JPS62288339A - Air-fuel ratio control method for internal combustion engine - Google Patents

Air-fuel ratio control method for internal combustion engine

Info

Publication number
JPS62288339A
JPS62288339A JP13088986A JP13088986A JPS62288339A JP S62288339 A JPS62288339 A JP S62288339A JP 13088986 A JP13088986 A JP 13088986A JP 13088986 A JP13088986 A JP 13088986A JP S62288339 A JPS62288339 A JP S62288339A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
value
correction value
reference value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13088986A
Other languages
Japanese (ja)
Other versions
JPH0713491B2 (en
Inventor
Masataka Chikamatsu
近松 正孝
Tetsuya Ono
哲也 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP61130889A priority Critical patent/JPH0713491B2/en
Publication of JPS62288339A publication Critical patent/JPS62288339A/en
Publication of JPH0713491B2 publication Critical patent/JPH0713491B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To correct a slippage of a base air-fuel ratio, by correcting a reference value for air-fuel ratio control as set according to an engine load with a deviation between an output value of an O2 sensor and a target value, and correcting a unit proportional quantity when a correction value indicative of an error in the reference value is not less than a predetermined value. CONSTITUTION:A control circuit 20 reads a reference value for air-fuel ratio control from a data map according to an engine speed from a crank angle sensor 11 and an intake absolute pressure from an intake absolute pressure sensor 10 both relating to an engine load. When it is determined that air-fuel ratio feedback control conditions are satisfied from the intake absolute pressure, cooling water temperature, vehicle speed and engine speed, an integral term and a proportional term for feedback controlling a secondary air control valve 9 acoording to the engine speed and intake absolute pressure are calculated. Further, a present correction value of the reference value is calculated from a previous correction value and the integral term or the proportional term. When the present correction value becomes a predetermined value or more, or becomes a predetermined value or less, it is determined that a slippage of a base air-fuel ratio in a carburetor 3 has occurred, and a unit proportional quantity and a unit integral quantity are therefore corrected.

Description

【発明の詳細な説明】 3、発明の詳細な説明 技Jづ九野 本発明は内燃エンジンの空燃比制御方法に関する。[Detailed description of the invention] 3. Detailed description of the invention Technique Jzu Kuno The present invention relates to an air-fuel ratio control method for an internal combustion engine.

晋1え術 内燃エンジンの排気ガス浄化、燃費改善等を目的として
排気ガス中の酸素濃度を酸素濃度センサによって検出し
、酸素濃度センサの出力レベルに応じてエンジンへの供
給混合気の空燃比を目標空燃比にフィードバック制御す
る空燃比制御装置が知られている(例えば、特公昭55
−3533@公報)。
In order to purify the exhaust gas of internal combustion engines and improve fuel efficiency, the oxygen concentration in the exhaust gas is detected by an oxygen concentration sensor, and the air-fuel ratio of the mixture supplied to the engine is adjusted according to the output level of the oxygen concentration sensor. Air-fuel ratio control devices that perform feedback control to a target air-fuel ratio are known (for example,
-3533@publication).

このような空燃比制御装置においては、エンジン負荷に
関する複数のエンジン運転パラメータに応じて空燃比制
御の基準値を設定し、所定円II毎に酸素濃度センサ等
の排気成分濃度センサの出力値と目標空燃比に対応する
目標値とを比較し、その比較結果に応じて空燃比補正値
を定めその空燃比補正値によって基準値を補正すること
により出力値が決定され、出力値に応じて空燃比調整用
電磁弁の開度が制御されるようになっている。空燃比補
正値は例えば、排気成分濃度センサの出力値と目標値と
の比較結果に応じてPI(比例積分)ルリ御により定め
られる比例量及び積分量、又は[(積分)制御のみによ
り定められる積分量からなる。
In such an air-fuel ratio control device, a reference value for air-fuel ratio control is set according to a plurality of engine operating parameters related to engine load, and the output value of an exhaust component concentration sensor such as an oxygen concentration sensor and a target are set for each predetermined circle II. The output value is determined by comparing the target value corresponding to the air-fuel ratio, determining the air-fuel ratio correction value according to the comparison result, and correcting the reference value with the air-fuel ratio correction value, and adjusting the air-fuel ratio according to the output value. The opening degree of the regulating solenoid valve is controlled. The air-fuel ratio correction value is, for example, a proportional amount and an integral amount determined by PI (proportional-integral) control according to the comparison result between the output value of the exhaust component concentration sensor and the target value, or a proportional amount and an integral amount determined by PI (proportional-integral) control only. Consists of integral quantities.

ところで、気化器の経時変化、又は劣化のために気化器
のペース空燃比が予め定めた値からずれることにより設
定された基準値が目標空燃比に対応しなくなり誤差が生
じてくることが普通である。
By the way, it is common for the pace air-fuel ratio of the carburetor to deviate from a predetermined value due to aging or deterioration of the carburetor, causing the set reference value to no longer correspond to the target air-fuel ratio and resulting in an error. be.

