JPH0577263B2 - - Google Patents

Info

Publication number
JPH0577263B2
JPH0577263B2 JP62248673A JP24867387A JPH0577263B2 JP H0577263 B2 JPH0577263 B2 JP H0577263B2 JP 62248673 A JP62248673 A JP 62248673A JP 24867387 A JP24867387 A JP 24867387A JP H0577263 B2 JPH0577263 B2 JP H0577263B2
Authority
JP
Japan
Prior art keywords
microwave
grass
amount
receiving device
voltage value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62248673A
Other languages
Japanese (ja)
Other versions
JPS6488350A (en
Inventor
Kenji Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SOCHI SHIKENJOCHO
Original Assignee
SOCHI SHIKENJOCHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SOCHI SHIKENJOCHO filed Critical SOCHI SHIKENJOCHO
Priority to JP62248673A priority Critical patent/JPS6488350A/en
Publication of JPS6488350A publication Critical patent/JPS6488350A/en
Publication of JPH0577263B2 publication Critical patent/JPH0577263B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、圃場に植生している牧草等を含む植
物群の現存量を、刈取りを行わない状態で非破壊
的に、かつ土壌の影響を排除して連続的に計測す
るためにマイクロ波を植物群落の側面から照射し
て計測するようにした植物現存量の測定方法に関
する。
The present invention uses microwaves to continuously measure the existing amount of plants, including grasses, etc. growing in fields, non-destructively without mowing, and without the influence of soil. This invention relates to a method for measuring the amount of existing plants in which the plant community is irradiated from the side.

【従来の技術】 圃場に植生している牧草等を含む植物の現存量
を知ることは、牧草収量や植物の生長解析をする
上で重要なことであるが、これを測定する従来の
方法は、刈取り併用の破壊を伴う測定方法が多く
用いられている。また、刈取らずに測定するグラ
スメータ(静電容量を計測する装置)による測定
方法等も周知である。
[Prior Art] Knowing the existing amount of plants including grass growing in a field is important for analyzing pasture yield and plant growth, but conventional methods for measuring this are , many measurement methods are used that involve cutting and destruction. In addition, a measurement method using a grass meter (a device that measures capacitance) that measures capacitance without cutting is also well known.

【発明が解決しようとする課題】[Problem to be solved by the invention]

ところで、上記刈取り併用の破壊を伴う測定方
法の場合には、その作業が面倒であるばかりでな
く多くの労力、時間を要する、という問題点があ
つた。また、上記グラスメータの場合では、測定
する植物群落の高さ(長さ)が高い(長い)と計
測が困難となる、といつた問題点があつた。
By the way, in the case of the above-mentioned measurement method that involves cutting and destruction, there is a problem that the work is not only troublesome but also requires a lot of labor and time. In addition, in the case of the above-mentioned grass meter, there was a problem that measurement became difficult when the height (length) of the plant community to be measured was high (long).

【課題を解決するための手段】[Means to solve the problem]

本発明は、上記のような問題点を解決すべくな
されたもので、圃場に植生している牧草のような
植物群落を中間にしてその両側に、マイクロ波発
信・受信装置およびマイクロ波を反射する反射
板、またはマイクロ波発信装置およびマイクロ波
受信装置を、それぞれ垂直方向に、かつ植物群落
に沿つて移動可能に設け、 マイクロ波発信・受信装置またはマイクロ波発
信装置からマイクロ波を植物群落に照射し、その
反射・受信マイクロ波エネルギーを示す波形状の
受信電圧値の高低、強弱から生草重および草丈を
測定し、該測定により検出される散乱係数と受信
電圧値との相関関係から、植物群落の現存量を、
刈取りを行わないで非破壊的に、かつ土壌の影響
を排除して連続的に測定するようにしたことを特
徴とする。
The present invention was made to solve the above-mentioned problems, and includes a microwave transmitting/receiving device and a microwave reflecting device on both sides of a grass-like plant community growing in a field. A reflector plate, or a microwave transmitter and a microwave receiver, each movable in the vertical direction and along the plant community, are provided, and microwaves are transmitted from the microwave transmitter/receiver or the microwave transmitter to the plant community. The weight and height of fresh plants are measured from the height and strength of the received voltage value of the waveform indicating the reflected and received microwave energy, and from the correlation between the scattering coefficient detected by the measurement and the received voltage value, The existing amount of plant communities,
It is characterized by being able to measure continuously, non-destructively, without mowing, and by eliminating the influence of soil.

