JPS62286847A - Control for continuously variable transmission for vehicle - Google Patents

Control for continuously variable transmission for vehicle

Info

Publication number
JPS62286847A
JPS62286847A JP61128803A JP12880386A JPS62286847A JP S62286847 A JPS62286847 A JP S62286847A JP 61128803 A JP61128803 A JP 61128803A JP 12880386 A JP12880386 A JP 12880386A JP S62286847 A JPS62286847 A JP S62286847A
Authority
JP
Japan
Prior art keywords
variable transmission
continuously variable
temperature
cooling water
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61128803A
Other languages
Japanese (ja)
Other versions
JPH0825413B2 (en
Inventor
Kunio Morisawa
邦夫 森沢
Hiroyuki Koba
木場 博之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP61128803A priority Critical patent/JPH0825413B2/en
Publication of JPS62286847A publication Critical patent/JPS62286847A/en
Publication of JPH0825413B2 publication Critical patent/JPH0825413B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • F16H61/662Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members
    • F16H61/66254Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members controlling of shifting being influenced by a signal derived from the engine and the main coupling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/68Inputs being a function of gearing status
    • F16H59/72Inputs being a function of gearing status dependent on oil characteristics, e.g. temperature, viscosity

Abstract

PURPOSE:To prevent the deterioration of a continuously variable transmission due to the abnormal temperature rise of working oil by changing the speed change ratio of the continuously variable transmission to the smaller value side when the working oil temperature is over a prescribed temperature or the cooling water temperature is over a prescribed value. CONSTITUTION:A continuously variable transmission 1 is equipped with a water temperature sensor 21 for detecting the cooling water temperature, oil temperature sensor 22 for detecting the working oil temperature, throttle position sensor 23, engine revolution speed sensor 24, car speed sensor 25, input side pulley revolution speed sensor 26, and an output side pulley revolution speed sensor 27 for detecting the revolution speed of an output side pulley 8. The signal supplied from each sensor is input into an electronic controller 30, and controls a CVT 4 by driving a pressure control valve 13 and a flow rate control valve 14.

Description

【発明の詳細な説明】 3、発明の詳細な説明 発明の目的 [産業上の利用分野] 本発明は、例えば自動車等に使用される車両用無段変速
機の制御方法に関する。
Detailed Description of the Invention 3. Detailed Description of the Invention Object of the Invention [Field of Industrial Application] The present invention relates to a control method for a continuously variable transmission for a vehicle used, for example, in an automobile.

[従来の技術] 近年、例えば自動車等の車両において、内燃機関の出力
を無段階に変速して駆動輪へ伝達する無段変速機を備え
たものが知られている。上記のような無段変速機は、運
転状態に応じてその変速比を自白に設定できる。したが
って、従来の自動変速機等と比較して、動力性能を向上
できるという利点がある。
[Prior Art] In recent years, vehicles such as automobiles have been known to be equipped with a continuously variable transmission that continuously changes the output of an internal combustion engine and transmits the output to drive wheels. The continuously variable transmission as described above can set its speed ratio according to the operating state. Therefore, compared to conventional automatic transmissions and the like, there is an advantage that power performance can be improved.

ところで、上記のような無段変速機は、例えば、入力プ
ーリ、出力プーリおよび両者に巻き掛けられた伝動ベル
トから構成されている。上記両プーリは、固定プーリと
一体の回転軸に可動プーリが軸方向に移動可能に嵌合し
て取り付けられており、伝動ベルトが巻き掛けられる位
置の有効径の変化により無段階に変速動作を行なう。上
記可動プーリの移動、潤滑、冷却等は圧送される作動油
により行なわれる。なお、該作動油の冷却は、内燃機関
の冷却水により行なわれていた。
By the way, the above-mentioned continuously variable transmission is composed of, for example, an input pulley, an output pulley, and a transmission belt wound around both. Both of the above pulleys have a movable pulley fitted onto a rotating shaft that is integrated with the fixed pulley so as to be movable in the axial direction, allowing stepless speed change operation by changing the effective diameter at the position where the transmission belt is wound. Let's do it. Movement, lubrication, cooling, etc. of the movable pulley are performed by hydraulic oil that is pumped. Note that the hydraulic oil is cooled using cooling water for the internal combustion engine.