しかしながら、M単価の誤差が所定値以上に大きくなる
と、空燃比フィードバック制御によってエンジンに供給
される混合気の空燃比を目標空燃比に高精度で制御する
ことが不可能となり良好な排気浄化性能が得られなくな
るという問題点があった。
However, if the error in the M unit price becomes larger than a predetermined value, it becomes impossible to control the air-fuel ratio of the air-fuel mixture supplied to the engine to the target air-fuel ratio with high precision using air-fuel ratio feedback control, and good exhaust purification performance becomes impossible. There was a problem that it could not be obtained.

!ム そこで、本発明の目的は、基準値の誤差が所定値以上に
大となっても良好な排気浄化性能を得ることができる空
燃比制御方法を提供することである。
! SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide an air-fuel ratio control method that can obtain good exhaust purification performance even if the error in the reference value becomes larger than a predetermined value.

本発明の空燃比制御方法は基tP、11の誤差を表わす
補正値を算出したときその補正値の大きさに応じて空燃
比補正値の単位比例量又は一単位積分量を補正すること
を特徴としている。
The air-fuel ratio control method of the present invention is characterized in that when the correction value representing the error of base tP, 11 is calculated, the unit proportional amount or unit integral amount of the air-fuel ratio correction value is corrected according to the magnitude of the correction value. It is said that

X−厘一旦 以下、本発明の実施例を図面を参照しつつ説明する。X-Rin Ichidan Embodiments of the present invention will be described below with reference to the drawings.

第1図に示した本発明の空燃比制御方法を適用した屯載
内燃エンジンの吸気2次空気供給方式の空燃比制御装置
においては、吸入空気が大気吸入口1からエアクリーナ
2、気化器3、そして吸気マニホールド4を介してエン
ジン5に供給される。
In the air-fuel ratio control device of the intake secondary air supply system for a torpedo internal combustion engine to which the air-fuel ratio control method of the present invention is applied as shown in FIG. The air is then supplied to the engine 5 via the intake manifold 4.

気化器3には絞り弁6が設けられ、絞り弁6の上流には
ベンチュリ7が形成されている。
The carburetor 3 is provided with a throttle valve 6, and a venturi 7 is formed upstream of the throttle valve 6.

吸気マニホールド4とエアクリーナ2の空気吐出口近傍
とは吸気2次空気供給通路8によって連通されている。
The intake manifold 4 and the vicinity of the air discharge port of the air cleaner 2 are communicated through an intake secondary air supply passage 8.

吸気2次空気供給通路8にはリニア型の電磁弁9が設け
られている。電磁弁9の開度はそのソレノイド9aに供
給されるTi流値に比例して変化する。
A linear solenoid valve 9 is provided in the intake secondary air supply passage 8 . The opening degree of the solenoid valve 9 changes in proportion to the Ti flow value supplied to the solenoid 9a.

一方、10は吸気マニホールド4に設けられ吸気マニホ
ールド4内の絶対圧に応じたレベルの出力を発生する絶
対圧センサ、11はエンジン5のクランクシャフト(図
示せず)の回転に応じてパルスを発生するクランク角セ
ンサ、12はエンジン5の冷却水温に応じたレベルの出
力を発生する冷却水温センサ、14はエンジン5の排気
マニホールド15に設けられ排気ガス中の酸素濃度に応
じた出力を発生する酸素濃度センサである。酸素濃度セ
ンサ14の配設位置より下流の排気マニホールド15に
は排気ガス中の有害成分の低減を促進させるために触媒
コンバータ33が設けられている。リニア型の電磁弁9
、絶対圧センサ10、クランク角センサ11、水温セン
サ12及び酸素濃度センサ14は制御回路20に接続さ
れている。
On the other hand, 10 is an absolute pressure sensor installed in the intake manifold 4 and generates an output at a level corresponding to the absolute pressure inside the intake manifold 4, and 11 generates a pulse in accordance with the rotation of the crankshaft (not shown) of the engine 5. 12 is a cooling water temperature sensor that generates an output at a level corresponding to the cooling water temperature of the engine 5; 14 is an oxygen sensor installed in the exhaust manifold 15 of the engine 5 and generates an output according to the oxygen concentration in the exhaust gas. It is a concentration sensor. A catalytic converter 33 is provided in the exhaust manifold 15 downstream of the oxygen concentration sensor 14 in order to promote reduction of harmful components in the exhaust gas. Linear type solenoid valve 9
, absolute pressure sensor 10 , crank angle sensor 11 , water temperature sensor 12 , and oxygen concentration sensor 14 are connected to a control circuit 20 .

制御回路20には更に車両の速度に応じたレベルの出力
を発生する車速センサ16と、ポテンショメータからな
り絞り弁6の開度に応じたレベルの出力を発生する絞り
弁開度センサ17とが接続されている。
Further connected to the control circuit 20 are a vehicle speed sensor 16 that generates an output level that corresponds to the speed of the vehicle, and a throttle valve opening sensor 17 that is comprised of a potentiometer and generates an output level that corresponds to the opening degree of the throttle valve 6. has been done.