【作用】[Effect]

上記の手段によつて本発明のマイクロ波の側面
からの照射による植物現存量の測定方法は、圃場
に植生している牧草のような植物群の現存量を、
刈取りを行わないで非破壊的に、かつ土壌の影響
を排除して連続的に測定する。そして、測定する
計測範囲(対象物)を広くすると共に、測定精度
も高められる。
The method of measuring the amount of existing plants by side irradiation with microwaves according to the present invention by the above means measures the amount of existing plants such as grass growing in a field.
Measurement is performed non-destructively without mowing, and continuously, eliminating the influence of soil. Then, the measurement range (object) to be measured is widened, and the measurement accuracy is also improved.

【実施例】【Example】

以下、図面を参照して本発明の実施例について
説明する。 第1図において、符号1は圃場に植生している
牧草で、この牧草1は、禾本科、豆(マメ)科、
その単播および混播などいずれでもよいものであ
る。 この牧草1の一側面には、マイクロ波(Cバン
ド)発信・受信装置2が垂直に配置され、このマ
イクロ波発信・受信装置2が配置された側と反対
側の牧草1の他側面には、反射板としてのアルミ
板3が垂直に配置されており、マイクロ波発信・
受信装置2から発信されたマイクロ波は、アルミ
板3により反射されて土壌の影響を受けることな
くマイクロ波発信・受信装置2に受信され、その
ときの反射・受信マイクロ波エネルギーの変化か
ら牧草1の生体情報(現存量)が計測されるレー
ダーを構成している。 上記マイクロ波発信・受信装置2やアルミ板3
は、測定車である軽トラツクに支持されて牧草地
などの測定場所へ移動するようになつており、マ
イクロ波発信・受信装置2は軽トラツクの荷台に
積載された測定装置本体に連繋されている。マイ
クロ波発信・受信装置2から受信された波形状の
電圧値Vのデータは、コンピユータにより処理さ
れ解析されるようになつている。なお、上記アル
ミ板3は、アルミニユームに限らず、マイクロ波
を反射するものであれば、他の金属板であつても
よい。 上記受信電圧値Vは、現存量に反応したマイク
ロ波の反応値であり、高い受信電圧値は、マイク
ロ波に影響を及ぼす物体(現存量)が少ないため
に、マイクロ波の反射、透過エネルギーが大きか
つたことを示す。従つて、本発明では現存量と受
信電圧値との間には、現存量の多い状態で受信電
圧値が低く、逆に現存量の少ない状態で受信電圧
値が高くなる、という関係がある。受信電圧値の
高低、即ち受信されたマイクロ波エネルギーの強
弱によつて、現存量の測定が可能となる。 上記マイクロ波発信・受信装置2およびアルミ
板3に代えて、第2図に示すように、マイクロ波
発信装置4およびマイクロ波受信装置5にしても
同様に実施できるものである。この場合には、両
装置4,5ともに測定装置本体に連繋される。 次に、本発明を完成するに到つた試験結果につ
いて説明する。 この試験に用いられた装置は、軽トラツクの荷
台に積載された測定装置本体から、マイクロ波
送・受信アンテナを牧草群落の上に設定し、同ア
ンテナからマイクロ波を送信し、牧草地から反射
するマイクロ波を受信して、そのエネルギーの変
化から作物の生体情報や土壌情報を計測した。 受信された波形状の電圧値Vのデータは、コン
ピユータ処理し解析された。調査地は、1984年9
月更新のトールフエスク(TF)とオーチヤード
グラス(OG)の各単播、TF・OG・ペレニアル
ライグラス(PR)・メドウフエスク(MF)の混
播草地、1985年6月に別表の表1のように設定し
たシバ草地、および1979年更新の放牧草地であつ
た。 その結果を第3図ないし第8図に示す。第3図
には、立毛状態、踏圧状態、刈取後での受信電圧
値の変化が各草地ごとに示されており、Meanは
刈後>踏圧>立毛、Max−Minでは刈後>立毛
の大小関係が認められた。この時のMean、Max
から求めた散乱係数(第4図)は第3図のような
パターンを示した。同一草地における翌春のマイ
クロ波受信電圧値(第5図)は刈後>立毛の大小
関係であつた。マメ科率と受信電圧値の間に正の
相関関係を認めた(第6図)。シバ草地の受信電
圧値(第7図)と散乱係数(第8図)は、栽植様
式によつて異つた。 ここでマイクロ波の散乱係数dBは、観測対象
物の散乱体が地面のように平面状に広がつた物体
として計測されるという前提で算出され、単位面
積当りの平均的な散乱断面積を現す微分散乱係数
である。この係数は、計算式によつて求め、対数
をとつてdBで表示する。 そして、散乱係数の絶対値が大きいということ
は、散乱体が多いことを示す。本発明では、この
散乱体は牧草類の現存量である。従つて、本発明
の場合、マイクロ波の散乱係数の絶対値は、現存
量の多い状態ほど、即ち生草重=マイクロ波で計
測する一定面積の草地に、立毛状態で現存する牧
草類の地上部の生体の重量gを示す、が大きいと
きほど、または草丈=牧草をまつすぐに伸ばした
状態で測定し、牧草の地際から最先端までの長さ
cmを示す、の長いときほど大きな値となる。 以上の結果から、マイクロ波は牧草地の量的お
よび形態的な違いに反応していることが証明され
た。 上記測定装置と同様の装置を用いて、草量推定
の可能性を探るため、マイクロ波の受信電圧値お
よび散乱係数と草量の関係について検討した。 その結果を別表の表2ないし表4に示す。
Embodiments of the present invention will be described below with reference to the drawings. In Fig. 1, reference numeral 1 indicates a grass growing in the field, and this grass 1 belongs to the leguminous family, the leguminous family, and
Either single sowing or mixed sowing may be used. A microwave (C band) transmitting/receiving device 2 is vertically arranged on one side of the grass 1, and the other side of the grass 1 opposite to the side where the microwave transmitting/receiving device 2 is arranged is , an aluminum plate 3 as a reflector is arranged vertically, and microwave transmission/
The microwaves emitted from the receiving device 2 are reflected by the aluminum plate 3 and received by the microwave transmitting/receiving device 2 without being affected by the soil, and from the changes in reflected and received microwave energy at that time, the grass 1 It constitutes a radar that measures biometric information (existing amount). The above microwave transmitting/receiving device 2 and aluminum plate 3