[発明が解決しようとする問題点コ しかし、上述のような無段変速機を備えた車両において
は、その内燃機関を高出力領域の運転状態で使用する場
合が多い。例えば、内燃機関を高出力であって、燃料消
費率が大きい領域で長時間に亘って運転すると、発熱量
は大きくなる。すなわち、冷却系に対する熱負荷が増大
し、冷却水温度も上昇する。このため、該冷却水により
冷却される無段変速機の作動油の温度が上昇し、作動油
の粘性低下等の劣化を早めるという問題点があった。
[Problems to be Solved by the Invention] However, in vehicles equipped with the above-mentioned continuously variable transmission, the internal combustion engine is often used in an operating state in a high output range. For example, when an internal combustion engine is operated for a long time in a region with high output and a high fuel consumption rate, the amount of heat generated increases. That is, the heat load on the cooling system increases, and the cooling water temperature also rises. For this reason, there is a problem in that the temperature of the hydraulic oil of the continuously variable transmission cooled by the cooling water increases, accelerating deterioration such as a decrease in the viscosity of the hydraulic oil.

また上記問題に伴い、無段変速機における潤滑性能の低
下、動力伝達容量の低下を招くという問題もあった。
Further, in conjunction with the above-mentioned problem, there has also been a problem that the lubrication performance and power transmission capacity of the continuously variable transmission are decreased.

本発明は、無段変速機の作動油の温度上昇防止に有効な
車両用無段変速機の制御方法の提供を目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a control method for a continuously variable transmission for a vehicle that is effective in preventing a rise in the temperature of hydraulic fluid in the continuously variable transmission.

及用五璽メ [問題点を解決するための手段] 上記問題を解決するためになされた本発明は、第1図に
例示するように、 内燃機関の出力を無段階に変速して駆動輪に伝°  達
する車両用無段変速機の制御方法において、上記無段変
速機の作動油の温度が所定作動油温度を上回ったとき(
Sl)、もしくは、上記内燃機関を冷却する冷却水の温
度が所定冷却水温度を上回ったとき(S2)には、上記
無段変速機の変速比をより小さい側に変更(S3)する
ことを特徴とする車両用無段変速機の制御方法を要旨と
するものである。
[Means for Solving the Problems] The present invention, which has been made to solve the above problems, as illustrated in FIG. In the control method for a continuously variable transmission for a vehicle, when the temperature of the hydraulic oil of the continuously variable transmission exceeds a predetermined hydraulic oil temperature (
Sl), or when the temperature of the cooling water for cooling the internal combustion engine exceeds a predetermined cooling water temperature (S2), change the gear ratio of the continuously variable transmission to a smaller side (S3). The gist of this paper is a characteristic control method for a continuously variable transmission for a vehicle.

ここで、所定作動油温度および所定冷却水温度とは、例
えば内燃機関の発熱量の増大に伴い、その冷却系に大き
な熱負荷が加わった状態における作動油もしくは冷却水
の温度に応じて定まるものである。
Here, the predetermined hydraulic oil temperature and predetermined cooling water temperature are determined according to the temperature of the hydraulic oil or cooling water in a state where a large heat load is applied to the cooling system due to an increase in the amount of heat generated by the internal combustion engine, for example. It is.

なお上述のような制御畔、例えばディスクリートな論理
回路により実現できる。また例えば、周知のCPLJを
始めとしてROM、RAMおよびその他の周辺回路素子
を備えた論理演算回路が予め定められた処理手順を実行
することにより実現してもよい。
Note that the above-mentioned control circuit can be realized by, for example, a discrete logic circuit. Alternatively, for example, a logic operation circuit including a well-known CPLJ, ROM, RAM, and other peripheral circuit elements may be implemented by executing a predetermined processing procedure.

[作用] 本発明の車両用無段変速機の制御方法は、第1図に例示
するように、無段変速機の作動油温度が所定作動油温度
以上(Sl)、もしくは、冷却水温度が所定冷却水温度
以上(S2)のときには、無段変速機の変速比をより小
さい側に変更(S3)するよう動く。
[Function] As illustrated in FIG. 1, the method for controlling a continuously variable transmission for a vehicle according to the present invention is performed when the hydraulic oil temperature of the continuously variable transmission is equal to or higher than a predetermined hydraulic oil temperature (Sl), or when the cooling water temperature is When the coolant temperature is equal to or higher than a predetermined temperature (S2), the gear ratio of the continuously variable transmission is changed to a smaller one (S3).

