JPS6228649A - Sugar content measuring instrument - Google Patents

Sugar content measuring instrument

Info

Publication number
JPS6228649A
JPS6228649A JP16688185A JP16688185A JPS6228649A JP S6228649 A JPS6228649 A JP S6228649A JP 16688185 A JP16688185 A JP 16688185A JP 16688185 A JP16688185 A JP 16688185A JP S6228649 A JPS6228649 A JP S6228649A
Authority
JP
Japan
Prior art keywords
fruit
sugar content
antenna
attenuation
pulp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16688185A
Other languages
Japanese (ja)
Inventor
Hisashi Tsuruoka
鶴岡 久
Masaki Takatsuji
高辻 正基
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NORIN SUISANSYO NOGYO KANKYO GIJUTSU KENKYUSHO
Original Assignee
NORIN SUISANSYO NOGYO KANKYO GIJUTSU KENKYUSHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NORIN SUISANSYO NOGYO KANKYO GIJUTSU KENKYUSHO filed Critical NORIN SUISANSYO NOGYO KANKYO GIJUTSU KENKYUSHO
Priority to JP16688185A priority Critical patent/JPS6228649A/en
Publication of JPS6228649A publication Critical patent/JPS6228649A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sorting Of Articles (AREA)

Abstract

PURPOSE:To non-destructively measure the sugar content of a fruit by providing an instrument to irradiate a microwave to a fruit and to measure the wave scattered therefrom, comparing the value estimated from the assumed value of the attenuation coefft. of the fruit and the actually measured value and estimating the sugar content of the fruit. CONSTITUTION:The microwave emitted from a microwave oscillator 34 is radiated from an antenna 32 to the fruit 31 through a demultiplexer 35 and the wave reflected from the fruit is received by the antenna 32. The incident wave and the reflected wave are compared by a computer 38 via a receiver 37 by which the distance up to the fruit 31 is calculated. The distance from the antenna 33 is similarly calculated and the outside shape of the fruit 31 is known. The microwave radiated from the antenna 32 is received through the fruit 31 by an antenna 31 and the attenuation quantity thereof is measured. The measured value is compared with the value assumed from the outside shape in the computer 38 and the attenuation coefft. of the fruit 31 is corrected. The sugar content of the fruit 31 is calculated by repeating such process.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、植物、特に成熟した果実の糖度を非破壊的に
測定する糖度測定装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a sugar content measuring device for non-destructively measuring the sugar content of plants, particularly mature fruits.

〔発明の背景〕[Background of the invention]

植物の品質は果菜果実と葉菜で違いはあるが、外観、形
状2色、つや、芳香、鮮度2M度、酸度。
There are differences in plant quality between fruit and leafy vegetables, including appearance, shape, two colors, gloss, aroma, freshness of 2M degrees, and acidity.

ビタミン、ミネラル等の化学成分等非常に広範囲の内容
をさす。この中で果実果菜の場合糖度は品質の指標とし
てきわめて重要である。しかし、従来の装置は、「和歌
山果園試:″異波長光反射量化による果皮色、果皮傷害
の識別″、中核共同研究成果報告、昭和55年3月」に
みられるように、糖度を非破壊的に測定しようとすると
、果皮の色彩を定量化し、間接的に粘度を推定するもの
である。このような装置の糖度推定精度は選別に十分耐
えるものではない。従って屈折糖度計のように果実を破
壊して測定する手段以外には現状では粘度測定ができな
い。
Refers to a very wide range of contents such as chemical components such as vitamins and minerals. Among these, sugar content is extremely important as an indicator of quality for fruits and vegetables. However, conventional devices do not destroy sugar content, as shown in ``Wakayama Orchard Experiment: ``Identification of Pericarp Color and Pericarp Damage by Quantifying Reflection of Different Wavelengths'', Core Joint Research Results Report, March 1980''. If you try to measure it directly, you quantify the color of the peel and indirectly estimate the viscosity. The sugar content estimation accuracy of such a device is not sufficient to withstand screening. Therefore, at present, viscosity cannot be measured except by means such as a refractometer that destroys the fruit and measures it.