is supported by a light truck, which is the measuring vehicle, and is moved to a measurement location such as a pasture, and the microwave transmitting/receiving device 2 is connected to the main body of the measuring device loaded on the bed of the light truck. There is. The wave-shaped voltage value V data received from the microwave transmitting/receiving device 2 is processed and analyzed by a computer. Note that the aluminum plate 3 is not limited to aluminum, and may be any other metal plate as long as it reflects microwaves. The above received voltage value V is the reaction value of the microwave in response to the existing amount, and a high received voltage value means that there are few objects (existing amount) that affect the microwave, so the reflected and transmitted energy of the microwave is Shows how big it is. Therefore, in the present invention, there is a relationship between the existing amount and the received voltage value such that when the existing amount is large, the received voltage value is low, and conversely, when the existing amount is small, the received voltage value is high. The existing amount can be measured based on the level of the received voltage value, that is, the strength of the received microwave energy. In place of the microwave transmitting/receiving device 2 and aluminum plate 3, a microwave transmitting device 4 and a microwave receiving device 5 may be used as shown in FIG. 2. In this case, both devices 4 and 5 are linked to the main body of the measuring device. Next, the test results that led to the completion of the present invention will be explained. The device used in this test was set up with a microwave transmitting/receiving antenna above the grass community from the measuring device itself, which was loaded onto the back of a light truck, and the microwave was transmitted from the antenna and reflected from the pasture. They received microwaves and measured biological information about crops and soil information from the changes in energy. The data of the received waveform voltage value V was processed and analyzed by a computer. The survey location was September 1984.
Single sowing of tall fescue (TF) and orchid grass (OG), mixed seeding of TF, OG, perennial ryegrass (PR), and meadow fescue (MF), updated monthly, established in June 1985 as shown in Appendix Table 1. It was a grassland that was renovated in 1979, and a pastureland that was renewed in 1979. The results are shown in FIGS. 3 to 8. Figure 3 shows the change in the received voltage value for each grassland, including the standing state, treading pressure state, and after mowing. A relationship was recognized. Mean at this time, Max
The scattering coefficient (Fig. 4) determined from the above showed a pattern as shown in Fig. 3. The microwave received voltage values (Fig. 5) in the same grassland the following spring were in a relationship of magnitude after mowing > hair standing. A positive correlation was observed between the legume rate and the received voltage value (Figure 6). The received voltage values (Figure 7) and scattering coefficients (Figure 8) of the grassland differed depending on the planting style. Here, the microwave scattering coefficient dB is calculated on the assumption that the scatterer in the observation target is measured as a flat object like the ground, and it represents the average scattering cross section per unit area. is the differential scattering coefficient. This coefficient is obtained using a calculation formula, and the logarithm is taken and expressed in dB. A large absolute value of the scattering coefficient indicates that there are many scatterers. In the present invention, this scatterer is the standing amount of grasses. Therefore, in the case of the present invention, the absolute value of the scattering coefficient of microwaves is determined by The larger is the weight of the living organism in g, or the grass height is measured when the grass is fully stretched, and is the length from the ground to the cutting edge of the grass.
Indicates cm, the longer the value, the larger the value. The above results demonstrate that microwaves respond to quantitative and morphological differences in pasture. Using a device similar to the above-mentioned measuring device, we investigated the relationship between microwave reception voltage values, scattering coefficients, and grass amount in order to explore the possibility of estimating the amount of grass. The results are shown in Tables 2 to 4 in the appendix.