すなわち、冷却系の熱負荷が大きいときには、変速比を
小さい側に変更して内燃機関の回転速度を下げることに
より、駆動力は等しく発熱量が少ない運転状態に移行さ
せるのである。
That is, when the heat load on the cooling system is large, by changing the gear ratio to a smaller side and lowering the rotational speed of the internal combustion engine, a shift is made to an operating state in which the driving force is equal and the amount of heat generated is smaller.

従って本発明の車両用無段変速機の制御方法は、作動油
もしくは冷却水の温度が所定値以上となったときには、
駆動力に大きな変動を生じることなく上記同温度を低下
させるよう働く。以上のような本発明の作用により、本
発明の技術的課題が解決される。
Therefore, in the control method for a continuously variable transmission for a vehicle according to the present invention, when the temperature of the hydraulic oil or cooling water exceeds a predetermined value,
It works to lower the above-mentioned temperature without causing large fluctuations in the driving force. The technical problems of the present invention are solved by the effects of the present invention as described above.

[実施例] 次に本発明の好適な一実施例を図面に基づいて詳細に説
明する。本発明の方法が適用される車両用無段変速装置
のシステム構成を第2図に示す。
[Embodiment] Next, a preferred embodiment of the present invention will be described in detail based on the drawings. FIG. 2 shows a system configuration of a continuously variable transmission for a vehicle to which the method of the present invention is applied.

車両用無段変速装置1は、エンジン2の駆動力を流体継
手3を介して無段変速機(以下単にCVTとよ、!二)
4に伝達するよう構成されている。CVT4に入力され
た駆動力は、入力軸5.入力側プーリ6、ベルト7、出
力側ブー98.出力軸9の順に伝達される。入力側プー
リ6および出力側プーリ8は、各々油圧室10.11を
備える。両袖圧室10.11は、リザーバ12から圧力
制御弁13、流聞制御弁14を介して供給される作動油
により容積変化し、上記両ブー96,8の一端側は各々
その軸方向に摺動する。このため、ベルト7の巻き掛は
位置の有効径が変化し、無段階な変速動作を可能として
いる。
A continuously variable transmission device 1 for a vehicle transmits the driving force of an engine 2 to a continuously variable transmission (hereinafter simply referred to as a CVT!2) via a fluid coupling 3.
4. The driving force input to the CVT 4 is transmitted to the input shaft 5. Input side pulley 6, belt 7, output side boo 98. It is transmitted in order of the output shaft 9. The input pulley 6 and the output pulley 8 each include a hydraulic chamber 10.11. The volume of the pressure chambers 10.11 on both sides is changed by the hydraulic oil supplied from the reservoir 12 through the pressure control valve 13 and the flow control valve 14, and one end side of the two boobies 96, 8 is axially Sliding. Therefore, the effective diameter of the winding position of the belt 7 changes, allowing stepless speed change operation.

上記流体継手3.CVT4の作動油はオイルクーラ15
で冷却された後、再びリザーバ12に還流する。一方、
上記エンジン2の冷却水は、ラジェータ1−6で空冷さ
れた後、オイルクーラ15で上記作動油を冷却し、再び
エンジン2の冷却系に循環してエンジン2を冷却する。
Above fluid coupling 3. CVT4 hydraulic oil is oil cooler 15
After being cooled down, it is refluxed to the reservoir 12 again. on the other hand,
After the cooling water for the engine 2 is air-cooled by the radiator 1 - 6 , the hydraulic oil is cooled by the oil cooler 15 , and then circulated through the cooling system of the engine 2 again to cool the engine 2 .

無段変速装@1は、検出器として、冷却水温度を検出す
る水温センサ212作動油温度を検出する油温センサ2
2.エンジン2のスロットルバルブ開度を検出するスロ
ットルポジションセンサ23、エンジン2の回転速度を
検出する回転速度センサ24.車速を検出する車速セン
サ25.入力側プーリ6の回転速度を検出する入力側プ
ーリ回転速度センサ26.出力側プーリ8の回転速度を
検出する出力側ブーり回転速度センサ27を備える。
The continuously variable transmission @1 includes, as detectors, a water temperature sensor 212 that detects the cooling water temperature and an oil temperature sensor 2 that detects the hydraulic oil temperature.
2. A throttle position sensor 23 that detects the throttle valve opening of the engine 2, a rotation speed sensor 24 that detects the rotation speed of the engine 2. Vehicle speed sensor 25 for detecting vehicle speed. An input pulley rotation speed sensor 26 that detects the rotation speed of the input pulley 6. An output side pulley rotation speed sensor 27 is provided to detect the rotation speed of the output side pulley 8.