〔発明の目的〕[Purpose of the invention]

本発明の目的は果実の糖度を非破壊に測定可能ならしめ
粘度測定装置を提供することにある。
An object of the present invention is to provide a viscosity measuring device capable of non-destructively measuring the sugar content of fruit.

〔発明の概要〕[Summary of the invention]

本発明は、糖度が誘電率と強い相関をもつことに着目し
、マイクロ波を使って食味の対象となる果肉の部分の糖
度を直接測定する構成を特徴とする。
The present invention focuses on the fact that sugar content has a strong correlation with dielectric constant, and is characterized by a configuration in which the sugar content of the part of the fruit pulp that is the target of taste is directly measured using microwaves.

粘度と誘電率の相関を第1図に示す。この実験はガラス
セルに蒸留水とショ糖よりなる溶液を入れ、ガラスセル
を送受信アンテナではさみ、その減衰量と糖度の関係を
みたものである。周波数は2.6GHzであり、この周
波数のあたりでは減衰量は誘電率に対応する。減衰量は
このセルから水溶液をとりのぞき、空気にした時の減衰
量を基準にとっている。
Figure 1 shows the relationship between viscosity and dielectric constant. In this experiment, a solution consisting of distilled water and sucrose was placed in a glass cell, the glass cell was placed between transmitting and receiving antennas, and the relationship between the amount of attenuation and the sugar content was observed. The frequency is 2.6 GHz, and around this frequency the amount of attenuation corresponds to the dielectric constant. The amount of attenuation is based on the amount of attenuation when the aqueous solution is removed from this cell and replaced with air.

このように糖度とマイクロ波の誘電率(減衰量)の間に
はきわめて良い相関が認められる。従って減衰量の測定
から粘度の推定が可能なはずである。
In this way, there is an extremely good correlation between the sugar content and the dielectric constant (attenuation amount) of microwaves. Therefore, it should be possible to estimate the viscosity from the measurement of the amount of attenuation.

果実は果皮、果肉、果芯等から構成されるが、果実によ
ってこれらの組織の間に一律の相関があるわけではなく
、果実を通過するマイクロ波の減衰量から必ずしも果肉
の糖度を推定できない。このため果肉の部分のみの減衰
量(誘電率)を果皮や、果芯の影響を受けずに測定する
方式が必要である。
Fruits are composed of pericarp, pulp, core, etc., but there is not a uniform correlation between these tissues depending on the fruit, and the sugar content of the pulp cannot necessarily be estimated from the amount of attenuation of microwaves passing through the fruit. Therefore, there is a need for a method to measure the attenuation (permittivity) of only the fruit pulp without being affected by the fruit skin or fruit core.

本発明では、果実にマイクロ波を照射し、その散乱波の
減衰量を多方向から測定する。果皮、果肉、果芯の誘電
率(減衰係数)をこれらの測定データから決定するわけ
であるが、この原理を第2図に示した2重同筒構造の仮
想果実で説明する。
In the present invention, fruits are irradiated with microwaves and the amount of attenuation of the scattered waves is measured from multiple directions. The dielectric constants (attenuation coefficients) of the pericarp, pulp, and core are determined from these measured data, and the principle will be explained using a virtual fruit with a double cylinder structure shown in FIG. 2.

送信アンテナが発射されたマイクロ波はファン状に広が
るが、果皮、果肉の境界面における散乱は近似的には幾
何光学の法則に従うと考えてよい。
The microwaves emitted by the transmitting antenna spread in a fan-like manner, but scattering at the interface between the peel and pulp can be considered to approximately follow the laws of geometric optics.