【表】【table】

【表】【table】

【表】【table】

【表】 秋(4番草)および翌春(1番草)の計測値と
生草重の相関係数をみると(表2)、秋にはOG、
TFでは生草量との間に負の相関が認められたが、
春には一定の傾向は認められなかつた。OG、
TF、RTの単播草地では送・受信アンテナを傾
斜させることによつて、水平時より高い相関が認
められたが、混播草地では逆に相関は小さくなつ
た(表3)。 また、乾物重とアンテナ傾斜時の散乱係数との
間にも混播草地を除き高い負の相関が認められ
た。草量とアンテナ水平時および傾斜時の計測値
との重相関係数は、単播草地ではRTのMIN、
RANGEを除き生草重、乾物重とも高い値を示し
たが、混播草地では一部を除き重相関係数は低い
値を示した(表4)。 以上の結果、単播草地ではマイクロ波の発信電
圧値、散乱係数と生草重、あるいは乾物重との間
には負の相関があり、草量推定の可能性が認めら
れたが、草種、適用条件等についてさらに検討が
必要である。 以上の試験結果を踏まえて、本発明においては
マイクロ波発信・受信装置を牧草を中間にして垂
直方向に配設することで土壌の影響を受けること
なく牧草を、圃場に植生した状態のままその草量
(現存量)を測定することができるようにした。
また、草種に対する適用性も広く、土地の傾斜、
起伏等を勘案して、上記マイクロ波発信・受信装
置2、アルミ板3、マイクロ波発信装置4、マイ
クロ波受信装置5の垂直方向の角度調節を可能に
するようにしてもよい。 そして、植物現存量は上記のように生重や乾重
で表示されるが、一般に植物の固体密度と高さに
規制される。現存量は密度が高いほど、また植物
群落の高さが高いほど大きくなる。 例えば牧草地では、水田、畑地と異なり、個体
密度が高い状態で維持するため、牧草群落の高さ
(草丈や草高で示す)の要因が現存量の多少に影
響する。第9図および第10図に示すように、マ
イクロ波の反応(散乱係数)は、現存量を示す生
草重と草丈に類似の傾向がみられることからも理
解できる。 本発明では、上記のように草丈や生草重の生体
情報を検知するが、あくまでも現存量の量的評価
をすることに狙いがあるので、現存量とマイクロ
波との関係に注目すればよい。即ち、現存量とマ
イクロ波との回帰式を求めていれば、マイクロ波
の反応の強弱から現存量を評価できる。 なお、牧草地の測定は、全面積のうちの一定面
面積について測定すれば全体の草量を推定するこ
とができるが、本発明においては測定車の走行と
共に測定が可能なので、大きな面積の測定でもさ
ほど時間を要しない。また、本発明の測定装置を
牧草の他の植物に利用する場合には、その群落の
状態に最適の波長を決めてから、現存量とマイク
ロ波反応との回帰式を検討すれば同様に測定する
ことができる。
[Table] Looking at the correlation coefficient between the measured values and fresh grass weight in autumn (4th plant) and the following spring (1st plant) (Table 2), in autumn, OG,
Although a negative correlation was observed between TF and the amount of fresh grass,
No definite trend was observed in spring. O.G.
In TF and RT single-seeded grasslands, a higher correlation was observed by tilting the transmitting and receiving antennas than in the horizontal position, but in mixed-seeded grasslands, on the contrary, the correlation became smaller (Table 3). In addition, a high negative correlation was observed between dry weight and scattering coefficient when the antenna was tilted, except for mixed-seeded grassland. The multiple correlation coefficient between the amount of grass and the measured values when the antenna is horizontal and tilted is MIN of RT in single-seeded grassland,
Both fresh grass weight and dry weight showed high values except for RANGE, but the multiple correlation coefficient showed low values with some exceptions in mixed-seeded grasslands (Table 4). As a result, in single-seeded grassland, there was a negative correlation between the microwave transmission voltage value, scattering coefficient, and fresh grass weight or dry weight, and the possibility of estimating the grass amount was recognized. Further consideration is required regarding application conditions, etc. Based on the above test results, in the present invention, by arranging the microwave transmitting/receiving device in a vertical direction with the grass in the middle, the grass can be grown without being affected by the soil, while remaining as a vegetation in the field. It is now possible to measure the amount of grass (existing amount).