上記各センサからの信号は電子制御装置(以下単にEC
Uとよぶ)30に入力され、該ECtJ30は上記圧力
制御弁13および流量制御弁14を駆動してCVT4を
制御する。
The signals from each of the above sensors are controlled by an electronic control unit (hereinafter simply EC).
The ECtJ 30 drives the pressure control valve 13 and the flow rate control valve 14 to control the CVT 4.

ECU3Oは、CPU30a、ROM30b。ECU3O includes a CPU30a and a ROM30b.

RAM30cを中心に論理演算回路として構成され、コ
モンバス30dを介して入力部30e、出力部30fと
接続されて外部との入出力を行なう。
It is configured as a logic operation circuit centering on the RAM 30c, and is connected to an input section 30e and an output section 30f via a common bus 30d to perform input/output with the outside.

次に、上記ECU3Oの実行する変速制御処理を第3図
のフローチャートに基づいて説明する。
Next, the speed change control process executed by the ECU 3O will be explained based on the flowchart of FIG. 3.

本変速制御処理は所定時間毎に繰り返して実行される。This shift control process is repeatedly executed at predetermined time intervals.

まずステップ100では、水温センサ21から冷却水温
度TW、油温センサ22から油温度TLを検出する処理
が行なわれる。続くステップ110では、冷却水温度T
Wが許容冷却水温度TWSを上回るか否か、または、油
温度TLが許容油温度TLSを上回るか否かが判定され
る。肯定判断されたときはステップ120へ進み、一方
、否定判断されたときは冷却のための変速が必要ないも
のとして一旦本変速制御処理を終了する。
First, in step 100, a process is performed in which the water temperature sensor 21 detects the cooling water temperature TW, and the oil temperature sensor 22 detects the oil temperature TL. In the following step 110, the cooling water temperature T
It is determined whether W exceeds the allowable cooling water temperature TWS or whether the oil temperature TL exceeds the allowable oil temperature TLS. If the determination is affirmative, the process proceeds to step 120, whereas if the determination is negative, it is assumed that the speed change for cooling is not necessary, and the present speed change control process is temporarily terminated.

冷却のための変速が必要な場合に実行されるステップ1
20では、エンジン2の運転状態を検出する処理が行な
われる。すなわら、エンジン回転速度、車速、スロット
ルバルブ開度およびCVT4の変速比を検出する。続く
ステップ130では、上記ステップ120で検出した運
転状態に基づいて、エンジン2およびCVT4の発熱量
を算出する処理が行なわれる。次にステップ140では
、上記ステップ120で検出した運転状態における冷却
水流量、冷却風速からラジェータ16の放熱容量を算出
すると共に、CVT4からオイルクーラ15への作動油
流1からオイルクーラ15の放熱容量を算出する処理が
行なわれる。続くステップ15.0では、上記ステップ
130で算出したエンジン2およびCVT4の発熱量が
、空中への放熱量と上記ステップ140で算出したラジ
ェータ16およびオイルクーラ15の放熱容量との総和
に等しいものとした熱平衡式に基づき、ラジェータ16
人口、オイルクーラ15人口、オイルクーラ15出口の
各冷却水温度T1.T2.T3およびオイルクーラ15
人口、オイルクーラ15出口の各油温度T4.T5を算
出する処理が行なわれる。なお、本ステップ150の算
出値は、上記ステップ100の検出値との比較により確
認される。
Step 1 executed when gear shifting is required for cooling
At 20, processing for detecting the operating state of the engine 2 is performed. That is, the engine rotation speed, vehicle speed, throttle valve opening, and gear ratio of the CVT 4 are detected. In subsequent step 130, a process is performed to calculate the amount of heat generated by the engine 2 and CVT 4 based on the operating state detected in step 120. Next, in step 140, the heat dissipation capacity of the radiator 16 is calculated from the cooling water flow rate and cooling air velocity in the operating state detected in step 120, and the heat dissipation capacity of the oil cooler 15 from the hydraulic oil flow 1 from the CVT 4 to the oil cooler 15. Processing to calculate is performed. In the following step 15.0, the calorific value of the engine 2 and CVT 4 calculated in step 130 above is equal to the sum of the amount of heat radiated into the air and the heat radiation capacity of the radiator 16 and oil cooler 15 calculated in step 140 above. Based on the thermal equilibrium equation, the radiator 16
Population, oil cooler 15 population, and each cooling water temperature at the oil cooler 15 outlet T1. T2. T3 and oil cooler 15
Population, each oil temperature at the oil cooler 15 outlet T4. A process for calculating T5 is performed. Note that the calculated value in step 150 is confirmed by comparison with the detected value in step 100 above.