制御回路20は第2図に示すように絶対圧センサ10、
水温センサ12、酸素濃度セン勺14、車速センサ16
及び絞り弁開度センサ17の各出力レベルを変換するレ
ベル変換回路21と、レベル変換回路21を経た各セン
サ出力の1つを選択的に出力するマルチプレクサ22と
、このマルチプレクサ22から出力される信号をディジ
タル信号に変換するA/D変換器23と、クランク角セ
ンサ11の出力信号を波形整形する波形整形回路24と
、波形整形回路24からパルスとして出力されるTDC
信号の発生間隔をクロックパルス発生回路(図示せず)
から出力されるクロックパルス数によって計測するカウ
ンタ25と、電磁弁9を駆動する駆動回路28と、プロ
グラムに従ってディジタル演算を行なうcpu <中央
演算回路)29と、各種の処理プログラム及びデータが
予め書き込まれたROM30と、RAM31とからなっ
ている。電磁弁9のソレノイド9aは駆動回路28の駆
動トランジスタ及び電流検出用抵抗(共に図示せず)に
直列に接続されてその直列回路の両端間に電源電圧が供
給される。マルチプレクサ22、A/D変換器23、カ
ウンタ25、駆動回路28、CPU29、ROM30及
びRAM31は入出力バス32によって互いに接続され
ている。
The control circuit 20 includes an absolute pressure sensor 10, as shown in FIG.
Water temperature sensor 12, oxygen concentration sensor 14, vehicle speed sensor 16
and a level conversion circuit 21 that converts each output level of the throttle valve opening sensor 17, a multiplexer 22 that selectively outputs one of the sensor outputs that have passed through the level conversion circuit 21, and a signal output from the multiplexer 22. an A/D converter 23 that converts the output signal of the crank angle sensor 11 into a digital signal, a waveform shaping circuit 24 that shapes the waveform of the output signal of the crank angle sensor 11, and a TDC that is output as a pulse from the waveform shaping circuit 24.
A clock pulse generation circuit (not shown) determines the signal generation interval.
A counter 25 that measures the number of clock pulses output from the controller, a drive circuit 28 that drives the solenoid valve 9, a CPU (central processing circuit) 29 that performs digital calculations according to the program, and various processing programs and data are written in advance. It consists of a ROM 30 and a RAM 31. The solenoid 9a of the electromagnetic valve 9 is connected in series with a drive transistor and a current detection resistor (both not shown) of a drive circuit 28, and a power supply voltage is supplied across the series circuit. The multiplexer 22, A/D converter 23, counter 25, drive circuit 28, CPU 29, ROM 30, and RAM 31 are connected to each other by an input/output bus 32.

かかる構成においては、A/D変換器23から吸気マニ
ホールド4内の絶対圧、冷却水温、排気ガス中の酸素濃
度、車速及び絞り弁開度の情報が択一的に、またカウン
タ25からエンジン回転数を表わす情報がCPU29に
入出力バス32を介して各々供給される。CPU29は
後述の如く所定周期T+(例えば、5m5ec)毎に内
部割込信号を発生するようにされており、割込信号に応
じて電磁弁9のソレノイド9aへの供給電流値を表わす
出力値Tourをデータとして算出し、その算出した出
力値TOLI丁を駆動回路28に供給する。駆動回路2
8はソレノイド9aに流れる電流値が出力1ifiTo
 LJ Tに応じた値になるようにソレノイド9aに流
れるW流値を閉ループ制御する。
In this configuration, the A/D converter 23 selectively transmits information on the absolute pressure in the intake manifold 4, the cooling water temperature, the oxygen concentration in the exhaust gas, the vehicle speed, and the throttle valve opening, and the counter 25 selectively transmits information on the engine rotation. Information representing the numbers is supplied to the CPU 29 via an input/output bus 32, respectively. The CPU 29 is configured to generate an internal interrupt signal every predetermined period T+ (for example, 5 m5ec) as described later, and in response to the interrupt signal, an output value Tour representing the value of the current supplied to the solenoid 9a of the electromagnetic valve 9 is generated. is calculated as data, and the calculated output value TOLI is supplied to the drive circuit 28. Drive circuit 2
8 is the current value flowing through the solenoid 9a which is the output 1ifiTo
The W flow value flowing through the solenoid 9a is controlled in a closed loop so that the value corresponds to LJT.

次に、かかる空燃比制御装置の動作を第3図に示したC
PU29の動作フロー図に従って詳細に説明する。
Next, the operation of such an air-fuel ratio control device is shown in FIG.
A detailed explanation will be given according to an operation flow diagram of the PU 29.

