JPS62287643A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS62287643A
JPS62287643A JP13143886A JP13143886A JPS62287643A JP S62287643 A JPS62287643 A JP S62287643A JP 13143886 A JP13143886 A JP 13143886A JP 13143886 A JP13143886 A JP 13143886A JP S62287643 A JPS62287643 A JP S62287643A
Authority
JP
Japan
Prior art keywords
layer
substrate
wiring
interconnections
channel region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13143886A
Other languages
Japanese (ja)
Inventor
Toshinari Hayashi
俊成 林
Seiichi Saito
斎藤 精一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP13143886A priority Critical patent/JPS62287643A/en
Publication of JPS62287643A publication Critical patent/JPS62287643A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the crosstalk between interconnections in elements of a semiconductor device from occuring by a method wherein an impurity added layer is provided immediately below an interconnection channel region to be connected to a power supply. CONSTITUTION:An impurity added layer 20 is formed on the surface of a substrate 2 immediately below an interconnection channel region 16 to fix the potential of layer 20 by a power supply Vcc or Vss. A part of layer 20 is protruded sideways to be communicated with a source S2 of an active region 14 for fixing to the ground potential. In such a constitution, the N<+>type layer 20 though increasing the capacity between substrates 2 for interconnections 10, reversely decreases the capacity between the interconnections 10 so that any crosstalk between adjoining interconnections due to higher integration may be prevented from occuring.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〔概 要〕 絶縁性基板を用いた半導体集積回路の配線チャネル領域
直下の該基板表面に、固定電位の不純物添加層を形成し
て配線間容量を低減し、高密度化に伴なうクロストーク
を防止する。
[Detailed Description of the Invention] 3. Detailed Description of the Invention [Summary] An impurity-doped layer with a fixed potential is formed on the surface of a semiconductor integrated circuit using an insulating substrate directly under the wiring channel region, thereby forming a layer between wirings. Reduce capacity and prevent crosstalk associated with higher density.

〔産業上の利用分野〕[Industrial application field]

本発明は、GaAs等の絶縁性基板を用いた半導体装置
に関し、特に素子内の配線間容量を低減してクロストー
クを防止しようとするものである。
The present invention relates to a semiconductor device using an insulating substrate such as GaAs, and particularly aims to prevent crosstalk by reducing capacitance between wirings within a device.

〔従来の技術〕[Conventional technology]

近年、Si(シリコン)基板使用の電流切換型素子に代
わる超高速素子として、GaAs  (ガリウム・ヒ素
)基板を用いたHEMT (高電子移動度l・ランジス
タ)等の化合物半導体素子の開発が進んでいる。これら
の化合物半導体素子は、基板材料として半絶縁性のGa
As基板を用いる為、素子内配線の基板間容量はSi素
子に比べ小さい利点を持っているが、配線間の結合容量
がSi素子に比べ大きく、集積度増大につれてこの結合
容量による配線間のクロストークが大きな問題となる可
能性がある。
In recent years, compound semiconductor devices such as HEMTs (high electron mobility transistors) using GaAs (gallium arsenide) substrates have been developed as ultrahigh-speed devices to replace current switching devices using Si (silicon) substrates. There is. These compound semiconductor devices use semi-insulating Ga as a substrate material.
Since an As substrate is used, the inter-substrate capacitance of the internal wiring has the advantage of being smaller than that of a Si element, but the coupling capacitance between wirings is larger than that of a Si element, and as the degree of integration increases, this coupling capacitance causes cross-linking between wirings. Talk can be a big problem.

第2図は従来のG a A s / HEMTの構造図
で、(alはトランジスタを形成する能動素子領域の断
面図、(b)は素子内配線を通す配線チャネル領域の断
面図である。図中、2はGaAs基板、4はその表面に
形成されたn+型の高濃度不純物添加層、6はW(タン
グステン)またはWSi(タングステンシリサイド)等
のゲート電極、8は絶縁膜、l。
FIG. 2 is a structural diagram of a conventional GaAs/HEMT (al is a cross-sectional view of the active element region forming the transistor, and (b) is a cross-sectional view of the wiring channel region through which the internal wiring of the element is passed. Among them, 2 is a GaAs substrate, 4 is an n+ type high concentration impurity doped layer formed on the surface thereof, 6 is a gate electrode such as W (tungsten) or WSi (tungsten silicide), 8 is an insulating film, and l.