次にステップ160に進み、上記ステップ150で算出
した各冷却水温度T1.T2.T3および各油温度T4
.T5を各々に対応して定められた各許容温度以下に低
下可能なエンジン2の運転状態をマツプに基づいて算出
する処理が行なわれる。すなわち、第4図に示すような
マツプに従い、現在の運転状態(同図に点aで示す)を
、等馬力線(同図に一点鎖線で示す)に沿って矢印六方
向に変化させ、燃料消費率(等燃料消費率線を同図に実
線で示す)が小ざくて発熱量も少ない運転状態(同図に
点すで示す)を求める。この運転状態では、エンジン回
転速度は値Ne1から値Ne2に低下し、一方、エンジ
ントルクは値Telから値Te2に増加する。
Next, the process proceeds to step 160, and each cooling water temperature T1. calculated in step 150 above. T2. T3 and each oil temperature T4
.. A process is performed to calculate, based on the map, the operating state of the engine 2 in which the temperature T5 can be lowered below each permissible temperature determined correspondingly. That is, according to the map shown in Fig. 4, the current operating state (indicated by point a in the figure) is changed in the six directions of arrows along the equal horsepower line (indicated by the dashed line in the figure), and the fuel An operating state (shown as a dot in the figure) in which the consumption rate (equal fuel consumption rate line is shown as a solid line in the figure) is small and the amount of heat generated is small is determined. In this operating state, the engine speed decreases from the value Ne1 to the value Ne2, while the engine torque increases from the value Tel to the value Te2.

次にステップ170に進み、CVT4の変速比をマツプ
に基づいて算出する処理が行なわれる。
Next, the process proceeds to step 170, where a process is performed to calculate the gear ratio of the CVT 4 based on the map.

すなわち、第5図に示すようなマツプに従い、上記ステ
ップ160で締出したエンジン2の運転状態においても
同一車速を維持可能な変速比を求める。現在の運転状態
では、車速vO,エンジン回転速度Ne1.スロットル
バルブ開度θ1であるため、変速比は大きい値r1に設
定されている(同図に点Cで示す)。この場合は、上述
したステップ160で算出した発熱量の少ない運転状態
における゛エンジン回転速度がNe2に低下するので、
車速を同一に維持可能な変速比は小さい値r2に定まる
。なおこの変速比r2は、運転状態が、車速vO1エン
ジン回転速度Ne2.スロットルバルブ開度θ2(同図
に点dで示す)に移行するものと予測して定めた値であ
る。
That is, according to the map shown in FIG. 5, a gear ratio that can maintain the same vehicle speed even in the operating state of the engine 2 shut off in step 160 is determined. In the current driving state, vehicle speed vO, engine rotation speed Ne1. Since the throttle valve opening degree is θ1, the speed ratio is set to a large value r1 (indicated by point C in the figure). In this case, in the operating state where the amount of heat generated is low as calculated in step 160 described above, the engine rotational speed decreases to Ne2, so
The gear ratio that can maintain the same vehicle speed is determined to be a small value r2. Note that this gear ratio r2 is determined when the driving state is vehicle speed vO1 engine rotation speed Ne2. This value is determined based on the prediction that the throttle valve opening degree will shift to θ2 (indicated by point d in the figure).

続くステップ180では、CVT4の変速比が上記ステ
ップ170で算出した値となるように、圧力制御弁13
.流量制御弁14を駆動制御して変速比を減少変更する
処理が行なわれた後、一旦本変速制御処理を終了する。
In the subsequent step 180, the pressure control valve 13 is adjusted so that the gear ratio of the CVT 4 becomes the value calculated in the above step 170.
.. After the flow rate control valve 14 is driven and controlled to decrease the gear ratio, the present gear change control process is temporarily terminated.