GPtJ29は、第3図に示すようにA/Fルーチンに
おいて先ず、割込信号発生毎に電磁弁9への供給基準電
流値を表わす基準値D[3ASEを設定する(ステップ
51)。ROM30には第4図に示すように吸気マニホ
ールド内絶対圧PBAとエンジン回転数Neとから定ま
る基準値DBAS巳がDOA S Eデータマツプとし
て予め占き込まれているので、CPU29は絶対圧PE
Aとエンジン回転数Neとを読み込み、読み込んだ各個
に対応する基準値Do A S EをDo A S E
データマツプから検索する。基準(直1)8ASEの設
定後、車両の運転状B(エンジンの運転状態を含む)が
空燃比フィードバック(F/B)制御条件を充足してい
るか否かを判別する(ステップ52)。この判別は吸気
マニホールド内絶対圧Pa A N冷却水@TW、車速
■及びエンジン回転数Neから決定され、例えば、低車
速時及び低冷却水温時には空燃比フィードバック制御条
件が充足されていないとされる。ここで、空燃比フィー
ドバック制御条件を充足しないと判別したならば、基準
値DBASEに補正w1)(rerを乗算しその算出値
を出力値To U Tとする(ステップ53)、RAM
31には第5図に示すように吸気マニホールド内絶対圧
PBAとエンジン回転数Neとに対応する領域毎の補正
fn K refがKrefデータマツプとして書き込
まれているので、CPU29は絶対圧PBAとエンジン
回転数Neとに対応する補正値KrerをKrerデー
タマツプから検索して出力値TauTの算出に用いる。
As shown in FIG. 3, in the A/F routine, the GPtJ 29 first sets a reference value D[3ASE representing the reference current value to be supplied to the solenoid valve 9 every time an interrupt signal is generated (step 51). As shown in FIG. 4, the reference value DBAS, which is determined from the intake manifold absolute pressure PBA and the engine speed Ne, is stored in the ROM 30 in advance as a DOASE data map, so the CPU 29 uses the absolute pressure PE.
Read A and the engine speed Ne, and set the reference value Do A S E corresponding to each read value.
Search from the data map. After setting the reference (shift 1) 8ASE, it is determined whether the driving condition B of the vehicle (including the engine driving condition) satisfies the air-fuel ratio feedback (F/B) control conditions (step 52). This determination is determined from the intake manifold absolute pressure Pa A N cooling water @ TW, vehicle speed ■, and engine rotation speed Ne. For example, it is assumed that the air-fuel ratio feedback control condition is not satisfied at low vehicle speeds and low cooling water temperatures. . Here, if it is determined that the air-fuel ratio feedback control conditions are not satisfied, the reference value DBASE is multiplied by the correction w1) (rer and the calculated value is set as the output value ToUT (step 53).
31, the correction fn K ref for each region corresponding to the intake manifold absolute pressure PBA and engine speed Ne is written as a Kref data map as shown in FIG. The correction value Krer corresponding to the number Ne is searched from the Krer data map and used to calculate the output value TauT.

一方、空燃比フィードバック制御条件を充足していると
判別したならば、CPLJ29の内部タイマカウンタA
(図示せず)の計数時間が所定時間Δtlだけ経過した
か否かを判別する(ステップ56)。所定時間Δt1は
吸気2次空気を供給してからその結果が排気ガス中の酸
素濃度の変化として酸素濃度センサ14によって検出さ
れるまでの応答遅れ時間に相当する。このタイムカウン
タAがリセットされて計数を開始した時点から所定時間
Δt1が経過したならば、タイムカウンタAをリセット
しかつ初期値から計数を開始させる(ステップ57)。
On the other hand, if it is determined that the air-fuel ratio feedback control conditions are satisfied, the internal timer counter A of CPLJ29
It is determined whether the counting time (not shown) has elapsed by a predetermined time Δtl (step 56). The predetermined time Δt1 corresponds to a response delay time from when the intake secondary air is supplied until the result is detected by the oxygen concentration sensor 14 as a change in the oxygen concentration in the exhaust gas. When a predetermined time Δt1 has elapsed since the time counter A was reset and started counting, the time counter A is reset and starts counting from the initial value (step 57).