果実とアンテナ間の媒質、果皮、果肉の減衰係数をαい
、α5.α1.ビームのパスの長さをそれぞれQwrQ
g+ QXとする。計算される減衰量g(dB)は境界
面の反射ロスと指向性を省略すると、 g=200ogCαX”X+αgilt+αw Q w
) ” ’ ・’・−−−−(1)となる。ビームの経
路は減衰係数を決めれば一義的に求められる。簡単のた
めカッコ内をGとおく。
The attenuation coefficient of the medium between the fruit and the antenna, the pericarp, and the pulp is α5. α1. Each beam path length is QwrQ
Let g+QX. The calculated attenuation g (dB), omitting the reflection loss and directivity of the interface, is: g=200ogCαX”X+αgilt+αw Q w
) ” '・'・---(1) The beam path can be uniquely determined by determining the attenuation coefficient. For simplicity, we will write G in parentheses.

α工、α5.αいは未知の量であるが、gすなわちGは
測定できる。Gの測定値をGとする。今α1.α1.α
9を初期値(仮想的な値)から出発してGを計算し、G
と比較して、次の規則によって修正を行えば、 (α、+ΔαX)・Qx+(α1+Δαg)・f1g+
(αい+Δαw)・fl w=G  ・・・・・・・・
・・(5)本発明は、この原理にもとづいて、果皮、果
肉。
α engineering, α5. α is an unknown quantity, but g or G can be measured. Let G be the measured value of G. Now α1. α1. α
Calculate G starting from the initial value (virtual value) of 9, and
If we correct it according to the following rule, we get (α, +ΔαX)・Qx+(α1+Δαg)・f1g+
(α+Δαw)・fl w=G・・・・・・・・・
...(5) The present invention is based on this principle, and the present invention provides fruit skin and fruit pulp.

果芯等の誘電率(減衰定数)を仮定し、漸近的な繰り返
えし計算によって、果肉の粘度を推定するものである。
Assuming the dielectric constant (attenuation constant) of the fruit core, etc., the viscosity of the fruit pulp is estimated by repeated asymptotic calculations.

果皮、果肉、果芯の寸法比はあらかじめ破壊測定によっ
て得た先見情報を利用して定める。果実によっては果芯
を想定することなく。
The dimensional ratio of the pericarp, pulp, and core is determined in advance using preliminary information obtained through destructive measurements. Depending on the fruit, there is no need to assume the fruit core.

果肉と同等に扱ってよい。It can be treated the same as fruit pulp.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第3図により説明する。果実
31はアンテナ32.アンテナ33の間にセットする。
An embodiment of the present invention will be described below with reference to FIG. The fruit 31 is an antenna 32. Set between the antennas 33.

まず果実の大きさを知ることが必要であるが、本実施例
ではレーダと同一の原理により、マイクロ波を照射する
アンテナから返ってくる電波の位相、伝播時間から推定
する方式を示す。マイクロ発振器34から出たマイクロ
波は分波器35を通り、アンテナ32から果実へ放射さ
れる。反射波は分波器35.36を通り、受信37に入
り、入射波と比較されアンテナ32と果実31の距離を
計算する。
First, it is necessary to know the size of the fruit, and in this example, based on the same principle as radar, a method of estimating it from the phase and propagation time of radio waves returned from an antenna that irradiates microwaves is shown. The microwaves emitted from the micro oscillator 34 pass through a splitter 35 and are radiated from the antenna 32 to the fruit. The reflected wave passes through splitters 35 and 36, enters the receiver 37, and is compared with the incident wave to calculate the distance between the antenna 32 and the fruit 31.

次に発振器34の出力を分波器35.36を通り、アン
テナ33より果実へマイクロ波を照射し、反射波を同一
アンテナで受けて、分波器36よす受信器37へ導く。
Next, the output of the oscillator 34 passes through splitters 35 and 36, and microwaves are irradiated from the antenna 33 to the fruit, and the reflected waves are received by the same antenna and guided to the splitter 36 and receiver 37.

これによってアンテナ33と果実31の距離を計算する
With this, the distance between the antenna 33 and the fruit 31 is calculated.