It is also applicable to a wide range of grass species, including land slopes,
The angles of the microwave transmitting/receiving device 2, aluminum plate 3, microwave transmitting device 4, and microwave receiving device 5 may be adjusted in the vertical direction by taking into consideration the ups and downs and the like. The existing amount of plants is expressed as fresh weight or dry weight as described above, but is generally regulated by the solid density and height of the plants. The amount of existing plants increases as the density increases and the height of the plant community increases. For example, in pastures, unlike rice paddies and fields, individual densities are maintained at a high level, so factors such as the height of the grass community (indicated by plant height and grass height) affect the amount of existing grasses. As shown in FIGS. 9 and 10, the microwave response (scattering coefficient) can be understood from the fact that similar trends are observed in fresh plant weight and plant height, which indicate the amount of existing plants. In the present invention, biological information such as plant height and fresh plant weight is detected as described above, but since the aim is to quantitatively evaluate the amount of existing plants, it is sufficient to focus on the relationship between the amount of existing plants and microwaves. . That is, if a regression equation between the existing amount and microwaves is obtained, the existing amount can be evaluated from the strength of the microwave reaction. In addition, when measuring a meadow, it is possible to estimate the total amount of grass by measuring a certain surface area out of the total area, but in the present invention, measurement can be performed while the measuring vehicle is moving, so it is possible to measure a large area. But it doesn't take much time. In addition, when using the measuring device of the present invention for other grass plants, it is possible to perform measurements in the same way by determining the optimal wavelength for the condition of the community and then examining the regression equation between the existing amount and the microwave response. can do.