すなわち、ステップ57の実行によりタイムカウンタA
が初期値より計数を開始した後、所定時間Δt1が経過
したか否かの判別がステップ56において行なわれてい
るのである。こうしてタイムカウンタAによる所定時間
Δt1の計数が開始されると、酸素濃度の情報から酸素
濃度センサ14の出力値LO2が目標空燃比に対応する
目標値L refより大であるか否かを判別する(ステ
ップ58)。すなわち、エンジン5への供給混合気の空
燃比が目標空燃比よりリーンであるか否かが判別される
のである。Lo2〉Lrefならば、空燃比が目標空燃
比よりリーンであるので前回のステップ58の判別結果
を表わす空燃比フラグFAFが“1”であるか否かを判
別する(ステップ59)。FA F =0ならば、前回
の空燃比がリッチであると判別されリッチからり一層に
反転したので比例減算値PLを算出するくステップ60
)。減算値PLは定数に+  (>1)と後述の積分減
算値ILとを互いに乗算(K+  ・IL)することに
より得られる。減算値PLの算出後、このA/Fルーチ
ンの実行によって既に算出した空燃比補正値l0LJT
をRAM31の記憶像ffa+から読み出し、読み出し
た補正値10LJTから減算値PLを差し引きその算出
値を新たな補正値10UTとしかつRAM31の記憶像
Ra1に書ぎ込む(ステップ61)。FA F = 1
ならば、前回も空燃比がリーンであると判別されたので
積分減算値ILを算出する(ステップ62)。減算値[
しは定数に2、エンジン回転数Ne及び絶対圧PBAを
互いに乗算(K2・Ne−PB^)することにより得ら
れ、エンジン5の吸入空気量に依存するようになってい
る。減算値ILの算出後、このA/Fルーチンの実行に
よって既に算出した補正1fllouvをRAM31の
記憶位置a1から読み出し、読み出した補正値l0UT
から減算値■しを差し引きその算出値を新たな補正1f
fIlouTとしかつRAM31の記憶像@atに書き
込む(ステップ63)。ステップ61又は63において
補正値1OLI丁の算出後、空燃比がリーンであること
を表わすために7ラグFAFに1”をセットしくステッ
プ64)、ステップ51において設定した基準値DBA
SEに空燃比・補正値IouTを加算してその加算結果
を出力値To LJ Tとする(ステップ65)。一方
、ステップ58においてLO2≦L refならば、空
燃比が目標空燃比よりリッチであるので空燃比フラグF
AFが゛0″であるか否かを判別する(ステップ66)
。FAF−1ならば、前回の空燃比がリーンであると判
別しリーンからリッチに反転したので比例加算値PRを
算出する(ステップ67)。加算値PRは定数に3(>
1)と後述の積分加算値IRとを互いに乗m (K3 
 ・IR)することにより得られる。
That is, by executing step 57, the time counter A
After starting counting from the initial value, it is determined in step 56 whether or not a predetermined time Δt1 has elapsed. When the time counter A starts counting the predetermined time Δt1 in this way, it is determined from the oxygen concentration information whether the output value LO2 of the oxygen concentration sensor 14 is larger than the target value L ref corresponding to the target air-fuel ratio. (Step 58). That is, it is determined whether the air-fuel ratio of the air-fuel mixture supplied to the engine 5 is leaner than the target air-fuel ratio. If Lo2>Lref, the air-fuel ratio is leaner than the target air-fuel ratio, so it is determined whether the air-fuel ratio flag FAF representing the determination result of the previous step 58 is "1" (step 59). If FA F = 0, it is determined that the previous air-fuel ratio was rich and the ratio has been further reversed from rich, so step 60 is performed to calculate the proportional subtraction value PL.
). The subtraction value PL is obtained by multiplying a constant + (>1) by an integral subtraction value IL (described later) (K+·IL). After calculating the subtraction value PL, the air-fuel ratio correction value l0LJT that has already been calculated by executing this A/F routine
is read from the memory image ffa+ of the RAM 31, the subtraction value PL is subtracted from the read correction value 10LJT, and the calculated value is set as a new correction value 10UT and written to the memory image Ra1 of the RAM 31 (step 61). FA F = 1
If so, since it was determined that the air-fuel ratio was lean last time as well, the integral subtraction value IL is calculated (step 62). Subtraction value [
The difference is obtained by multiplying a constant by 2, the engine speed Ne, and the absolute pressure PBA (K2·Ne-PB^), and is made to depend on the intake air amount of the engine 5. After calculating the subtraction value IL, the correction 1fllouv already calculated by executing this A/F routine is read from the storage location a1 of the RAM 31, and the read correction value l0UT is
Subtract the subtraction value ■ from and use the calculated value as the new correction 1f
fIlouT and writes it into the memory image @at of the RAM 31 (step 63). After calculating the correction value 1 OLI in step 61 or 63, the 7-lag FAF is set to 1" to indicate that the air-fuel ratio is lean. In step 64), the reference value DBA set in step 51 is set.
The air-fuel ratio/correction value Iout is added to SE, and the addition result is set as the output value To LJ T (step 65). On the other hand, if LO2≦L ref in step 58, the air-fuel ratio is richer than the target air-fuel ratio, so the air-fuel ratio flag F
Determine whether AF is "0" (step 66)
. If it is FAF-1, it is determined that the previous air-fuel ratio was lean, and the ratio has been reversed from lean to rich, so a proportional addition value PR is calculated (step 67). The added value PR is 3 (>
1) and the integral addition value IR to be described later are multiplied together m (K3
・IR).