以俊、本変速制御処理は既述した実行条件成立毎に繰り
返して実行される。なお、変速比の大きい値r1から小
さい値r2の変更に伴い、運転者は車速をvOに維持す
るためにスロットルバルブ開度を01から02に拡大す
る。このためエンジン2の運転状態は、上述したステッ
プ160で算出した運転状態に移行する。
This shift control process is repeatedly executed every time the above-described execution conditions are satisfied. In addition, as the gear ratio changes from a large value r1 to a small value r2, the driver increases the throttle valve opening degree from 01 to 02 in order to maintain the vehicle speed at vO. Therefore, the operating state of the engine 2 shifts to the operating state calculated in step 160 described above.

以上説明したように本実施例は、冷却水温度もしくは油
温度の少なくとも一方が許容温度を上回ったときには、
CVT4の変速比を小さい値に変更して、エンジン2を
発熱量の少ない運転状態に移行させるよう構成されてい
る。このため、車両の走行性能を低下させることなく、
冷却水温度および作動油の油温度を許容温度以下に低下
させることができる。
As explained above, in this embodiment, when at least one of the cooling water temperature and the oil temperature exceeds the allowable temperature,
The engine 2 is configured to change the gear ratio of the CVT 4 to a smaller value to shift the engine 2 to an operating state that generates less heat. Therefore, without reducing the driving performance of the vehicle,
Cooling water temperature and hydraulic oil temperature can be lowered to below permissible temperatures.

したがって、CVT4の作動油の粘性低下といった劣化
を防止し、CVT4の変速性能を長期に亘って補償でき
る。
Therefore, deterioration such as a decrease in the viscosity of the hydraulic oil of the CVT 4 can be prevented, and the shift performance of the CVT 4 can be compensated for a long period of time.

また、本実施例の変速制御処理は、冷却水温度または油
温度が許容温度を上回った場合の非常時における処理で
あるため、通常走行時に起動されることは少ない。この
ため、通常走行時において悪影響を及ぼすことはない。
Further, the shift control process of this embodiment is a process performed in an emergency when the cooling water temperature or oil temperature exceeds an allowable temperature, so it is rarely activated during normal driving. Therefore, there is no adverse effect during normal driving.

なお、本実施例では冷却水温度と油温度との両者を検出
して制御開始の判定に使用している。しかし、例えば冷
却水温度もしくは油温度のいずれか一方のみを検出して
判定を行なうよう構成してもよい。
In this embodiment, both the cooling water temperature and the oil temperature are detected and used to determine whether to start control. However, for example, it may be configured to detect only either the cooling water temperature or the oil temperature to make the determination.

また、本実施例ではCVT4の変速比を小さい値に変更
する制御だけを行なう。しかし例えば、スロットルバル
ブ開度を変更するアクチュエータを備えた車両において
は、変速比を小さい値に変更すると共に、スロットルバ
ルブ開度を大きく変更するよう構成してもよい。このよ
うに構成した場合には、駆動力や走行性能を常時一定に
維持しながら、エンジンを発熱間の少ない運転状態へ確
実に移行させられる。
Further, in this embodiment, only control is performed to change the gear ratio of the CVT 4 to a small value. However, for example, in a vehicle equipped with an actuator that changes the throttle valve opening, the speed ratio may be changed to a small value, and the throttle valve opening may be changed greatly. With this configuration, the engine can be reliably shifted to an operating state with less heat generation while maintaining the driving force and running performance constant at all times.

以上本発明の実施例について説明したが、本発明はこの
ような実施例に同等限定されるものではなく、本発明の
要旨を逸脱しない範囲内において種々なる態様で実施し
得ることは勿論である。
Although the embodiments of the present invention have been described above, the present invention is not equally limited to these embodiments, and it goes without saying that it can be implemented in various forms without departing from the gist of the present invention. .