果実の横断面が円形からずれているときは、果実を回転
することによって果実の外形状を知る。
When the cross section of the fruit deviates from a circular shape, the outer shape of the fruit can be determined by rotating the fruit.

以上の処理により、果実−アンテナの減衰計算モデルが
作成できる。果実の外形がわかり、果実の先見情報つま
り果皮、果肉、果芯の寸法比から減衰計算モデルが作成
できる。このようなモデルの作成と、前記(1)〜(4
)式に示した収束計算を実行し、果肉の糖度を計算する
のは計算機38である。
Through the above processing, a fruit-antenna attenuation calculation model can be created. The external shape of the fruit is known, and a damping calculation model can be created from the foreknowledge of the fruit, that is, the dimensional ratios of the pericarp, pulp, and core. Creation of such a model and the above (1) to (4)
) It is the calculator 38 that executes the convergence calculation shown in the formula and calculates the sugar content of the fruit pulp.

本発明をプリンスメロンに適用した結果を第4図に示す
。横軸は本方式によって求められた果肉の減衰量、縦軸
は測定後果肉の部分をとり出して屈折糖度計にかけた値
である。これから果肉の粘度推定は誤差±1.5度で行
えることがわかる。
FIG. 4 shows the results of applying the present invention to prince melon. The horizontal axis is the amount of attenuation of the pulp determined by this method, and the vertical axis is the value obtained by taking out the pulp after measurement and applying it to a refractometer. From this, it can be seen that the viscosity of fruit pulp can be estimated with an error of ±1.5 degrees.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、果実の粘度を非破壊で迅速に測定する
ことができるので、選果場での応用のみならず、生産−
流通−小売の各過程で適正な商取引きが確立する。
According to the present invention, the viscosity of fruit can be measured quickly and non-destructively, so it can be used not only in fruit sorting plants but also in production.
Appropriate commercial transactions will be established in each process of distribution and retail.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は水溶液の糖度と減衰量の関係を示す特性線図、
第2図は本発明の原理を示す果実−アンテナの横断面図
、第3図は本発明の一実施例を示すブロック図、第4図
は本発明の効果を示す実験データの特性線図である。 32.33・・・アンテナ、34・・・送信器、35.
36・・・分波器、37・・受信器、38・・・計算機
Figure 1 is a characteristic diagram showing the relationship between the sugar content of an aqueous solution and the amount of attenuation.
Fig. 2 is a cross-sectional view of a fruit-antenna showing the principle of the present invention, Fig. 3 is a block diagram showing an embodiment of the invention, and Fig. 4 is a characteristic diagram of experimental data showing the effects of the present invention. be. 32.33... Antenna, 34... Transmitter, 35.
36... Duplexer, 37... Receiver, 38... Computer.

Claims (1)

【特許請求の範囲】[Claims] マイクロ波を果実に照射するための送信手段と、果実に
より散乱される散乱波を測定するための受信手段と、前
記受信手段の出力を解析する計算機を備え、果実の減衰
係数と糖度が相関をもつことを利用して、果実の大きさ
に対応し、果皮、果肉等の減衰係数の仮定値から散乱波
の減衰量を推定し、これを受信出力と比較し、果肉の減
衰関数を修正するプロセスを繰り返えすことにより果肉
の糖度を推定する如く構成したことを特徴とする糖度測
定装置。
The apparatus is equipped with a transmitting means for irradiating the fruit with microwaves, a receiving means for measuring the scattered waves scattered by the fruit, and a computer for analyzing the output of the receiving means, and a correlation between the attenuation coefficient and the sugar content of the fruit is provided. Using this fact, the amount of attenuation of the scattered waves is estimated from the assumed values of the attenuation coefficients of the pericarp, pulp, etc., corresponding to the size of the fruit, and this is compared with the received output to correct the attenuation function of the pulp. A sugar content measuring device characterized in that it is configured to estimate the sugar content of fruit pulp by repeating the process.
JP16688185A 1985-07-30 1985-07-30 Sugar content measuring instrument Pending JPS6228649A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16688185A JPS6228649A (en) 1985-07-30 1985-07-30 Sugar content measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16688185A JPS6228649A (en) 1985-07-30 1985-07-30 Sugar content measuring instrument