加算値PRの算出後、このA/Fルーチンの実行によっ
て既に算出している補正値fourをRAM31の記憶
位置a1から読み出し、読み出した補正1i11our
と加n値PRとを加算してその算出値を新たな補正値1
0LJTとしかつRAM31の記憶像1a+に書き込む
(ステップ68)。ステップ66においてFA F =
Oならば、前回も空燃比がリッチであると判別したので
積分加算値IRを算出する(ステップ69)。加算値I
Rは定数に4  (≠に2)、エンジン回転数Ne及び
絶対圧P8Aを互いに乗n(K4 ・Ne−P6A)す
ることにより得られ、エンジン5の吸入空気量に依存す
るようになっている。加算値IRの算出後、A/Fルー
チンの実行によって既に算出した補正値10U丁をRA
M31の記憶像11a+から読み出し、読み出した補正
値10LJTに加算値IRを加算しその算出値を新たな
補正値10LJTとしかつRAM31の記憶像[a+に
書き込む(ステップ70)。ステップ68又は70にお
いて補正値10UTの算出後、空燃比がリッチであるこ
とを表わすためにフラグFAFに“0”をセットしくス
テップ71)、補正値Krerを算出する(ステップ7
2)。補正値Krarは、Kref−α10U丁+(1
−α)・KrefI)Iなる式から算出される。ここで
、αは定数、)(refn−+は前回のステップ72の
実行によって得られた補正値K refである。算出さ
れた補正値Krerがこのときの吸気マニホールド内絶
対圧PBAとエンジン回転数Neに対応するRAM31
のK refデータマツプの位置に記憶される。算出さ
れた補正値K refが0゜9より大でかつ1.1より
小であるか否かを判別する(ステップ73)、0.9<
Kref <1.1ならば、直ちにステップ65の実行
により出力値TOUTを算出する。KrQf≦0.9、
又はKrer≧1.1ならば、気化器のベース空燃比の
ずれにより補正値K refの大きさが大きいと見做し
て単位比例量である比例域tsffiPLを補正しくス
テップ74)、その後、ステップ65の実行により出力
値Touvを算出する。例えば、第6図に示すような特
性で補正値Krofに対応する比例減算mPLがROM
30にPLデータマツプとして予め記憶されており、)
(ref≦0.9、又はKref≧1.1ならば、補正
値Krcfに対応する比例減算ff1PLをPLデータ
マツプから検索する。補正値K refが1.1以上に
なることは気化器のベース空燃比がリッチ側にずれてい
るので比例域CutPLが大きくされ、補正値Krer
が0.9以下になることは気化器のベース空燃比がリー
ン側にずれているので比例減算IP+−が小さくされる
のである。ステップ53又は65において出力値TOL
JTの算出後、駆動回路28に対して出力値T。
After calculating the additional value PR, the correction value four that has already been calculated by executing this A/F routine is read from the storage location a1 of the RAM 31, and the read correction value four is
and the addition n value PR, and the calculated value is set as a new correction value 1.
0LJT and written into the memory image 1a+ of the RAM 31 (step 68). In step 66 FA F =
If it is O, it was determined that the air-fuel ratio was rich last time as well, so an integral addition value IR is calculated (step 69). Addition value I
R is obtained by multiplying the constant by 4 (≠ by 2), the engine speed Ne and the absolute pressure P8A by n (K4 ・Ne - P6A), and is made to depend on the intake air amount of the engine 5. . After calculating the additional value IR, use the correction value 10U already calculated by executing the A/F routine as RA.
Read from the memory image 11a+ of M31, add the added value IR to the read correction value 10LJT, set the calculated value as a new correction value 10LJT, and write it to the memory image [a+ of the RAM 31 (step 70). After calculating the correction value 10UT in step 68 or 70, the flag FAF is set to "0" to indicate that the air-fuel ratio is rich (step 71), and the correction value Krer is calculated (step 7).
2). The correction value Krar is Kref−α10U+(1
-α)·KrefI)I. Here, α is a constant, )(refn-+ is the correction value K ref obtained by the previous execution of step 72. The calculated correction value Krer is the absolute pressure PBA in the intake manifold and the engine rotation speed at this time. RAM31 corresponding to Ne
K ref data map location. It is determined whether the calculated correction value K ref is greater than 0°9 and smaller than 1.1 (step 73), 0.9<
If Kref <1.1, step 65 is immediately executed to calculate the output value TOUT. KrQf≦0.9,
Alternatively, if Krer≧1.1, it is assumed that the magnitude of the correction value K ref is large due to the deviation in the base air-fuel ratio of the carburetor, and the proportional range tsffiPL, which is a unit proportional amount, is corrected in step 74), and then step 74) is performed. 65, the output value Touv is calculated. For example, with the characteristics shown in FIG. 6, the proportional subtraction mPL corresponding to the correction value Krof is stored in the ROM.
30 as a PL data map)
(If ref≦0.9 or Kref≧1.1, the proportional subtraction ff1PL corresponding to the correction value Krcf is searched from the PL data map. If the correction value Kref is 1.1 or more, Since the fuel ratio has shifted to the rich side, the proportional range CutPL is enlarged, and the correction value Krer
If it becomes 0.9 or less, the base air-fuel ratio of the carburetor is shifted to the lean side, so the proportional subtraction IP+- is reduced. In step 53 or 65, the output value TOL
After calculating JT, the output value T is sent to the drive circuit 28.

IJTを出力する(ステップ75)。The IJT is output (step 75).

なお、第6図に示したように補正値K refに対して
比例減算ffi P Lが段階的に定まるようになって
いるが、補正値K refに対して比例域13 fit
 P Lを連続的に定めても良いのである。またRAM
31はエンジン5の作動停止時にも記憶内容が揮発しな
い不揮発性であり、K re4データマツプの各K r
afは本装置の使用前に1に初期設定される。
Note that, as shown in FIG. 6, the proportional subtraction ffi P L is determined in stages with respect to the correction value K ref, but the proportional subtraction ffi P L with respect to the correction value K ref is
P L may be determined continuously. Also RAM
31 is a non-volatile memory whose memory contents do not volatilize even when the engine 5 stops operating, and each K r in the K re4 data map
af is initialized to 1 before use of the device.