発明の効果 以上詳記したように本発明の車両用無段変速機の制御方
法は、作動油温度が所定作動油温度以上、もしくは、冷
却水温度が所定冷却水温度以上のときには、無段変速機
の変速比をより小さい側に変更するよう構成されている
。このため、作動油もしくは冷却水の温度が所定値を上
回るときには、内燃機関の運転状態が発熱間の少ない伏
■に移行されるので、無段変速機の作動油の異常な温度
上昇による劣化を防止し、無段変速機の耐久性を向上で
きるという優れた効果を奏する。
Effects of the Invention As detailed above, the method for controlling a continuously variable transmission for a vehicle of the present invention allows continuously variable transmission to be performed when the hydraulic oil temperature is above a predetermined hydraulic oil temperature or when the cooling water temperature is above a predetermined cooling water temperature. It is configured to change the gear ratio of the machine to the smaller side. For this reason, when the temperature of the hydraulic oil or cooling water exceeds a predetermined value, the operating state of the internal combustion engine is shifted to a dormant state with less heat generation, thereby preventing deterioration due to abnormal temperature rises in the hydraulic fluid of the continuously variable transmission. This has the excellent effect of preventing the above and improving the durability of the continuously variable transmission.

また、上記効果に伴い、無段変速機における潤滑性能お
よび動力伝達容量が補償され、その信頼性も高まる。
Moreover, along with the above effects, the lubrication performance and power transmission capacity of the continuously variable transmission are compensated, and its reliability is also improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の内容を例示した基本的構成図、第2図
は本発明一実施例のシステム構成図、第3図は同じくそ
の制御を示すフローチャート、第4図は同じくそのエン
ジンの運転状態のマツプを示すグラフ、第5図は同じく
その無段変速機の変速状態のマツプを示すグラフでおる
。 1・・・車両用無段変速装置 2・・・エンジン 4・・・無段変速機(CVT) 21・・・水温センサ 22・・・油温センサ
Fig. 1 is a basic configuration diagram illustrating the contents of the present invention, Fig. 2 is a system configuration diagram of an embodiment of the present invention, Fig. 3 is a flow chart showing its control, and Fig. 4 is the operation of the engine. FIG. 5 is a graph showing a map of the state, and a graph showing a map of the speed change state of the continuously variable transmission. 1... Continuously variable transmission for vehicle 2... Engine 4... Continuously variable transmission (CVT) 21... Water temperature sensor 22... Oil temperature sensor

Claims (1)

【特許請求の範囲】[Claims] 1 内燃機関の出力を無段階に変速して駆動輪に伝達す
る車両用無段変速機の制御方法において、上記無段変速
機の作動油の温度が所定作動油温度を上回ったとき、も
しくは、上記内燃機関を冷却する冷却水の温度が所定冷
却水温度を上回ったときには、上記無段変速機の変速比
をより小さい側に変更することを特徴とする車両用無段
変速機の制御方法。
1. In a control method for a continuously variable transmission for a vehicle that continuously changes the output of an internal combustion engine and transmits it to drive wheels, when the temperature of the hydraulic oil of the continuously variable transmission exceeds a predetermined hydraulic oil temperature, or A control method for a continuously variable transmission for a vehicle, characterized in that when the temperature of the cooling water for cooling the internal combustion engine exceeds a predetermined cooling water temperature, the gear ratio of the continuously variable transmission is changed to a smaller side.
JP61128803A 1986-06-03 1986-06-03 Control method of continuously variable transmission for vehicle Expired - Fee Related JPH0825413B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61128803A JPH0825413B2 (en) 1986-06-03 1986-06-03 Control method of continuously variable transmission for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61128803A JPH0825413B2 (en) 1986-06-03 1986-06-03 Control method of continuously variable transmission for vehicle

Publications (2)

Publication Number Publication Date
JPS62286847A true JPS62286847A (en) 1987-12-12
JPH0825413B2 JPH0825413B2 (en) 1996-03-13

Family

ID=14993811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61128803A Expired - Fee Related JPH0825413B2 (en) 1986-06-03 1986-06-03 Control method of continuously variable transmission for vehicle

Country Status (1)

Country Link
JP (1) JPH0825413B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5713815A (en) * 1995-07-11 1998-02-03 Honda Giken Kogyo Kabushiki Kaisha Control apparatus for continuously variable vehicular transmission
US6942595B2 (en) * 2001-09-15 2005-09-13 Cnh America Llc Control system for the drive of a pto for an agricultural vehicle
JP2006291997A (en) * 2005-04-06 2006-10-26 Honda Motor Co Ltd Controller for continuously variable transmission for vehicle
US7402118B2 (en) 2003-09-30 2008-07-22 Jatco Ltd Control device for controlling V-belt continuously variable transmission
JP2009236182A (en) * 2008-03-26 2009-10-15 Toyota Motor Corp Control device for continuously variable transmission
EP2175175A2 (en) 2008-10-07 2010-04-14 JATCO Ltd Control device and control method for continuously variable transmission
JP2010180927A (en) * 2009-02-04 2010-08-19 Toyota Motor Corp Apparatus and method for determining abnormality of oil temperature sensor
CN102080717A (en) * 2011-01-04 2011-06-01 奇瑞汽车股份有限公司 Thermal protection control method for automatic transmission box or stepless transmission box
JP2013181613A (en) * 2012-03-02 2013-09-12 Honda Motor Co Ltd Protection and control device for power unit