【発明の効果】【Effect of the invention】

以上説明したように、本発明のマイクロ波の側
面からの照射による植物現存量の測定方法によれ
ば、圃場に植生している作物を非破壊的に、かつ
土壌の影響を排除して連続的に測定するので、圃
場に植生している植物の現存量を迅速に、かつ正
確に測定することができる。 また、圃場に植生している植物群落の測定適用
範囲も広く、汎用性のあるものである。
As explained above, according to the method of measuring the amount of existing plants using microwave irradiation from the side of the present invention, crops growing in a field can be measured non-destructively and continuously without the influence of soil. Since the amount of vegetation in the field can be measured quickly and accurately, the amount of plants growing in the field can be measured quickly and accurately. In addition, the measurement range of plant communities growing in fields is wide and versatile.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す概略正面図、
第2図は本発明の他の実施例を示す概略正面図、
第3図ないし第8図は、本発明を完成させた基礎
試験のグラフで、第3図はマイクロ波受信電圧値
と牧草群落状態との関係、第4図は散乱係数と群
落状態との関係、第5図は刈取前後のマイクロ波
受信電圧値の変化、第6図はマイクロ波受信電圧
値(Max−Min)とマメ科率との関係、第7図
はシバ草地の栽培様式とマイクロ波受電圧値との
関係、第8図はシバ草地での散水前後の散乱係数
をそれぞれ示す。第9図は生草重と散乱係数との
関係を示すグラフ、第10図は草丈と散乱係数と
の関係を示すグラフである。 1……牧草、2……マイクロ波発信・受信装
置、3……アルミ板(反射板)、4……マイクロ
波発信装置、5……マイクロ波受信装置。
FIG. 1 is a schematic front view showing an embodiment of the present invention;
FIG. 2 is a schematic front view showing another embodiment of the present invention;
Figures 3 to 8 are graphs of basic tests that completed the present invention. Figure 3 is the relationship between the microwave reception voltage value and the grass community condition, and Figure 4 is the relationship between the scattering coefficient and the grass community condition. , Figure 5 shows the change in the microwave received voltage value before and after reaping, Figure 6 shows the relationship between the microwave received voltage value (Max-Min) and the leguminous rate, and Figure 7 shows the cultivation style of grassland and the microwave Figure 8 shows the scattering coefficient before and after watering in the grassland in relation to the received voltage value. FIG. 9 is a graph showing the relationship between fresh grass weight and scattering coefficient, and FIG. 10 is a graph showing the relationship between plant height and scattering coefficient. 1... Grass, 2... Microwave transmitting/receiving device, 3... Aluminum plate (reflection plate), 4... Microwave transmitting device, 5... Microwave receiving device.

Claims (1)

【特許請求の範囲】 1 圃場に植生している牧草のような植物群落を
中間にしてその両側に、マイクロ波発信・受信装
置およびマイクロ波を反射する反射板、またはマ
イクロ波発信装置およびマイクロ波受信装置を、
それぞれ垂直方向に、かつ植物群落に沿つて移動
可能に設け、 マイクロ波発信・受信装置またはマイクロ波発
信装置からマイクロ波を植物群落に照射し、その
反射・受信マイクロ波エネルギーを示す波形状の
受信電圧値の高低、強弱から生草重および草丈を
測定し、該測定により検出される散乱係数と受信
電圧値との相関関係から、植物群落の現存量を、
刈取りを行わないで非破壊的に、かつ土壌の影響
を排除して連続的に測定するようにしたことを特
徴とするマイクロ波の側面からの照射による植物
現存量の測定方法。
[Scope of Claims] 1. A microwave transmitting/receiving device and a reflector that reflects microwaves, or a microwave transmitting device and a microwave the receiving device,
Each device is movable in the vertical direction and along the plant community, and the microwave transmitting/receiving device or the microwave transmitting device irradiates the plant community with microwaves and receives a waveform indicating the reflected and received microwave energy. The weight and height of fresh plants are measured from the height and strength of the voltage value, and the existing amount of the plant community is determined from the correlation between the scattering coefficient detected by the measurement and the received voltage value.
A method for measuring the amount of existing plants by irradiating microwaves from the side, characterized in that the measurement is carried out non-destructively without cutting, and continuously while eliminating the influence of soil.
JP62248673A 1987-09-30 1987-09-30 Measuring method for existing quantity of plant by radiating microwave from side face Granted JPS6488350A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62248673A JPS6488350A (en) 1987-09-30 1987-09-30 Measuring method for existing quantity of plant by radiating microwave from side face

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62248673A JPS6488350A (en) 1987-09-30 1987-09-30 Measuring method for existing quantity of plant by radiating microwave from side face

Publications (2)

Publication Number Publication Date
JPS6488350A JPS6488350A (en) 1989-04-03
JPH0577263B2 true JPH0577263B2 (en) 1993-10-26