駆動回路28は電磁弁9のソレノイド9aに流れる電流
値を電流検出用抵抗によって検出してその検出電流値と
出力値To U Tとを比較し、比較結果に応じて駆動
トランジスタをオンオフすることによりソレノイド9a
に電流を供給する。よって、ソレノイド9aには出力値
Tourが表わす電流が流れ、電磁弁9のソレノイド9
aに流れる電流値に比例した量の吸気2次空気が吸気マ
ニホールド4内に供給されるのである。
The drive circuit 28 detects the current value flowing through the solenoid 9a of the solenoid valve 9 using a current detection resistor, compares the detected current value with the output value ToUT, and turns on and off the drive transistor according to the comparison result. Solenoid 9a
supply current to. Therefore, the current represented by the output value Tour flows through the solenoid 9a, and the solenoid 9 of the solenoid valve 9
An amount of intake secondary air is supplied into the intake manifold 4 in proportion to the current value flowing through the intake manifold 4.

なお、タイムカウンタAがステップ57においてリセッ
トされて初期値からの計数が開始された後、所定時間Δ
t1が経過していないとステップ56において判別され
たならば、直ちにステップ65が実行され、この場合、
前回までのA/Fルーチンの実行によって得られた空燃
比補正値1OLITが読み出される。
Note that after the time counter A is reset in step 57 and starts counting from the initial value, a predetermined time Δ
If it is determined in step 56 that t1 has not elapsed, step 65 is immediately executed; in this case,
The air-fuel ratio correction value 1OLIT obtained by executing the A/F routine up to the previous time is read out.

また、上記した本発明の実施例においては、リニア型の
電磁弁を備えた空燃比制御装置について説明したが、電
磁IIi閉弁を吸気2次空気供給通路に備え、所定周期
毎に電磁開閉弁の1m弁時間T。
In addition, in the above-described embodiments of the present invention, an air-fuel ratio control device equipped with a linear type solenoid valve has been described. 1m valve time T.

LJT(=基準開弁時間TBAsE十補正値tau下)
を算出しその量弁時間TOUTだけ電磁開閉弁を開弁さ
せる空燃比制御装置に6本発明を適用することができる
LJT (=standard valve opening time TBAsE + correction value tau lower)
The present invention can be applied to an air-fuel ratio control device that calculates the amount and opens the electromagnetic on-off valve by the amount valve time TOUT.

更に、上記した本発明の実施例においては、補正!II
 K refの大きさに応じて比例減算ff1PLのみ
を補正したが、減算ff1PR1■し、IRも補正して
も良いのである。
Furthermore, in the embodiment of the present invention described above, correction! II
Although only the proportional subtraction ff1PL has been corrected according to the magnitude of K ref, it is also possible to perform the subtraction ff1PR1 and correct IR as well.

ユ」」と1里 以上の如く、本発明の空燃比制御方法においては、基準
値の誤差を表わす補正値を算出したときその補正値の大
きさに応じて空燃比補正値の単位比例量又は単位積分量
を補正するので気化器のベース空燃比のずれが大きくな
っても空燃比を高精度で目標空燃比に制御することがで
き、排気浄化性能の向上を図ることができるのである。
In the air-fuel ratio control method of the present invention, when the correction value representing the error in the reference value is calculated, the unit proportional amount or Since the unit integral amount is corrected, even if the deviation in the base air-fuel ratio of the carburetor becomes large, the air-fuel ratio can be controlled to the target air-fuel ratio with high precision, and the exhaust purification performance can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の空燃比制御方法を適用した装置を示す
概略図、第2図は第1図の装置中の制御回路の具体的構
成を示すブロック図、第3図はCPLJの動作を示すフ
ロー図、第4図はROMに書き込まれたDeAscデー
タマツプを示す図、第5図はRAMに古き込まれた)(
refデータマツプを示す図、第6図は補正値K re
f−比例減算値PL特性を示す図である。 主要部分の符号の説明 2・・・・・・エアクリーナ 3・−・・・・気化器 4・・・・・・吸気マニホールド 6・・・・・・絞り弁 7・・・・・・ベンチュリ 8・・・・・・吸気2次空気供給通路 9・・・・・・リニア型電磁弁 10・・・・・・絶対圧センサ
Fig. 1 is a schematic diagram showing a device to which the air-fuel ratio control method of the present invention is applied, Fig. 2 is a block diagram showing a specific configuration of the control circuit in the device of Fig. 1, and Fig. 3 shows the operation of the CPLJ. (Fig. 4 is a diagram showing the DeAsc data map written to the ROM, and Fig. 5 is a diagram showing the DeAsc data map written to the RAM.)
A diagram showing the ref data map, FIG. 6 shows the correction value K re
FIG. 3 is a diagram showing f-proportional subtraction value PL characteristics. Explanation of symbols of main parts 2... Air cleaner 3... Carburetor 4... Intake manifold 6... Throttle valve 7... Venturi 8 ...Intake secondary air supply passage 9 ...Linear type solenoid valve 10 ...Absolute pressure sensor

Claims (1)