はその中に埋設された複数本の配線である。are multiple wires buried within it.

n 層4はレジスト12とゲート電極6をマスクにn型
不純物をイオン注入することにより形成され、ドレイン
DおよびソースS領域となる。絶縁膜8は(alの能動
素子領域にも形成されるが、C81図は主として製造工
程を説明する目的のものであるので、図面上は省略しで
ある。
The n layer 4 is formed by ion-implanting n-type impurities using the resist 12 and the gate electrode 6 as a mask, and becomes the drain D and source S regions. Although the insulating film 8 is also formed in the active element region of (al), it is omitted from the drawing because the purpose of FIG. C81 is mainly to explain the manufacturing process.

fblの配線チャネル領域では各配線10は対基板間容
量C+と配線間の結合容量c2を持つ。前述した様に基
板間容量C1は基板2をSiとする素子より小さい。
In the wiring channel region fbl, each wiring 10 has a substrate-to-substrate capacitance C+ and an inter-wiring coupling capacitance c2. As described above, the inter-substrate capacitance C1 is smaller than that of a device in which the substrate 2 is Si.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、配線間の結合容量C2はSi素子に比べ
て大きい。これは、配線10から生ずる電気力線の本数
は等しいが、Si素子の場合は基板が導電性を有するの
で配線一基板間の電気力線が多くなり従って配線間電気
力線は少なくなり、基板間容量C1が大きく配線間容量
C2は小さくなる。これに対し、GaAs素子では基板
が絶縁性のため配線一基板間の電気力線は配線上方など
へ延びる電気力線と変らず(全周には\均等に延び)、
このため配線間容量C2が大きく見える。
However, the coupling capacitance C2 between wirings is larger than that of a Si element. This is because although the number of lines of electric force generated from the wiring 10 is the same, in the case of a Si element, since the substrate is conductive, there are many lines of electric force between the wiring and the board, and therefore there are fewer lines of electric force between the wiring, and the number of lines of electric force between the wirings is reduced. The inter-wiring capacitance C1 is large and the inter-wiring capacitance C2 is small. On the other hand, in a GaAs element, since the substrate is insulating, the lines of electric force between the wiring and the substrate are no different from the lines of electric force that extend above the wiring (they extend evenly around the entire circumference).
Therefore, the inter-wiring capacitance C2 appears large.

特に、素子の集積度が増加するにつれて必要な配線チャ
ネル数も増え、配線間々隔が小になればC2が増大し、
隣接配線間のクコストークが問題となる。
In particular, as the degree of integration of devices increases, the number of required wiring channels also increases, and as the spacing between wiring becomes smaller, C2 increases.
Cucumber talk between adjacent wirings becomes a problem.

本発明は、絶縁性基板の配線チャネル領域直下も活性化
する(固定電位の導電層にする)ことで、上述した欠点
を除去しようとするものである。
The present invention attempts to eliminate the above-mentioned drawbacks by activating the area immediately below the wiring channel region of the insulating substrate (making it a conductive layer with a fixed potential).

c問題点を解決するための手段〕 本発明は、絶縁性基板(2)の表面に不純物を添加して
能動素子領域(14)を形成してなる半導体装置におい
て、該能動素子領域(14)とは異なる配線チャネル領
域(16)直下の該基板表面にも不純物添加層(20)
を形成し、且つ該1(20)を電源に接続してなること
を特徴とするものである。
Means for Solving Problem c] The present invention provides a semiconductor device in which an active element region (14) is formed by adding impurities to the surface of an insulating substrate (2). There is also an impurity doped layer (20) on the substrate surface directly under the wiring channel region (16), which is different from the wiring channel region (16).
1 (20) is connected to a power source.

〔作用〕[Effect]

配線チャネル領域直下に不純物添加層を設ければ、これ
は絶縁性基板表面をSi基板と同様に導電化する。従っ
て、基板間容量C1は増加するが配線間容量C2は減少
するのでクロストークが防止できる。しかも、全体の容
量は1割程度しか増加しないので高速動作の妨げにはな
らない。
If an impurity doped layer is provided directly under the wiring channel region, this will make the insulating substrate surface conductive in the same way as the Si substrate. Therefore, although the inter-substrate capacitance C1 increases, the inter-wiring capacitance C2 decreases, so that crosstalk can be prevented. Moreover, since the overall capacity increases by only about 10%, high-speed operation is not hindered.