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6188065A (en) * 1984-10-04 1986-05-06 Toyota Motor Corp Speed ratio control method for stepless speed change gear for car

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6188065A (en) * 1984-10-04 1986-05-06 Toyota Motor Corp Speed ratio control method for stepless speed change gear for car

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5713815A (en) * 1995-07-11 1998-02-03 Honda Giken Kogyo Kabushiki Kaisha Control apparatus for continuously variable vehicular transmission
US6942595B2 (en) * 2001-09-15 2005-09-13 Cnh America Llc Control system for the drive of a pto for an agricultural vehicle
US7402118B2 (en) 2003-09-30 2008-07-22 Jatco Ltd Control device for controlling V-belt continuously variable transmission
EP1521016A3 (en) * 2003-09-30 2009-04-22 JATCO Ltd Control device for controlling V-belt continuously variable transmission
JP2006291997A (en) * 2005-04-06 2006-10-26 Honda Motor Co Ltd Controller for continuously variable transmission for vehicle
JP2009236182A (en) * 2008-03-26 2009-10-15 Toyota Motor Corp Control device for continuously variable transmission
EP2175175A2 (en) 2008-10-07 2010-04-14 JATCO Ltd Control device and control method for continuously variable transmission
JP2010090956A (en) * 2008-10-07 2010-04-22 Jatco Ltd Device and method for controlling continuously variable transmission
EP2175175A3 (en) * 2008-10-07 2012-02-22 JATCO Ltd Control device and control method for continuously variable transmission
US8548701B2 (en) 2008-10-07 2013-10-01 Jatco Ltd Control device and control method for continuously variable transmission
JP2010180927A (en) * 2009-02-04 2010-08-19 Toyota Motor Corp Apparatus and method for determining abnormality of oil temperature sensor
CN102080717A (en) * 2011-01-04 2011-06-01 奇瑞汽车股份有限公司 Thermal protection control method for automatic transmission box or stepless transmission box
JP2013181613A (en) * 2012-03-02 2013-09-12 Honda Motor Co Ltd Protection and control device for power unit

Also Published As

Publication number Publication date
JPH0825413B2 (en) 1996-03-13

Similar Documents

Publication Publication Date Title
US6422972B1 (en) Engine control apparatus
US6377883B1 (en) Control apparatus for hybrid vehicle
KR19980087294A (en) Integrated control system for electronically controlled engines and automatic transmissions
JPH0531209Y2 (en)
JPH0712810B2 (en) Speed ratio control device for continuously variable transmission for vehicles
JPS62286847A (en) Control for continuously variable transmission for vehicle
EP1643163B1 (en) System and method of compensating heating performance of continuously-variable-transmission-equipped vehicle
US4649485A (en) Apparatus for controlling continuously variable transmission
JPH10252464A (en) Power device cooler of hybrid electric vehicle
JP4070739B2 (en) Continuously variable transmission
JP4576821B2 (en) Control device for vehicle lock-up clutch
JP2009287676A (en) Hydraulic oil temperature control device
US7926464B2 (en) Power source braking system to prevent engine stalls
JP4672252B2 (en) Control device for vehicle
JP2004257442A (en) Vehicular control device
JP3430869B2 (en) Lock-up control method for continuously variable transmission for vehicle
JP2014070592A (en) Control device
JPS61265320A (en) Engine cooling device for vehicle
JPH08277932A (en) Lock-up clutch control device and method
JPH0942440A (en) Deterioration detection device of frictional engagement device
WO2022254646A1 (en) Vehicle control method, and vehicle control device
JP6757151B2 (en) Vehicle control device
JP2526616B2 (en) Rotary speed control device for cooling fan for hydraulically driven internal combustion engine
JP2549448Y2 (en) Rotary speed control device for cooling fan for hydraulically driven internal combustion engine
JP3246257B2 (en) Control device for clutch for fluid coupling

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees