPS62265442A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10930686A JPS62265442A (en) 1986-05-12 1986-05-12 Air-fuel ratio controlling method for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10930686A JPS62265442A (en) 1986-05-12 1986-05-12 Air-fuel ratio controlling method for internal combustion engine

Publications (1)

Publication Number Publication Date
JPS62265442A true JPS62265442A (en) 1987-11-18

Family

ID=14506851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10930686A Pending JPS62265442A (en) 1986-05-12 1986-05-12 Air-fuel ratio controlling method for internal combustion engine

Country Status (1)

Country Link
JP (1) JPS62265442A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8316642B2 (en) 2006-07-29 2012-11-27 Cummins Turbo Technologies Limited Multi-stage turbocharger system
US9062594B2 (en) 2009-11-21 2015-06-23 Cummins Turbo Technologies Limited Multi-stage turbocharger system
US9103274B2 (en) 2006-07-29 2015-08-11 Cummins Emission Solution Inc. Multi-stage turbocharger system
US9995207B2 (en) 2009-11-21 2018-06-12 Cummins Turbo Technologies Limited Multi-stage turbocharger system
US10054037B2 (en) 2009-11-21 2018-08-21 Cummins Turbo Technologies Limited Multi-stage turbocharger system with bypass flowpaths and flow control valve

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8316642B2 (en) 2006-07-29 2012-11-27 Cummins Turbo Technologies Limited Multi-stage turbocharger system
US9103274B2 (en) 2006-07-29 2015-08-11 Cummins Emission Solution Inc. Multi-stage turbocharger system
US9708969B2 (en) 2006-07-29 2017-07-18 Cummins Turbo Technologies Limited Multi-stage turbocharger system
US9062594B2 (en) 2009-11-21 2015-06-23 Cummins Turbo Technologies Limited Multi-stage turbocharger system
US9995207B2 (en) 2009-11-21 2018-06-12 Cummins Turbo Technologies Limited Multi-stage turbocharger system
US10054037B2 (en) 2009-11-21 2018-08-21 Cummins Turbo Technologies Limited Multi-stage turbocharger system with bypass flowpaths and flow control valve

Similar Documents

Publication Publication Date Title
JPS58152147A (en) Air-fuel ratio control method for internal combustion engine
US4886035A (en) Air-fuel ratio control method for an internal combustion engine
JPS62265442A (en) Air-fuel ratio controlling method for internal combustion engine
JPH03275954A (en) Control device for air-fuel ratio of internal combustion engine using fuel of different kind
US4715349A (en) Air intake side secondary air supply system for an internal combustion engine with an improved operation under a small intake air amount
JPS61232340A (en) Air-fuel ratio controller for engine
US4649882A (en) Air intake side secondary air supply system for an internal combustion engine equipped with a fuel increment control system
JP2910034B2 (en) Air-fuel ratio control device for internal combustion engine
JPS6415447A (en) Air-fuel ratio control device for internal combustion engine
JPS61187570A (en) Intake secondary air feeder of internal-combustion engine
JP2609230B2 (en) Air-fuel ratio control method for internal combustion engine
JP2655639B2 (en) Air-fuel ratio control method for internal combustion engine
JPS63134835A (en) Air-fuel ratio control device for internal combustion engine
JPH0151894B2 (en)
JPS62265441A (en) Air-fuel ratio control method for internal combustion engine
JPS623159A (en) Intake secondary air supply device for internal-combustion engine
JPS61237858A (en) Control device for air-fuel ratio in internal-combustion engine
JPS63295831A (en) Air-fuel ratio control device for internal combustion engine
JPS62288341A (en) Air-fuel ratio control method for internal combustion engine
JPS6260957A (en) Air-fuel ratio controller for internal combustion engine
JPS6282265A (en) Secondary intake air supply device for internal combustion engine
JPS62126261A (en) Supply device for intake secondary air in internal combustion engine
JPH01300034A (en) Air-fuel ratio controller of internal combustion engine
JPS623160A (en) Intake secondary air supply device for vehicle-mount internal-combustion engine
JPS63195350A (en) Air-fuel ratio control device for internal combustion engine