〔実施例〕〔Example〕

第1図は本発明の一実施例を示す構成図で、(alは平
面図、fb)はそのA−A′断面図である。図中、14
は能動素子領域、16は配線チャネル領域である。能動
素子領域14にはD+、G+、Slをそれぞれドレイン
、ゲート、ソースの各電極とした電界効果トランジスタ
(FET)Q+と、D2(=S+)、G2.S2をそれ
ぞれドレイン、ゲート、ソースの各電極としたFETQ
2とを組とし、そのG+S+間を接続したインバータが
形成されている。このインバータのドレインD1は高電
位電源Vccに接続され、且つS2は低電位電源Vss
に接続される。18はこのアースされたソース電極を示
している。
FIG. 1 is a block diagram showing an embodiment of the present invention, (al is a plan view, and fb is a sectional view taken along the line AA'). In the figure, 14
1 is an active element region, and 16 is a wiring channel region. The active element region 14 includes a field effect transistor (FET) Q+ with D+, G+, and Sl as drain, gate, and source electrodes, respectively, and D2 (=S+), G2 . FETQ with S2 as drain, gate, and source electrodes, respectively
2 and 2, and an inverter is formed by connecting G+S+. The drain D1 of this inverter is connected to the high potential power supply Vcc, and the drain S2 is connected to the low potential power supply Vss.
connected to. 18 indicates this grounded source electrode.

本発明では配線チャネル領域16直下の基板2表面に不
純物添加層20を形成し、且つその電位を電源Vccま
たはVSSで固定する。第1図の例では層20の一部を
横に突出させて能動素子領域14のソースS2と連通さ
せて、アース電位に固定している。これは不純物イオン
打込みに用いるマスクのパターンを変えるだけで実施で
きる。即ち従来では素子形成領域14で開口し、配線チ
ャネル領域16では閉じているマスクを使用してイオン
打込みし、第2図ta+の如くトランジスタを形成して
いたが、本発明では配線チャネル領域16でも開口しそ
して不純物添加層20の電源との接続部では該開口が能
動素子領域のソースへ延びるマスフを用いてn型不純物
のイオン打込みすればよい。
In the present invention, an impurity-doped layer 20 is formed on the surface of the substrate 2 directly under the wiring channel region 16, and its potential is fixed by a power source Vcc or VSS. In the example of FIG. 1, a portion of the layer 20 is laterally protruded and communicated with the source S2 of the active device region 14, and is fixed at ground potential. This can be done by simply changing the mask pattern used for impurity ion implantation. That is, in the past, ions were implanted using a mask that was open in the element formation region 14 and closed in the wiring channel region 16 to form a transistor as shown in FIG. N-type impurity ions may be implanted using a mask which is opened and the opening extends to the source of the active element region at the connection portion of the impurity doped layer 20 with the power source.

上記のn+型層20は、配線10に関する基板間容量(
第2図のC+)を増加させることになるが、配線間容量
C2は減少させるので、高密度化に伴なう隣接配線間で
のクロストークを防止することができる。
The above n+ type layer 20 has an inter-substrate capacitance (
Although this increases C+ in FIG. 2, the inter-wiring capacitance C2 decreases, making it possible to prevent crosstalk between adjacent wirings that accompanies higher density.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば、超高速素子として期
待されるG a A s /HEMT等の絶縁性基1反
型半導体装置の素子内配線間のクロス1−一りを防止で
きる利点がある。
As described above, the present invention has the advantage of being able to prevent crosses between interconnects within devices of insulating base 1 anti-type semiconductor devices such as GaAs/HEMTs, which are expected to be used as ultra-high-speed devices. be.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す構成図、第2図は従来
のG a A s /HEMTの構造図である。 図中、2は絶縁性基板、4はソース又はドレイン領域、
8は絶縁膜、10は配線、I4は能動素子領域、16は
配線チャネル領域、18はアースされたソース電極、2
0は不純物添加層である。
FIG. 1 is a configuration diagram showing an embodiment of the present invention, and FIG. 2 is a structural diagram of a conventional GaAs/HEMT. In the figure, 2 is an insulating substrate, 4 is a source or drain region,
8 is an insulating film, 10 is a wiring, I4 is an active element region, 16 is a wiring channel region, 18 is a grounded source electrode, 2
0 is an impurity added layer.