Family

ID=17181631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62248673A Granted JPS6488350A (en) 1987-09-30 1987-09-30 Measuring method for existing quantity of plant by radiating microwave from side face

Country Status (1)

Country Link
JP (1) JPS6488350A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05198717A (en) * 1992-01-21 1993-08-06 Oki Electric Ind Co Ltd Apparatus and method for forming lead of ic
JP2577778Y2 (en) * 1992-05-13 1998-07-30 鐘淵化学工業株式会社 Solar-powered building
JP4654373B2 (en) * 2004-09-03 2011-03-16 国立大学法人 長崎大学 Method for measuring the adaptive response of plants to stress
JP5809559B2 (en) * 2008-07-11 2015-11-11 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Lighting arrangement for lighting horticultural crops
JP5382703B2 (en) * 2009-05-12 2014-01-08 株式会社テクノ菱和 Plant growth measurement system, control method thereof, and control program
KR101734744B1 (en) * 2013-04-18 2017-05-11 후지쯔 가부시끼가이샤 Vegetation determination program, vegetation determination device and vegetation determination method
JP6434855B2 (en) * 2015-04-22 2018-12-05 Tdk株式会社 Plant growth state diagnosis apparatus and growth state diagnosis method
JP6369491B2 (en) * 2016-03-03 2018-08-08 有限会社新潟システム制御 茸 Sorting device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6228649A (en) * 1985-07-30 1987-02-06 Norin Suisansyo Nogyo Kankyo Gijutsu Kenkyusho Sugar content measuring instrument

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6228649A (en) * 1985-07-30 1987-02-06 Norin Suisansyo Nogyo Kankyo Gijutsu Kenkyusho Sugar content measuring instrument

Also Published As

Publication number Publication date
JPS6488350A (en) 1989-04-03

Similar Documents

Publication Publication Date Title
Scotford et al. Combination of spectral reflectance and ultrasonic sensing to monitor the growth of winter wheat
US5044756A (en) Real-time soil organic matter sensor
Fricke et al. Combining ultrasonic sward height and spectral signatures to assess the biomass of legume–grass swards
Sudduth et al. Sensors for site‐specific management
Maleki et al. On-the-go variable-rate phosphorus fertilisation based on a visible and near-infrared soil sensor
Zaman et al. Development of prototype automated variable rate sprayer for real-time spot-application of agrochemicals in wild blueberry fields
US6601341B2 (en) Process for in-season fertilizer nitrogen application based on predicted yield potential
US11185009B2 (en) System and method for on-the-go measurements of temperature and dielectric properties of soil and other semi-solid materials
Sharma et al. Use of corn height to improve the relationship between active optical sensor readings and yield estimates
BUSH Monitoring wheat growth with radar
Bradley et al. Aircraft radar response to soil moisture
Ehlert et al. Variable rate nitrogen fertilisation of winter wheat based on a crop density sensor
JPH0577263B2 (en)
CN109187417A (en) A kind of Terahertz of UAV system involves high-spectrum remote-sensing crops monitoring system
Denison et al. Field estimates of green leaf area index using laser-induced chlorophyll fluorescence
Conceiçao et al. A partial study of vertical distribution of conventional no-till seeders and spatial variability of seed depth placement of maize in the Alentejo region, Portugal
Lund et al. Proximal sensing of soil organic matter using the Veris® OpticMapper™
Shropshire et al. Optical reflectance sensor for detecting plants
Ludwig et al. Use of near infrared spectroscopy to predict chemical parameters and phytotoxicity of peats and growing media
Mesterházi Development of measurement technique for GPS-aided plant production
Bauder et al. Regression models for predicting corn yields from climatic data and management practices
Berry et al. Development of methods for remotely sensing grass growth to enable precision application of nitrogen fertilizer
Saad Development and Evaluation of a Radar System for Ground Surface Detection in Wild Blueberry Fields
Portz et al. Capability of crop canopy sensing to predict crop parameters of cut grass swards aiming at early season variable rate nitrogen top dressings
Loch et al. Effects of frequency of peanut (Arachis hypogaea L.) cropping on some properties of krasnozem and euchrozem soils in the South Burnett Area, Queensland

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term