【特許請求の範囲】[Claims] 排気系に排気ガス中の排気成分濃度に応じた出力を発生
する排気成分濃度センサを備えた内燃エンジンにおいて
エンジン負荷に関する複数のエンジン運転パラメータに
応じて空燃比制御の基準値を設定し、所定周期毎に前記
排気成分濃度センサの出力値と目標値とを比較してその
比較結果に応じて比例制御、又は積分制御の空燃比補正
値を得て、設定した基準値を前記空燃比補正値に応じて
補正して目標空燃比に対する出力値を決定すると共に前
記基準値の誤差を表わす補正値を算出する空燃比制御方
法であって、前記補正値を算出したときの前記補正値の
大きさに応じて前記空燃比補正値の単位比例量又は単位
積分量を補正することを特徴とする空燃比制御方法。
In an internal combustion engine equipped with an exhaust component concentration sensor in the exhaust system that generates an output according to the concentration of exhaust components in exhaust gas, a reference value for air-fuel ratio control is set according to multiple engine operating parameters related to engine load, and the reference value is set at a predetermined period. The output value of the exhaust component concentration sensor is compared with the target value at each time, and an air-fuel ratio correction value for proportional control or integral control is obtained according to the comparison result, and the set reference value is used as the air-fuel ratio correction value. An air-fuel ratio control method that determines an output value with respect to a target air-fuel ratio by correcting it accordingly, and calculates a correction value representing an error in the reference value, the method comprising: adjusting the magnitude of the correction value when calculating the correction value; An air-fuel ratio control method, comprising correcting a unit proportional amount or a unit integral amount of the air-fuel ratio correction value accordingly.
JP61130889A 1986-06-04 1986-06-04 Air-fuel ratio control method for internal combustion engine Expired - Lifetime JPH0713491B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61130889A JPH0713491B2 (en) 1986-06-04 1986-06-04 Air-fuel ratio control method for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61130889A JPH0713491B2 (en) 1986-06-04 1986-06-04 Air-fuel ratio control method for internal combustion engine

Publications (2)

Publication Number Publication Date
JPS62288339A true JPS62288339A (en) 1987-12-15
JPH0713491B2 JPH0713491B2 (en) 1995-02-15

Family

ID=15045072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61130889A Expired - Lifetime JPH0713491B2 (en) 1986-06-04 1986-06-04 Air-fuel ratio control method for internal combustion engine

Country Status (1)

Country Link
JP (1) JPH0713491B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59147843A (en) * 1983-02-14 1984-08-24 Nissan Motor Co Ltd Air-fuel ratio control device
JPS59203828A (en) * 1983-05-02 1984-11-19 Japan Electronic Control Syst Co Ltd Air-fuel ratio learning control apparatus for electronically controlled fuel injection type internal-combustion engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59147843A (en) * 1983-02-14 1984-08-24 Nissan Motor Co Ltd Air-fuel ratio control device
JPS59203828A (en) * 1983-05-02 1984-11-19 Japan Electronic Control Syst Co Ltd Air-fuel ratio learning control apparatus for electronically controlled fuel injection type internal-combustion engine

Also Published As

Publication number Publication date
JPH0713491B2 (en) 1995-02-15

Similar Documents

Publication Publication Date Title
JPH04112941A (en) Air-fuel ratio control device for internal combustion engine
JPS6260941A (en) Air-fuel ratio controller for internal combustion engine
JPS6090944A (en) Air-fuel ratio learning control apparatus for electronically controlled fuel injection type internal-combustion engine
JP2690482B2 (en) Air-fuel ratio control device for internal combustion engine
JPS62162748A (en) Air-fuel ratio control for internal-combustion engine
JPS62288339A (en) Air-fuel ratio control method for internal combustion engine
JPH03275954A (en) Control device for air-fuel ratio of internal combustion engine using fuel of different kind
JPS61187570A (en) Intake secondary air feeder of internal-combustion engine
JP2726257B2 (en) Air-fuel ratio control method for internal combustion engine
JPS62288338A (en) Air-fuel ratio control method for internal combustion engine
JPS623159A (en) Intake secondary air supply device for internal-combustion engine
JPS62237071A (en) Air-fuel ratio control device for internal combustion engine
JPS61237858A (en) Control device for air-fuel ratio in internal-combustion engine
JP2757064B2 (en) Air-fuel ratio control device for internal combustion engine
JP2609230B2 (en) Air-fuel ratio control method for internal combustion engine
JP2518243B2 (en) Air-fuel ratio control device for internal combustion engine
JP3593388B2 (en) Air-fuel ratio control device for internal combustion engine
JP2551558B2 (en) Air-fuel ratio control method for internal combustion engine
JP2655639B2 (en) Air-fuel ratio control method for internal combustion engine
JPS63117139A (en) Air-fuel ratio controller for internal combustion engine
JPS60153446A (en) Learning controller for air-fuel ratio in electronically- controlled fuel injection type internal-combustion engine
JPS63113171A (en) Air-fuel ratio control method for internal combustion engine for vehicle
JPH0436258B2 (en)
JPS63243431A (en) Air-fuel ratio controlling method for car-mounted internal combustion engine
JPH02176138A (en) Air-fuel ratio control device for internal combustion engine