Claims (2)

【特許請求の範囲】[Claims] (1)絶縁性基板(2)の表面に不純物を添加して能動
素子領域(14)を形成してなる半導体装置において、
該能動素子領域(14)とは異なる配線チャネル領域(
16)直下の該基板表面にも不純物添加層(20)を形
成し、且つ該層(20)を電源に接続してなることを特
徴とする半導体装置。
(1) In a semiconductor device in which an active element region (14) is formed by adding impurities to the surface of an insulating substrate (2),
A wiring channel region (
16) A semiconductor device characterized in that an impurity-doped layer (20) is also formed on the surface of the substrate immediately below, and the layer (20) is connected to a power source.
(2)不純物添加層(20)は電源との接続部で能動素
子領域(14)へ突出し、該能動素子領域に形成される
トランジスタのソース領域と連通することを特徴とする
特許請求の範囲第1項記載の半導体装置。
(2) The impurity doped layer (20) protrudes into the active element region (14) at the connection portion with the power source and communicates with the source region of the transistor formed in the active element region. The semiconductor device according to item 1.
JP13143886A 1986-06-06 1986-06-06 Semiconductor device Pending JPS62287643A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13143886A JPS62287643A (en) 1986-06-06 1986-06-06 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13143886A JPS62287643A (en) 1986-06-06 1986-06-06 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS62287643A true JPS62287643A (en) 1987-12-14

Family

ID=15057966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13143886A Pending JPS62287643A (en) 1986-06-06 1986-06-06 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS62287643A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6364041U (en) * 1986-10-16 1988-04-27
US5153699A (en) * 1988-02-15 1992-10-06 Kabushiki Kaisha Toshiba Semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6364041U (en) * 1986-10-16 1988-04-27
US5153699A (en) * 1988-02-15 1992-10-06 Kabushiki Kaisha Toshiba Semiconductor device

Similar Documents

Publication Publication Date Title
US5399507A (en) Fabrication of mixed thin-film and bulk semiconductor substrate for integrated circuit applications
US5036374A (en) Insulated gate semiconductor device using compound semiconductor at the channel
US4314857A (en) Method of making integrated CMOS and CTD by selective implantation
EP0206274B1 (en) High transconductance complementary ic structure
DE102014111653A1 (en) Integrated circuit with first and second switching devices, half-bridge circuit and method of manufacture
US5306650A (en) Method of making silicon MESFET for dielectrically isolated integrated circuits
US5336637A (en) Silicide interconnection with Schottky barrier diode isolation
DE102013002986A1 (en) Integrated Schottky diode for HEMTS
US3883372A (en) Method of making a planar graded channel MOS transistor
US4240093A (en) Integrated circuit device including both N-channel and P-channel insulated gate field effect transistors
GB1420086A (en) Methods of making semiconductor devices
US6476452B2 (en) Bipolar/BiCMOS semiconductor device
EP0263287A3 (en) Forming a capacitor in an integrated circuit
US4404579A (en) Semiconductor device having reduced capacitance and method of fabrication thereof
US4961101A (en) Semiconductor MOSFET device with offset regions
JPS62287643A (en) Semiconductor device
JPS5979577A (en) Semiconductor integrated circuit device
JPS6472543A (en) Manufacture of semiconductor device
JPH06232396A (en) High frequency high output field-effect transistor
US4673965A (en) Uses for buried contacts in integrated circuits
JPH0355877A (en) Compound semiconductor device
EP0377871A3 (en) Self-aligned window at recessed intersection of insulating regions
US4302765A (en) Geometry for fabricating enhancement and depletion-type, pull-up field effect transistor devices
KR940009351B1 (en) Edge seal and manufacturing method of a semiconductor chip
JPH0656878B2 (en) Method for manufacturing CMOS semiconductor device