Publications (1)

Publication Number Publication Date
JPS6228649A true JPS6228649A (en) 1987-02-06

Family

ID=15839346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16688185A Pending JPS6228649A (en) 1985-07-30 1985-07-30 Sugar content measuring instrument

Country Status (1)

Country Link
JP (1) JPS6228649A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6488350A (en) * 1987-09-30 1989-04-03 Sochi Shikenjo Measuring method for existing quantity of plant by radiating microwave from side face

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5429696A (en) * 1977-08-09 1979-03-05 Kansai Electric Power Co Nonnbreaking strength testing method of dielectrics filling steel pipe
JPS56124039A (en) * 1980-03-06 1981-09-29 Shimada Phys & Chem Ind Co Ltd Dielectric sensor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5429696A (en) * 1977-08-09 1979-03-05 Kansai Electric Power Co Nonnbreaking strength testing method of dielectrics filling steel pipe
JPS56124039A (en) * 1980-03-06 1981-09-29 Shimada Phys & Chem Ind Co Ltd Dielectric sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6488350A (en) * 1987-09-30 1989-04-03 Sochi Shikenjo Measuring method for existing quantity of plant by radiating microwave from side face
JPH0577263B2 (en) * 1987-09-30 1993-10-26 Sochi Shikenjocho

Similar Documents

Publication Publication Date Title
Nelson et al. Microwave permittivities of fresh fruits and vegetables from 0.2 to 20 GHz
AU2002304283B2 (en) Apparatus and method for microwave determination of at least one physical parameter of a substance
US6456093B1 (en) Apparatus and method for detection of foreign bodies in products
Tantisopharak et al. Nondestructive determination of the maturity of the durian fruit in the frequency domain using the change in the natural frequency
AU2002304283A1 (en) Apparatus and method for microwave determination of at least one physical parameter of a substance
Li et al. Evaluation of water content in honey using microwave transmission line technique
US4633255A (en) Method for sea surface high frequency radar cross-section estimation using Dopler spectral properties
Goedeken et al. Dielectric properties of a pregelatinized bread system at 2450 MHz as a function of temperature, moisture, salt and specific volume
US7679375B2 (en) System and method for detecting foreign objects in a product
EP0395308A2 (en) Apparatus and method for measuring properties of an object using scattered electromagnetic radiation
WO2020113671A1 (en) System and method for detecting electromagnetic characteristic of object by using terahertz electromagnetic wave
US20110169507A1 (en) Methods and apparatus for the determination of moisture content
CN107219239B (en) Microwave moisture measuring method, device, equipment and storage medium
KR100749215B1 (en) distinction apparatus for maturity of closed packing Kimchi using millimeter-wave receiving systems
JPH01216265A (en) Nondestructive measurement for quality of fruit and vegetable by near infra red rays
CN104977312B (en) The method of testing of radar type microwave water measurer device
US20160187402A1 (en) Planar transmission-line permittivity sensor and calibration method for the characterization of liquids, powders and semisolid materials
JPH02238348A (en) Method and apparatus for measuring water content of material
JPS6228649A (en) Sugar content measuring instrument
US20060106546A1 (en) System and method for evaluating materials using ultra wideband signals
JPH08105845A (en) Method for concurrently measuring moisture and salinity
EP0487582B1 (en) Moisture content by microwave phase shift and mass/area
WO2018168499A1 (en) Non-destructive detection method, non-destructive detection device, and non-destructive detection program
CA2384831C (en) Apparatus and method for detection of foreign bodies in products
Smithson et al. Investigating the Use of Low-cost and Low-power Millimeter Wave RADAR to Improve Quality of Tomato Harvesting